Fall 2001 Problem 1

Exercise 12.2 (Integrals are continuous in mean)   Show that if $f\in L^1(\mathbb{R})$ then $\int_{-\infty}^\infty
\vert f(x+h)-f(x)\vert dx \to 0$ as $h\to 0$.

Proof. Let $h_n\to 0$. Set $f_n(x)=f(x+h_n)$. Select $F\subseteq \mathbb{R}$ such that $\mu(F)<\infty$ and

$\displaystyle \int_{\mathbb{R}\setminus F} 2\vert f\vert < \epsilon.$ (12.7)

From this arises the estimate

$\displaystyle \int_{\mathbb{R}} \vert f_n-f\vert$ $\displaystyle = \int_{\mathbb{R}\setminus F}\vert f_n-f\vert
+ \int_F\vert f_n-f\vert$ (12.8)
  $\displaystyle \leq \int_{\mathbb{R}\setminus F}2\vert f\vert + \int_F\vert f_n-f\vert$ (12.9)
  $\displaystyle \leq \epsilon + \int_F\vert f_n-f\vert.$ (12.10)

Now select $\delta>0$ so that if $\mu(B)<\delta$, then

$\displaystyle \int_B 2\vert f\vert < \epsilon.$ (12.11)

By Egorov's theorem there exists $E\subseteq F$ such that $\mu(F\setminus E)<\delta$ and $f_n\to f$ uniformly on $E$. Then

$\displaystyle \int_F\vert f_n - f\vert$ $\displaystyle = \int_{F\setminus E} \vert f_n-f\vert
+ \int_E \vert f_n-f\vert$ (12.12)
  $\displaystyle \leq \int_{F\setminus E} 2\vert f\vert + \mu(E)\Vert f_n-f\Vert _E$ (12.13)
  $\displaystyle \leq \epsilon + \mu(E)\Vert f_n-f\Vert _E.$ (12.14)

Sending $n\to\infty$ and $\epsilon\to 0$ shows

$\displaystyle \lim_{n\to\infty} \int_{\mathbb{R}}\vert f_n - f\vert = 0.$ (12.15)

$\qedsymbol$