Problem 4

Exercise 3.4 (Radon-Nikodym)   If $\mu(X)<\infty$, $\{E_k\}_{k=1}^n$ are measurable, and $\{c_k\}_{k=1}^n$ are real, define a measure $\nu$ by

$\displaystyle \nu(E) := \sum_{k=1}^n c_k \mu(E\cap E_k)$ (3.26)

Proof. Verify that $\nu$ is a measure by checking countable additivity. Let $\{A_j\}_{j=1}^\infty$ be a sequence of disjoint measurable sets. Then

$\displaystyle \nu\left(\bigcup_{j=1}^\infty A_j\right)$ $\displaystyle = \sum_{k=1}^n c_k \mu\left(\left(\bigcup_{j=1}^\infty A_j\right)
\cap E_k\right)$ (3.27)
  $\displaystyle = \sum_{k=1}^n c_k \mu\left(\bigcup_{j=1}^\infty (A_j\cap E_k)\right)$ (3.28)
  $\displaystyle = \sum_{k=1}^n c_k \sum_{j=1}^\infty \mu(A_j\cap E_k)$ (3.29)
  $\displaystyle = \sum_{j=1}^\infty \sum_{k=1}^n c_k\mu(A_j\cap E_k)$ (3.30)
  $\displaystyle = \sum_{j=1}^\infty \nu(A_j)$ (3.31)

To see that $\nu\ll\mu$, suppose $\mu(A)=0$. Then

$\displaystyle \nu(A) = \sum_{k=1}^n \mu(A\cap E_k) \leq \sum_{k=1}^n \mu(A) = 0$ (3.32)

Now we show the Radon-Nikodym derivative equals $\sum_k c_k \mathbf{1}_{E_k}$. Observe:

$\displaystyle \int_A\frac{d\nu}{d\mu}d\mu$ $\displaystyle =\int_A \sum_{k=1}^n c_k \mathbf{1}_{E_k}$ (3.33)
  $\displaystyle = \sum_{k=1}^n \int_A c_k \mathbf{1}_{E_k}d\mu$ (3.34)
  $\displaystyle = \sum_{k=1}^n \int_{A\cap E_k} c_k d\mu$ (3.35)
  $\displaystyle = \sum_{k=1}^n c_k \mu(A\cap E_k)$ (3.36)
  $\displaystyle = \nu(A)$ (3.37)

showing that which was to be shown. $\qedsymbol$