Writing about SEM/Best Practices

• Presenting results
• Best Practices
 » specification
 » data
 » analysis
 » interpretation
Writing about SEM

• Summary of recommendation from Hoyle & Panter, McDonald & Ho, Kline
 » the model
 » the data
 » estimation and fit
 » parameter estimates
 » alternative models
Presenting the Model

• H&P suggest presenting a more abstract version of the model first ("conceptual model") followed by a concrete model specified in enough detail to allow the reader to reconstruct the analysis ("statistical model")
 » reader should be able to compute observations and degrees of freedom from statistical model
 » indicate clearly any parameters that were fixed

• M&H want to see more discussion of identifiability

• Both want readers to do more theoretical justification for presence and absence of paths
Data

• Check for violations of assumptions and present diagnostic information
 » esp., provide information about kurtosis
 » Mardia's coefficient gives information on multivariate normality

• Give information on missing data (how much?), and how this was handled (e.g., listwise deletion)

• Provide data
 » covariance matrix that includes all observed variables OR
 » correlation matrix and standard deviations
 » M&H: if > 30 variables, put on web or state that the data are available from the author
Estimation and Fit

• State what method of estimation you used
 » Maximum Likelihood best in most cases

• Present strategy for testing fit (H&P)
 » state which indices will be presented and give justifications for choosing them
 » give conceptual definition of each index used
 » state the cutoff values you will be using

• Give χ^2, df, sample size and p value
 » can do this succinctly:
 $\approx \chi^2(48, N = 500) = 303.80, p < .001, TLI = .86, CFI = .90$
Global Fit Indices

• H&P recommend
 » GFI because it's in the same metric as R
 » NNFI or IFI
 » CFI

• M&H recommend
 » RMSEA, RMR, CFI, GFI

• Kline recommends
 » RMSEA, CFI
More on Fit

• M&H and Kline suggest that discrepancy information should be presented
 » M&H say to present it in the other half of the variance/covariance matrix of the observed variables

• M&H and Kline also both recommend a two-step testing strategy to insure that structural part of model fits well
 » See M&H Table 2 (p. 74) for examples in which structural portion did not fit well but this was masked by the overall good fit of the model
Parameter Estimates

• Report all parameter estimates
 » including variances
 » report standard errors as well
 » clearly indicate any paths that were fixed (e.g., to 1.0 to set the scale for a latent variable)

• M&H suggest presenting measurement model parameters in tabular form and leaving the observed variables out of the diagram, for clarity
Alternative Models

• Present and test alternative models
• If respecification is done, present this information clearly
 » H&P recommend that results for the hypothesized model be presented first
 » In a separate section, present the modified model
• Test equivalent models, if possible
Cross-Validation

• If you have a holdout sample, test your final model on them and present the results
• If you can't do this, provide estimates of the likelihood that your model will replicate
 » Browne & Cudeck cross-validation statistic
Keeping Up

• Recommendations are changing, so look for people to continue writing on this topic in:
 » Psychological Methods
 » Specialty journals
 • Structural Equation Models
 • Multivariate Behavioral Research
 • Applied Psychological Measurement
 • Psychometrika
Best Practices: Specification

• Lay out your model before you collect data
 » if it is not identified, you can add more measured variables

• Try to include all important causes that are already known

• When modeling latent variables, have enough indicators
 » Kenny (1979): "Two might be fine, three is better, four is best and anything more is gravy."
 » Number of indicators necessary for identification depends on the model
Best Practices: Specification

• Think hard about directionality
 » does the logic of the study design and protocol rule out some causal orders?
 » have some causal orders been confirmed or disconfirmed in other studies (especially longitudinal or experimental)?
 » if not, you may want to consider (and test) other causal orders

• Don't use feedback loops (causal arrows going both ways) as a way to get around thinking hard about directionality
Best Practices: Specification

• Add correlations between error or disturbance terms only when conceptually justified
 » try to work out ahead of time which error terms may need to be correlated
 » avoid correlating error terms solely to improve fit

• Try for indicators that load on one factor (latent variable) only
 » allow cross-loadings only if clearly justified theoretically
Best Practices: Data

- Implement quality control practices for examining data
- Minimize missing data
 - If much data is missing, imputation may be the best method, if data are not missing at random
 - Watch for new developments
- Check for violations of assumptions
 - Normal distributions for endogenous variables
 - Linearity
 - Independence
- Screen for outliers
 - As in regression and ANOVA, SEM is sensitive to outliers
Best Practices: Analysis

• Use theory and previous findings to guide respecification
 » modification indices (e.g., Lagrange) can be useful, but do not rely on them blindly (unless you like making Type I errors)

• Double check your syntax
 » make sure you are running the model you think you are

• Look carefully at your output for signs of problems
 » error messages (or not "all is ok" message)
 » negative variances (and other impossible things)
 » huge standard errors (and other unlikely things)
Best Practices: Analysis

• Report unstandardized as well as standardized estimates

• Check for multicollinearity
 » Kline says correlations >.85 may be problematic

• Check your sample size
 » At least 100 cases AND
 » 10:1 ratio for cases to parameters estimated (or, at an absolute minimum, 5:1)
Best Practices: Analysis

• Provide SEM program with start values, if it is having trouble
 » If program doesn't converge or there are other signs of problems, but estimates are printed, use those as start values
 » Kline has several appendices that give advice about providing start values

• Be aware of the possibility of empirical underidentification

• Evaluate the measurement and structural portions of the model separately
Best Practices: Interpretation

• Look at all of your output
 » fit indices are important but they are only part of the picture
 » be sure to look at matrix of residuals -- this lets you know if all of the model is fitting well or if there are some areas of misfit

• Do not assume, believe, or state that your model must be correct, because fit is good
 » we can disprove models (state that they must be incorrect) but we can't prove that a model is correct
Best Practices: Interpretation

• Remember that good fit does not imply anything about how much variance in the endogenous variables is explained
 » good fit means the variance in the variance-covariance matrix is well represented by the model
 » if you care about being able to predict large amounts in the variance in some or all endogenous variables, you have to look at that separately

• Consider and test alternative models

• If possible, consider mathematically equivalent models
 » nice if you can rule some out using theory or logic
Best Practices: Interpretation

• Remember that SEM is not a cure for poor theory or design

• Don't reify your factors
 » you tried to choose indicators so as to create a latent factor that represents the construct of interest
 » but you may not have succeeded
 » when reading other people's work, don't rely just on their name for the latent variable -- look critically at the indicators

• Report enough information so that readers can reproduce your analysis and try alternative models