Problem 3

Exercise 3.3 (Product of absolutely continuous functions)   Let $f,g:[0,1]\to\mathbb{R}$ be absolutely continuous. Then their product is absolutely continuous.

Proof. Select $\delta_1,\delta_2>0$ via absolute continuity so that

$\displaystyle \sum_{i=1}^n \vert y_i - x_i\vert < \delta_1$ $\displaystyle \implies \sum_{i=1}^n \vert f(y_i) - f(x_i)\vert < \epsilon/\Vert g\Vert$ (3.19)
$\displaystyle \sum_{i=1}^n \vert y_i - x_i\vert < \delta_2$ $\displaystyle \implies \sum_{i=1}^n \vert g(y_i) - g(x_i)\vert < \epsilon/\Vert f\Vert$ (3.20)

and set $\delta=\min\{\delta_1,\delta_2\}$. Then we have

$\displaystyle \sum_{i=1}^n \vert(fg)(y_i) - (fg)(x_i)\vert$ $\displaystyle = \sum_{i=1}^n \vert f(y_i)g(y_i) - f(x_i)g(x_i)\vert$ (3.21)
  $\displaystyle = \sum_{i=1}^n \vert f(y_i)g(y_i) - f(y_i)g(x_i)
+ f(y_i)g(x_i) - f(x_i)g(x_i)\vert$ (3.22)
  $\displaystyle \leq \sum_{i=1}^n \vert f(y_i)\vert\vert g(y_i)-g(x_i)\vert + \vert g(x_i)\vert\vert f(y_i)-f(x_i)\vert$ (3.23)
  $\displaystyle \leq \sum_{i=1}^n \Vert f\Vert\vert g(y_i)-g(x_i)\vert + \Vert g\Vert\vert f(y_i)-f(x_i)\vert$ (3.24)
  $\displaystyle \leq \Vert f\Vert\sum_{i=1}^n \vert g(y_i)-g(x_i)\vert
+ \Vert g\Vert\sum_{i=1}^n\vert f(y_i)-f(x_i)\vert$ (3.25)

These sums are both bounded by $\epsilon$ if $\sum_i \vert y_i-x_i\vert<\delta$, indicating $fg : [0,1]\to\mathbb{R}$ is absolutely continuous. $\qedsymbol$