Exploratory Factor Analysis

- Exploratory Factor Analysis: Why and When?
- Underlying Conceptual/Mathematical Model
- Running an EFA

What is Factor Analysis?

- Set of related techniques
 - » principal components analysis
 - » exploratory factor analysis
 - » confirmatory factor analysis
- Common objective: identify factors (new, hypothetical variables) or components that represent relationships among sets of variables
- Examples
 - » Personality/psychopathology (MMPI: 550 items represented as 10 scales)
 - » Social (RMA: 19 items, 1 factor)
 - » Developmental (MIDI: comprehension, language, fine motor, gross motor, personalsocial)

Goals of Factor Analysis

- Data reduction: represent most of the variance in a set of variables using a smaller number of (hypothetical) variables
- Analyze associations (see which variables "hang together")
- Test hypotheses
 - » about dimensionality (e.g., are masculinity/femininity two constructs or two poles of one construct?)
 - » about measurement invariance (e.g., are sub-types of depression the same in different cultures?)
- Scale/test construction

Conceptual Model

- Psychometric theory developed for research on intelligence testing
- "Intelligence" is the variable of interest, but it can't be measured directly
 - » "latent" or "unobserved" or "unmeasured"
- Responses on intelligence test (e.g., SAT) are "indicators" of intelligence
 » "manifest" or "measured" variables
- Called the "common factor model"

Multi-Factor Models

• Can easily generalize to more than one factor

Exploratory FA

- In exploratory FA, we typically don't know how many factors, or which items are indicators for which factor
- Example: trait theories of personality
 - » factor analysis of all adjectives in the lexicon that describe personality
- But, our underlying assumption is still that the factors cause the indicators to take on certain values

Example: Emotions

- 37 emotion adjectives
 - » "How much of this feeling are you experiencing right now?"
 - » 1-7 scale
- Don't want to have 37 IVs (or DVs)
- Can we create a smaller set of new variables that will capture most of the information in these 37 variables?

Correlation matrix

- We may be able to -- if there is some structure in the correlation matrix
- Sets of variables that correlate highly with each other, but much less so with other variables

	Correlations							
		POWEM9 fearful	POWEM28 s cared	POWEM32 afraid	POWEM31 happy	POWEM34 cheerful	POWEM 3 7 joyful	
fearful	Pearson Correlation	1	.750**	.726**	238*	142	130	
	Sig. (2 -tailed)		.000	.000	.027	.192	.23 3	
	Ν	87	87	87	86	86	86	
scared	Pearson Correlation	.750 **	1	.840**	196	184	026	
	Sig. (2 -tailed)	.000		.000	.070	.090	.811	
	Ν	87	87	87	86	86	86	
afraid	Pearson Correlation	.726 **	.840*;	1	167	109	056	
	Sig. (2 -tailed)	.000	.000		.125	.319	.611	
	Ν	87	87	87	86	86	86	
happ y	Pearson Correlation	238*	196	167	1	.815 **	.73 3**	
	Sig. (2 -tailed)	.027	.070	.125		.000	.00 0	
	Ν	86	86	86	86	86	86	
cheer ful	Pearson Correlation	142	184	109	.815 **	1	.69 0**	
	Sig. (2 -tailed)	.192	.090	.319	.000		.00 0	
	Ν	86	86	86	86	86	86	
joyful	Pearson Correlation	130	026	056	.733 **	.690**	1	
	Sig. (2 -tailed)	.233	.811	.611	.000	.000		
	Ν	86	86	86	86	86	86	

**. Correlation is significant at the 0.01 level (2-tailed).

*- Correlation is significant at the 0.05 level (2-tailed).

Steps in EFA

- Selecting variables/items
- Preparing/checking correlation matrix
- Extracting factors
- Determining the number of factors
- Rotating factors
- Interpreting results
- Verify structure by establishing construct validity

Extracting Factors

- Variable is a linear combination of factors
 - » e.g., fearful = B1*fear + B2*Happiness + $U_{fearful}$
- Want linear combinations that will account for as much of the variance in sample as possible
 - » in output, everything is standardized
 - » variance of each variable = 1
 - » so total variance = number of variables
 - » here, total variance = 6.0

Extracting Factors

- Goal of factor extraction is to determine the factors
- Factors are estimated as linear combinations of variables
 - » e.g. Fear = B1*fearful + B2*scared + B3*afraid + B4*happy + B5*cheerful + B6*joyful
 - » hopefully, only a few of these coefficients will be large
 - » e.g., B1, B2, B3 large; B4, B5, B6 close to zero
- Variety of methods for estimation
- Several of the most popular try to maximize the variance explained at each step

Principal Components Analysis

- First factor extracted in such a way as to explain the maximum amount of variance
- Second factor explains the maximum amount of the variance that is left
 - » must be orthogonal to first factor because it's trying to explain the residual variance -what doesn't overlap with the just-extracted Factor 1
- Linear function (or principal component) is represented as an *eigenvector*
 - » vector of numbers; numbers = coefficients in the linear equation
- Variance explained by that linear combination is the *eigenvalue*

09SEM1a 13

PCA of Emotions: 1st component

	Component						
	1	2	3	4	5	6	
POWEM9 fearful	.727	.516	.294	.335	5.3 19E-02	6.707E-02	
POWEM28 scared	.733	.589	189	-6.609E-02	.113	250	
POWEM32 afraid	.707	.605	-4.427E-02	281	134	.188	
POWEM31 happy	739	.574	8.067E-02	130	.307	8.5 64E-02	
POWEM34 cheerful	686	.607	.304	-7.668E-02	204	145	
POWEM37 joyful	601	.655	373	.240	-9.954E-02	5.792E-02	

Component Matrix^a

Extraction Method: Principal Component Analysis.

a. 6 components extracted.

- PC1 = .727*fearful + .733*scared + .707*afraid - .739*happy - .686*cheeful - .601*joyful
- Variance explained = .727² + .733² + .707² + (-.739)² + (-.686)² + (-.601)² = 2.94
- % variance explained = 2.94/6.0 = 49.1%

PCA of Emotions: 2nd component

	Component						
	1	2	3	4	5	6	
POWEM9 fearful	.727	.516	.294	.335	5.3 19E-02	6.707E-02	
POWEM28 scared	.733	.589	189	-6.609E-02	.113	250	
POWEM32 afraid	.707	.605	-4.427E-02	281	134	.188	
POWEM31 happy	739	.574	8.067E-02	130	.307	8.5 64E-02	
POWEM34 cheerful	686	.607	.304	-7.668E-02	204	145	
POWEM37 joyful	601	.655	373	.240	-9.954E-02	5.7 92E-02	

Component Matrix^a

Extraction Method: Principal Component Analysis.

a. 6 components extracted.

- PC2 = .516*fearful + .589*scared + .605*afraid + .574*happy + .607*cheeful + .655*joyful
- Variance explained = $.516^2 + .589^2 + .605^2 + .574^2 + .607^2 + .655^2 = 2.106$
- % variance explained = 2.106/6.0 = 35.1%

Table of Eigenvalues

• cf. SPSS summary of eigenvalues

	Initial Figenvalues			Extraction Sums of Squared Loadings		
Component	% of Cumulative Total Variance %		Total	% of Variance	Cumulative %	
1	2.942	49.033	49.033	2.942	49.033	49.033
2	2.106	35.102	84.135	2.106	35.102	84.135
3	.362	6.035	90.170	.362	6.035	90.170
4	.276	4.599	94.768	.276	4.599	94.768
5	.179	2.991	97.759	.179	2.991	97.759
6	.134	2.241	100.000	.134	2.241	100.000

Total Variance Explained

Extraction Method: Principal Component Analysis.

Extraction and Parsimony

- Note that if we continue to extract components, we will eventually explain all of the variance
- However, we will have gained no parsimony
 - » we now have 6 components instead of 6 variables
- But the six components are uncorrelated
 - » this is sometimes useful
 - » eliminate multicollinearity, confounding
- Usually, though we want to reduce the number of variables
 - » SPSS menu label for factor is "Data Reduction"

Number of Components

- Recall that each variable has a variance of 1.0
- Thus, explaining one unit of variance doesn't "buy" us anything -- we could do this well just by using a variable
- May be reasonable to extract only those components that do better than this, in explaining variance
 - » "Kaiser method"
- Here, 2 components do so

	Initial Eigenvalues			Extra	ction Sums Loading	of Squared s
		% of	Cumulative		% of	Cumulative
Component	Total	Variance	%	Total	Variance	%
1	2.942	49.033	49.033	2.942	49.033	49.033
2	2.106	35.102	84.135	2.106	35.102	84.135
3	.362	6.035	90.170	.362	6.035	90.170
4	.276	4.599	94.768	.276	4.599	94.768
5	.179	2.991	97.759	.179	2.991	97.759
6	.134	2.241	100.000	.134	2.241	100.000

Total Variance Explained

Extraction Method: Principal Component Analysis.

Scree Plot

- Another method (from Cattell) is to look for the bend in a "scree plot"
- Plots eigenvalues on Y axis, from biggest to smallest

Output for 2 Components

• Request extraction of 2 components

- » Output very similar, but now we can only approximate scores on the variables, we cannot reproduce them exactly
- » That's ok -- we're still explaining 84% of the variance, and more parsimoniously

	Component		
	1	2	
POWEM9 fearful	.727	.516	
POWEM28 scared	.733	.589	
POWEM32 afraid	.707	.60 5	
POWEM31 happy	739	.574	
POWEM34 cheerful	686	.60 7	
POWEM37 joyful	601	.65 5	

Component Matrix^a

Extraction Method: Principal Component Analysis.

a. 2 components extracted.

Tot al	Variand	e Exp	lained
1000	• ai i ai i a	C LAP	unica

	Initial Eigenvalues			Extrac	tion Sums of Loading	of Squared s
		% of	Cumulative		% of	Cumulative
Compone nt	Total	Variance	%	Total	Variance	%
1	2.942	49.033	49.033	2.942	49.033	49.033
2	2.106	35.102	84.135	2.106	35.102	84.135
3	.362	6.035	90.170			
4	.276	4.599	94.768			
5	.179	2.991	97.759			
6	.134	2.241	100.000			

Extraction Method: Principal Component Analysis.

9SEM1a 20

What do the components mean?

- If we tried to interpret the PC eigenvectors, we might say
 - » PC1 is negative affect
 - because high weights for negative emotions and low weights for positive emotions
 - » PC2 is general emotionaly
 - because moderately high weights for everything

	Component				
	1	2			
POWEM9 fearful	.727	.516			
POWEM28 scared	.733	.589			
POWEM32 afraid	.707	.60 5			
POWEM31 happy	739	.574			
POWEM34 cheerful	686	.60 7			
POWEM37 joyful	601	.65 5			

Component Matrix^a

Extraction Method: Principal Component Analysis.

a. 2 components extracted.

What do the components mean?

- But it doesn't make sense to interpret these components
- Infinite number of equivalent sets of eigenvectors
- These particular ones are a result of our extraction strategy (i.e., maximize variance explained) and are in some sense arbitrary
- More meaningful alternatives exist
- These can be found via rotation

Rotation

- General idea: Make factors more interpretable
- Ideal: Each variable has high loading on one factor; negligible loadings on other factors
 - » "simple structure"
- To visualize, plot factor loadings for each variable

Rotation - Emotions

• We don't have simple structure

Component Matrix ^a					
	Component				
	1	2			
POWEM9 fearful	.727	.516			
POWEM28 scared	.733	.589			
POWEM32 afraid	.707	.60 5			
POWEM31 happy	739	.574			
POWEM34 cheerful	686	.60 7			
POWEM37 joyful	601	.65 5			

Extraction Method: Principal Component Analysis. a. 2 components extracted.

Rotation - Emotions

- But we can obtain it by rotating the axes
- Now, F1 = fear and F2 = happiness
- We have simple structure
- Factors are interpretable

SPSS output

Rotated Factor Matrix^a

	Factor			
	1	2		
POWEM9 fearful	.796	121		
POWEM28 scared	.931	-6.938E-02		
POWEM32 afraid	.899	-4.178E-02		
POWEM31 happy	147	.922		
POWEM34 cheerful	-9.116E-02	.867		
POWEM37 joyful	-8.549E-03	.795		

Extraction Method: Principal Axis Factoring. Rotation Method: Varimax with Kaiser Normalization.

a. Rotation converged in 3 iterations.

