Exploratory Factor Analysis

- Exploratory Factor Analysis: Why and When?
- Underlying Conceptual/Mathematical Model
- Running an EFA

What is Factor Analysis?

- Set of related techniques » principal components analysis » exploratory factor analysis » confirmatory factor analysis
- Common objective: identify factors (new, hypothetical variables) or components that represent relationships among sets of variables
- Examples
» Personality/psychopathology (MMPI: 550 items represented as 10 scales)
» Social (RMA: 19 items, 1 factor)
» Developmental (MIDI: comprehension, language, fine motor, gross motor, personalsocial)

Goals of Factor Analysis

- Data reduction: represent most of the variance in a set of variables using a smaller number of (hypothetical) variables
- Analyze associations (see which variables "hang together")
- Test hypotheses
» about dimensionality (e.g., are masculinity/femininity two constructs or two poles of one construct?)
» about measurement invariance (e.g., are sub-types of depression the same in different cultures?)
- Scale/test construction

Conceptual Model

- Psychometric theory developed for research on intelligence testing
- "Intelligence" is the variable of interest, but it can't be measured directly » "latent" or "unobserved" or "unmeasured"
- Responses on intelligence test (e.g., SAT) are "indicators" of intelligence » "manifest" or "measured" variables
- Called the "common factor model"

Multi-Factor Models

- Can easily generalize to more than one factor

Exploratory FA

- In exploratory FA, we typically don't know how many factors, or which items are indicators for which factor
- Example: trait theories of personality » factor analysis of all adjectives in the lexicon that describe personality
- But, our underlying assumption is still that the factors cause the indicators to take on certain values

Example: Emotions

- 37 emotion adjectives
» "How much of this feeling are you experiencing right now?"
» 1-7 scale
- Don't want to have 37 IVs (or DVs)
- Can we create a smaller set of new variables that will capture most of the information in these 37 variables?

Correlation matrix

- We may be able to -- if there is some structure in the correlation matrix
- Sets of variables that correlate highly with each other, but much less so with other variables

Correlations

		POWEM9 fearful	POWEM28 scared	POWEM32 afraid	POWEM3 1 happy	POWEM34 cheerful	POWEM 3 7 joyful
fearful	Pear son Correlation	1	.750**	.726*	-.238*	-. 142	-. 130
	Sig. (2-tailed)		. 000	. 000	. 027	. 192	. 233
	N	87	87	87	86	86	86
scared	Pear son Correlation	. 750 *	1	.840*	-. 196	-. 184	-. 026
	Sig. (2-tailed)	. 000		. 000	. 070	. 090	. 811
	N	87	87	87	86	86	86
afraid	Pearson Correlation	. 726 *	.840**	1	-. 167	-. 109	-. 056
	Sig. (2-tailed)	. 000	. 000		. 125	. 319	. 611
	N	87	87	87	86	86	86
happy	Pear son Correlation	-. 238 *	-. 196	-. 167	1	. 815 *	. 73 3*
	Sig. (2-tailed)	. 027	. 070	. 125	.	. 000	. 000
	N	86	86	86	86	86	86
cheer ful	Pearson Correlation	-. 142	-. 184	-. 109	. 815 *	1	. 69 0*
	Sig. (2-tailed)	. 192	. 090	. 319	. 000	.	. 000
	N	86	86	86	86	86	86
joyful	Pear son Correlation	-. 130	-. 026	-. 056	. 733 *	. 690 *	1
	Sig. (2-tailed)	. 233	. 811	. 611	. 000	. 000	.
	N	86	86	86	86	86	86

**. Correlation is significant at the 0.01 level (2-tailed).
*. Correlation is significant at the 0.05 level (2-tailed).

Common Factor Model of Emotions

- Underlying structure assumed

09SEM1a 9

Steps in EFA

- Selecting variables/items
- Preparing/checking correlation matrix
- Extracting factors
- Determining the number of factors
- Rotating factors
- Interpreting results
- Verify structure by establishing construct validity

Extracting Factors

- Variable is a linear combination of factors

> » e.g., fearful = B1*fear + B2*Happiness + U fearful $^{\text {a }}$

- Want linear combinations that will account for as much of the variance in sample as possible
» in output, everything is standardized
» variance of each variable $=1$
» so total variance $=$ number of variables
» here, total variance $=6.0$

Extracting Factors

- Goal of factor extraction is to determine the factors
- Factors are estimated as linear combinations of variables
» e.g. Fear $=\mathrm{B} 1 *$ fearful $+\mathrm{B} 2 *$ scared + B3*afraid + B4*happy + B5*cheerful + B6*joyful
» hopefully, only a few of these coefficients will be large
» e.g., B1, B2, B3 large; B4, B5, B6 close to zero
- Variety of methods for estimation
- Several of the most popular try to maximize the variance explained at each step

Principal Components Analysis

- First factor extracted in such a way as to explain the maximum amount of variance
- Second factor explains the maximum amount of the variance that is left » must be orthogonal to first factor because it's trying to explain the residual variance -what doesn't overlap with the just-extracted Factor 1
- Linear function (or principal component) is represented as an eigenvector
» vector of numbers; numbers = coefficients in the linear equation
- Variance explained by that linear combination is the eigenvalue

PCA of Emotions: 1st component

Component Matrix ${ }^{\text {a }}$

	Component					
	1	2	3	4	5	6
POWEM9 fearful	. 727	. 516	. 294	. 335	$5.319 \mathrm{E}-02$	$6.707 \mathrm{E}-02$
POWEM28 scared	. 733	. 589	-. 189	-6.609E-02	. 113	-. 250
POWEM32 afraid	. 707	. 605	-4.427E-02	-. 281	-. 134	. 188
POWEM31 happy	-. 739	. 574	$8.067 \mathrm{E}-02$	-. 130	. 307	$8.564 \mathrm{E}-02$
POWEM34 cheerful	-. 686	. 607	. 304	-7.668E-02	-. 204	-. 145
POWEM37 joyful	-. 601	. 655	-. 373	. 240	-9.954E-02	$5.792 \mathrm{E}-02$

Extraction Method: Principal Component Analysis.
a. 6 components extracted.

- $\mathrm{PC} 1=.727 *$ fearful $+.733 *$ scared + .707*afraid -. $739 *$ happy $-.686 *$ cheeful - . $601 *$ joyful
- Variance explained $=.727^{2}+.733^{2}+$ $.707^{2}+(-.739)^{2}+(-.686)^{2}+(-.601)^{2}=$ 2.94
- $\%$ variance explained $=2.94 / 6.0=$ 49.1\%

PCA of Emotions: 2nd component

Component Matrix ${ }^{\text {a }}$

	Component					
	1	2	3	4	5	6
POWEM9 fearful	. 727	. 516	. 294	. 335	$5.319 \mathrm{E}-02$	$6.707 \mathrm{E}-02$
POWEM28 scared	. 733	. 589	-. 189	-6.609E-02	. 113	-. 250
POWEM32 afraid	. 707	. 605	-4.427E-02	-. 281	-. 134	. 188
POWEM31 happy	-. 739	. 574	$8.067 \mathrm{E}-02$	-. 130	. 307	$8.564 \mathrm{E}-02$
POWEM34 cheerful	-. 686	. 607	. 304	-7.668E-02	-. 204	-. 145
POWEM37 joyful	-. 601	. 655	-. 373	. 240	-9.954E-02	$5.792 \mathrm{E}-02$

Extraction Method: Principal Component Analysis.
a. 6 components extracted.

- $\mathrm{PC} 2=.516 *$ fearful $+.589^{*}$ scared + $.605^{*}$ afraid $+.574 *$ happy + $.607 *$ cheeful $+.655 *$ joyful
- Variance explained $=.516^{2}+.589^{2}+$ $.605^{2}+.574^{2}+.607^{2}+.655^{2}=2.106$
- $\%$ variance explained $=2.106 / 6.0=$ 35.1\%

Table of Eigenvalues

- cf. SPSS summary of eigenvalues

Total V ariance Explained

Component	Initial Eigenvalues			Extraction Sums of Squared Loadings		
	Total	\% of Variance	$\begin{gathered} \text { Cumulative } \\ \% \end{gathered}$	Total	\% of Variance	Cumulative \%
1	2.942	49.033	49.033	2.942	49.033	49.033
2	2.106	35.102	84.135	2.106	35.102	84.135
3	. 362	6.035	90.170	. 362	6.035	90.170
4	. 276	4.599	94.768	. 276	4.599	94.768
5	. 179	2.991	97.759	. 179	2.991	97.759
6	. 134	2.241	100.000	. 134	2.241	100.000

Extraction Method: Principal Component Analysis.

Extraction and Parsimony

- Note that if we continue to extract components, we will eventually explain all of the variance
- However, we will have gained no parsimony
» we now have 6 components instead of 6 variables
- But the six components are uncorrelated » this is sometimes useful » eliminate multicollinearity, confounding
- Usually, though we want to reduce the number of variables
» SPSS menu label for factor is "Data Reduction"

Number of Components

- Recall that each variable has a variance of 1.0
- Thus, explaining one unit of variance doesn't "buy" us anything -- we could do this well just by using a variable
- May be reasonable to extract only those components that do better than this, in explaining variance
» "Kaiser method"
- Here, 2 components do so

Total Variance Explained

Component					Extraction Sums of Squared Loadings				
	Total			\% of Variance	Cumulative $\%$	Total		$\%$ of Variance	Cumulative $\%$
	2.942	49.033	49.033	2.942	49.033	49.033			
2	2.106	35.102	84.135	2.106	35.102	84.135			
3	.362	6.035	90.170	.362	6.035	90.170			
4	.276	4.599	94.768	.276	4.599	94.768			
5	.179	2.991	97.759	.179	2.991	97.759			
6	.134	2.241	100.000	.134	2.241	100.000			

Extraction Method: Principal Component Analysis.

Scree Plot

- Another method (from Cattell) is to look for the bend in a "scree plot"
- Plots eigenvalues on Y axis, from biggest to smallest

Factor Number

Output for 2 Components

- Request extraction of 2 components » Output very similar, but now we can only approximate scores on the variables, we cannot reproduce them exactly
» That's ok -- we're still explaining 84% of the variance, and more parsimoniously
Component Matrix ${ }^{\text {a }}$

	Component	
	1	2
POWEM9 fearful	.727	.516
POWEM28 scared	.733	.589
POWEM32 afraid	.707	.605
POWEM31 happy	-.739	.574
POWEM34 cheerful	-.686	.607
POWEM37 joyful	-.601	.655

Extraction Method: Principal Component Analysis. a. 2 components extracted.

Tot al Variance Explained

Compone nt	Initial Eigenvalues			Extraction Sums of Squared Loadings		
	Total	\% of Variance	$\begin{gathered} \text { Cumulative } \\ \% \end{gathered}$	Total	\% of Variance	$\begin{gathered} \text { Cumulative } \\ \% \end{gathered}$
1	2.942	49.033	49.033	2.942	49.033	49.033
2	2.106	35.102	84.135	2.106	35.102	84.135
3	. 362	6.035	90.170			
4	. 276	4.599	94.768			
5	. 179	2.991	97.759			
6	. 134	2.241	100.000			

Extraction Method: Principal Component Analysis.

Interpreting Components

Component Matrix ${ }^{\text {a }}$

	Component	
	1	2
POWEM9 fearful	.727	.516
POWEM28 scared	.733	.589
POWEM32 afraid	.707	.605
POWEM31 happy	-.739	.574
POWEM34 cheerful	-.686	.607
POWEM37 joyful	-.601	.655

Extraction Method: Principal Component Analysis.
a. 2 components extracted.

09SEM1a 21

What do the components mean?

- If we tried to interpret the PC eigenvectors, we might say
» PC 1 is negative affect
- because high weights for negative emotions and low weights for positive emotions
» PC2 is general emotionaly
- because moderately high weights for everything

Component Matrix ${ }^{\text {a }}$

	Component	
	1	2
POWEM9 fearful	.727	.516
POWEM28 scared	.733	.589
POWEM32 afraid	.707	.605
POWEM31 happy	-.739	.574
POWEM34 cheerful	-.686	.607
POWEM37 joyful	-.601	.655

Extraction Method: Principal Component Analysis. a. 2 components extracted.

What do the components mean?

- But it doesn't make sense to interpret these components
- Infinite number of equivalent sets of eigenvectors
- These particular ones are a result of our extraction strategy (i.e., maximize variance explained) and are in some sense arbitrary
- More meaningful alternatives exist
- These can be found via rotation

Rotation

- General idea: Make factors more interpretable
- Ideal: Each variable has high loading on one factor; negligible loadings on other factors " "simple structure"
- To visualize, plot factor loadings for each variable

V4	V2
	F1
V3 1	

Rotation - Emotions

- We don't have simple structure

Component Matrix ${ }^{\mathbf{a}}$

	Component	
	1	2
POWEM9 fearful	.727	.516
POWEM28 scared	.733	.589
POWEM32 afraid	.707	.605
POWEM31 happy	-.739	.574
POWEM34 cheerful	-.686	.607
POWEM37 joyful	-.601	.655

Extraction Method: Principal Component Analysis.
a. 2 components extracted.

Rotation - Emotions

- But we can obtain it by rotating the axes
- Now, F1 = fear and F2 = happiness
- We have simple structure
- Factors are interpretable

F1

SPSS output

Rotated Factor Matrix ${ }^{\mathbf{a}}$

	Factor	
	1	
POWEM9 fearful	.796	-.121
POWEM28 scared	.931	$-6.938 \mathrm{E}-02$
POWEM32 afraid	.899	$-4.178 \mathrm{E}-02$
POWEM31 happy	-.147	.922
POWEM34 cheerful	$-9.116 \mathrm{E}-02$.867
POWEM37 joyful	$-8.549 \mathrm{E}-03$.795

Extraction Method: Principal Axis Factoring.
Rotation Method: Varimax with Kaiser Normalization.
a. Rotation converged in 3 iterations.

Factor 1
uySEM1a 27

