Fall 2001 Problem 2

Exercise 12.3 (Basel problem with Fourier analysis)  
  1. Find the Fourier coefficients $\widehat{f}(k)$ for the function $f(x)=x$ with respect to the exponential system $e^{2\pi i k x}$ ( $k\in\mathbb{Z}$) on $[-\frac{1}{2}, \frac{1}{2}]$.
  2. Use the result of part (a) to compute

    $\displaystyle \sum_{k=1}^\infty \frac{1}{k^2}.$ (12.16)

Proof. Introduce the inner product on $L^1\cap L^2$

$\displaystyle \langle f, g \rangle = \int_{-\frac{1}{2}}{\frac{1}{2}}
f(x)\overline{g(x)}dx.$ (12.17)

Then the functions $\{e^{2\pi i k x}\}$ form an orthonormal system and

$\displaystyle f(x) = \sum_{k=-\infty}^\infty \langle f, e^{2\pi i k x} \rangle
e^{2\pi i k x}$   in $L^2$ (12.18)

Let us compute these inner products for the given $f(x)=x$.

$\displaystyle \langle x, e^{2\pi i k x} \rangle$ $\displaystyle = \int_{-\frac{1}{2}}^{\frac{1}{2}}
x e^{-2\pi i k x}dx$ (12.19)
  $\displaystyle = \int x\left(e^{-2\pi i k x}/(-2\pi i k)\right)'dx$ (12.20)
  $\displaystyle = \left. \frac{xe^{-2\pi i k x}}{-2\pi i k}
\right\vert _{-\frac{1}{2}}^{\frac{1}{2}}
- \int (e^{-2\pi i k x}/(-2\pi i k))dx$ (12.21)
  $\displaystyle = \frac{1}{-2\pi i k}\left[\frac{e^{-\pi i k}}{2}
+ \frac{e^{\pi i k}}{2}\right]
- \int (e^{-2\pi i k x}/(-2\pi i k))dx$ (12.22)

For the part:

$\displaystyle \int (e^{-2\pi i k x}/(-2\pi i k))dx$ $\displaystyle =
\int (e^{-2\pi i k x}/(-2\pi i k))'/(-2\pi i k)dx$ (12.23)
  $\displaystyle = -\left.\frac{e^{-2\pi i k x}}{4\pi^2k^2}
\right\vert _{-\frac{1}{2}}^{\frac{1}{2}}$ (12.24)
  $\displaystyle = -\frac{1}{4\pi^2k^2}\left[e^{-\pi i k}-e^{\pi i k}\right]$ (12.25)

Combining these shows

$\displaystyle \langle x, e^{2\pi i k x} \rangle$ $\displaystyle =
\frac{1}{-2\pi i k}\left[\frac{e^{-\pi i k}}{2}
+ \frac{e^{\pi i k}}{2}\right]
+ \frac{1}{4\pi^2k^2}\left[e^{-\pi i k}-e^{\pi i k}\right]$ (12.26)
  $\displaystyle = \frac{i\cos(\pi k)}{2\pi k} - \frac{i\sin(\pi k)}{2\pi^2k^2}$ (12.27)

If $k=0$,

$\displaystyle \langle x, 1\rangle = \int_{-\frac{1}{2}}^{\frac{1}{2}} x dx =0$ (12.28)

so

$\displaystyle x$ $\displaystyle = \sum_{k=-\infty}^\infty \widehat{f}(k)e^{2\pi i kx}$ (12.29)
  $\displaystyle = \sum_{k\neq 0} \left[\frac{i\cos(\pi k)}{2\pi k}
- \frac{i\sin(\pi k)}{2\pi^2k^2}\right] e^{2\pi i kx}$ (12.30)
  $\displaystyle = \sum_{k\neq 0} \frac{i(-1)^k}{2\pi k}e^{2\pi i kx}$ (12.31)

Apply the Parseval identity for our $f(x)=x$

$\displaystyle \Vert f\Vert _2$ $\displaystyle = \sum_{k=-\infty}^\infty \vert\widehat{f}(k)\vert^2$ (12.32)
  $\displaystyle = \sum_{k\neq 0} \frac{1}{4\pi^2k^2}$ (12.33)
  $\displaystyle = 2\sum_{k=1}^\infty \frac{1}{4\pi^2 k^2}$ (12.34)

Then

$\displaystyle \Vert f\Vert _2 = \int x^2 dx = \left. \frac{x^3}{3} \right\vert _{-1/2}^{1/2}
= \frac{1/8}{3} + \frac{1/8}{3}
= \frac{1}{12}$ (12.35)

so that

$\displaystyle \frac{1}{12} = \frac{1}{2\pi^2}\sum_{k=1}^\infty \frac{1}{k^2}$ (12.36)

and finally

$\displaystyle \frac{\pi^2}{6} = \sum_{k=1}^\infty \frac{1}{k^2}.$ (12.37)

$\qedsymbol$