Basics of SEM

• What is SEM?
• SEM vs. other approaches
• Definitions
• Implied and observed correlations
• Identification
• Latent vs. observed variables
• Exogenous vs. endogenous variables
• Multiple regression as a SEM model
• Steps in SEM analysis
• Interpreting output
What is SEM?

• Many names
 » structural equation modeling
 » covariance structure analysis (or covariance structure modeling or analysis of covariance structure)
 » causal modeling
 » path analysis (with latent variables)

• Several computer programs
 » LISREL [Linear Structural RELationships]
 • the original
 » EQS [EQuationS]
 » AMOS [Analysis of Moment Structures]
 • can be integrated with SPSS
 » CALIS, LISCOMP, RAMONA, SEPATH, and others
SEM: What It Is and What It Isn’t

WHAT IT IS:
• Tests hypotheses about relationships between variables
• Very flexible
• Comprehensive: Subsumes many other techniques
 » multiple regression
 » confirmatory factor analysis
 » path analysis
 » ANOVA

WHAT IT ISN’T:
• Only for correlational studies
• A way to test causal hypotheses from correlational data
SEM vs. Other Approaches

- Similar to standard approaches
 - based on linear model
 - based on statistical theory; conclusions valid only if assumptions are met
 - not a magic test of causality
 - statistical inference compromised if post hoc tests performed

- Different from standard approaches
 - Requires formal specification of model
 - Allows latent variables
 - Statistical tests and assessment of fit more ambiguous
 - can seem like less of a science; more of an art
Some Definitions

• Model
 » statement about relationships between variables

• Specification
 » act of formally stating a model

• Examples
 » zero-order correlation: 2 variables are related (but no direction specified)
 \[A \leftrightarrow B \]
 » multiple regression: predictors have directional relationship with outcome variable
 \[\text{P1} \quad \text{P2} \quad \text{P3} \quad \text{O} \]

• Little explicit specification in standard techniques
How SEM Works

• You supply two main things
 » Formal specification of model
 » Observed relationship between variables
 • (i.e., a covariance or correlation matrix)
 » (You also need to supply the number of participants or cases)

• Model implies a set of covariances

• Software tries to reproduce observed covariance matrix

• It does this by estimating parameters in the model

• Software produces two main things:
 » parameter estimates
 » information about how well it did in reproducing the covariance matrix
More Definitions

• Parameters
 » parameters are constants
 » indicate the nature and size of the relationship between two variables in the population
 » we can never know the true value of a parameter, but statistics help us make our best guess

• Parameters in SEM
 » can be specified as “fixed” (to be set equal to some constant like zero)
 » or “free” (to be estimated from the data)

• Parameters in other techniques
 » Pearson correlation: one parameter is estimated (r)
 » Regression: regression coefficients are estimated
An Example

- Model
 \[A \xrightarrow{p_1} B \xrightarrow{p_2} C \]

- Implied correlations
 » \(r_{A,B} = p_1; \quad r_{B,C} = p_2 \)
 » \(r_{A,C} = p_1 \cdot p_2 \)

- Observed correlations
 » \(r_{AB} = .4; \quad r_{B,C} = .4; \quad r_{A,C} = .16 \)
 • perfect fit
 » \(r_{A,B} = .4; \quad r_{B,C} = .4; \quad r_{A,C} = .70 \)
 • unacceptable fit
 » \(r_{A,B} = .4; \quad r_{B,C} = .4; \quad r_{A,C} = .20 \)
 • ok fit

- Difference between “ok” and “unacceptable” is a judgment call
 » no “p < .05” rule for the overall fit
Identification

• Refers to the relationship between what will be estimated (the parameters) and the information used to derive these estimates

• If a model is *identified* it is possible to calculate (estimate) a unique value for every parameter

• If not, the model is *unidentified* or *underidentified*

• Model will be unidentified if

 \[\#\text{Parameters} > \#\text{Observations} \]

• Can also be *empirically underidentified* depending on data

 » e.g., with high multicollinearity it’s as if you have fewer observed variables
Analogy: Solving Simultaneous Equations

1) \[x + y = 6 \]
 » no unique solution \((x=5, y=1 \text{ or } x=4, y=2)\)
 » not identified

2) \[x + y = 6 \]
 \[2x + y = 10 \]
 » unique solution: \(x=4, y=2\)
 » solution perfectly reproduces data (perfect fit to data)
 » “just identified”

3) \[x + y = 6 \]
 \[3x + 3y = 18 \]
 » no unique solution
 » 2nd equation adds no constraints
 » empirically underidentified
 » like multicollinearity
More simultaneous equations

4) \[x + y = 6 \]
 \[2x + y = 10 \]
 \[3x + y = 12 \]

• No solution perfectly reproduces data
 » x=4, y=2 works for first two, but gives wrong answer for third equation

• But, can minimize differences between data and predicted outcomes
 » usually, try to minimize sum of squares differences
 » e.g., x=4, y=2 gives SS of 4

• Best solution is x=3.0, y=3.3
 » sum of squared diffs = 0.67

• Unique best solution exists, but will not fit observed data perfectly

• Can measure how well it fits
Fit: How Good is the Unique Solution?

• Note that more constraints (more equations) means that it’s less likely that our fit will be good
 » keep in mind when evaluating models
 » excellent fit less impressive if not very many df

• Fit refers to how much the predicted covariances (or correlations) differ from the observed covariances
 » small squared differences (residuals) indicate an acceptable fit
 » i.e., the model is plausible (can’t be rejected)

• Two main ways to measure: χ^2 and fit indices
 » we’ll come back to this in a few weeks
Latent and Observed Variables

- One big advantage of SEM: allows for the use of latent variables
 - aka factors, constructs
 - unmeasured (and unmeasurable) “pure” variables
 - free of measurement error and “unique” factors
 - represented by circles or ellipses

- In contrast to observed variables
 - aka manifest or measured variables; indicators
 - something directly measured (e.g., by a questionnaire)
 - include measurement error and other variance not related to the “pure” construct of interest
 - represented by squares or rectangles
SEM Notation

Boxes are used to describe observed variables

Circles are used to describe latent variables

A single-headed arrow between two boxes represents a causal relation

A double-headed arrow between two boxes represents a noncausal (unexplained) relation

Arrows which do not originate from a box represent residuals

Double-headed arrows between two residuals represent the covariance of those residuals
Latent/Observed (cont.)

Depression

BDI

CESD

Hamilton

e1

e2

e3
Exogenous vs. Endogenous

• Exogenous variables
 » “of external origin”
 » causes are not included in the model (i.e., no arrows pointing to the variable; only arrows pointing out)
 » like an IV (ANOVA) or a predictor (regression)

• Endogenous variables
 » “of internal origin”
 » represented as the effects of other variables (i.e., at least one arrow pointing to it)
 » like a DV (ANOVA) or an outcome or criterion variable (regression)

• Endogenous variables can also predict other variables in the model
 » different than ANOVA and regression
 » endogenous vars can have arrows pointing in and pointing out
Exogenous vs. Endogenous (cont.)

Depression → Social Support → Illness

D1 D2 D3 S1 S2 S3 I1 I2 I3
Disturbances

- Every endogenous variable has a disturbance
- These represent all omitted causes, plus any random or measurement error
 » i.e., all variance that predictors didn’t predict
- Also called residuals or error terms
 » “error term” implies that there are no omitted causes (only error variance)
- Disturbances can be conceptualized as unmeasured (latent) exogenous variables
- They allow us to compute a percent variance explained for each endogenous variable
Types of Associations

• Association
 » non-directional relationship
 » the type evaluated by Pearson correlation

• Direct
 » a directional relationship between variables
 » the type of association evaluated in multiple regression or ANOVA
 » the building block of SEM models

• Indirect
 » Two (or more) directional relationships
 » V1 affects V2 which in turns affects V3
 » relationship between V1 and V3 is mediated by V2

• Total
 » sum of all direct and indirect effects
Associations

Alcoholism

Depression

Social Support

Illness

D1 D2 D3

S1 S2 S3

I1 I2 I3
Multiple Regression

- Can run regression analyses using SEM software
- Mathematics/computer algorithm used by SEM is different, but
- Parameter estimates will be identical or very close
- Note that fit will be perfect (number of observations and number of parameters are equal)
- Running in SEM buys you nothing
 » but, nice analysis to start with (you can check against SPSS or SAS run)
 » SEM allows multiple DVs
 » SEM allows two-group (or multi-group) comparisons
Multiple Regression Diagram

$Y_1 = \epsilon_1$

X_1, X_2, X_3, X_4
Multiple Regression Diagram

Agency -> SelfEstm (.22), (Agency -> Nurtue (.20))

Nurtue -> SelfEstm (.47)
Steps in a SEM Analysis

• Step 1: Model specification
 » usually done by drawing pictures using SEM software

• Step 2: Parameter estimation
 » SEM software performs this step
 » Iterative process
 » Final result is a set of parameters that produce best fit to data possible

• Step 3: Assessment of fit
 » Software did the best it could, but how good is that?
 » Variety of ways to assess fit
Computer Software: Preparation

• The three steps in a SEM analysis are easy to remember:
 » the software ensures that we have a properly specified model before parameters are estimated;
 » parameter estimates are computed, and provided both on the diagram and in text output; and
 » fit statistics appear after the parameter estimates. (defaults vary, but software allows the user to change the defaults).
Interpreting Output I

- Listing of model specification
 - always good to check this
 - familiarity with syntax more imp than in SPSS
- Listing of observed covariance matrix
- Scan for error messages
 - e.g., that model did not converge
- Parameter values
 - unstandardized and standardized
 - like B’s and β’s in regression
- Listing of predicted covariance matrix
- Matrix of residuals
- Additional information on fit
Computer Software: EQS

- EQS 6.1 available in 4th floor computer lab
- EQS 6.1 also available on machines in computer lab in SS1
- Academic license: $595
- Go to Multivariate Software home page
 » http://www.mvsoft.com
- Lisrel has a free, downloadable student versions (limited in terms of # of cases and/or # of variables)
 » go to www.ssicentral.com
- Amos comes as part of SPSS GradPack (Windows version only)