Approximation Algorithms for Quantum Max- d-Cut

2-Local Hamiltonian Problems

Given a graph $G=(V, E, w)$ and a set of edge-interactions acting on two qudits, $\left\{h_{u v} \mid(u, v) \in E\right\}$, we seek to maximize the total energy:

$$
\max _{\rho \in \mathcal{D}\left(\left(\mathbb{C}^{d}\right)^{\otimes n}\right.} \sum_{(u, v) \in E} w_{u v} \operatorname{tr}\left(\rho h_{u v}\right)
$$

Max- d-Cut

MAX- d-Cut asks to partition the vertices into d sets that maximizes the number of cut edges

As a 2LHP, MAX- d-Cut has an edge-interaction, which is the projector $h=\sum_{a \neq b}|a b\rangle\langle a b|$.

Quantum Max- d-Cut

The Quantum Max- d-Cut problem has an edge-interaction being the projector onto the anti-symmetric subspace of $\left(\mathbb{C}^{d}\right)^{\otimes 2}$:

$$
h:=\sum_{1 \leq a<b \leq d}\left(\frac{1}{\sqrt{2}}|a b\rangle-\frac{1}{\sqrt{2}}|b a\rangle\right)\left(\frac{1}{\sqrt{2}}\langle a b|-\frac{1}{\sqrt{2}}\langle b a|\right)
$$

Equivalently, $h=\frac{1}{2}\left(\frac{d-1}{d}\right) I-\frac{1}{4} \sum_{a=1}^{d^{2}-1} \Lambda^{a} \otimes \Lambda^{a}$, where the summation term is known as the $S U(d)$-Heisenberg model.
This problem is known to be QMA-hard [PM21].
When $d=2$, this problem is well studied as Quantum MaxCuT with the best known approximation ratio of 0.562 [Lee22] (and 0.582 for triangle free graphs [Kin22]).
For product state solution, an algorithm with optimal approximation ratio of $1 / 2$ is known [PT22].

Geometry of Quantum States

We can understand the geometry of $\mathcal{D}\left(\mathbb{C}^{d}\right)$ pictorially by looking at the $d=3$ case and considering a planar slice through $\frac{1}{d} I$.

Key Idea

For each qudit, we round to a Bloch vector on the insphere which is guaranteed to correspond to a density matrix.

The SDP

For a 2-local Hamiltonian problem defined over $G=(V, E, w)$, the SDP relaxation is (some constraints omitted):

$$
\begin{array}{lll}
\operatorname{maximize}_{\substack{\left.\rho_{u x} \in \mathcal{D}\left(\left(\mathbb{C}^{d}\right)^{22}\right) \\
\mid \Lambda_{u}^{a}\right) \in \mathbb{R}^{\left(d^{2}-1\right) n}}} \sum_{(u, v) \in E} w_{u v} \operatorname{tr}\left(\rho_{u v} h_{u v}\right) & \\
\text { subject to } & \left\langle\Lambda_{u}^{a} \mid \Lambda_{u}^{b}\right\rangle=\frac{2}{d} \delta_{a b} & \forall u \in V, \forall a, b \in\left[d^{2}-1\right], \\
& \left\langle\Lambda_{u}^{a} \mid \Lambda_{v}^{b}\right\rangle=\operatorname{tr}\left(\rho_{u v} \Lambda^{a} \otimes \Lambda^{b}\right) & \forall u, v \in V, \forall a, b \in\left[d^{2}-1\right]
\end{array}
$$

We create the "SDP vectors" by concatenating all of the above SDP vectors for a given vertex. $|u\rangle:=\frac{1}{\sqrt{\frac{{ }_{\bar{I}}^{2}}{2}\left(d^{2}-1\right)}} \oplus_{a=1}^{d^{2}-1}\left|\Lambda_{u}^{a}\right\rangle$

Rounding

We extent the results of [GP19], which considers the $d=2$ case Our Algorithm:
Input $(\forall u \in V)$: SDP vector $|u\rangle \in S^{\ell-1}$ (where $\left.\ell=\left(d^{2}-1\right)^{2} n\right)$
(1) Pick a random matrix, $\mathbf{Z} \sim \mathcal{N}(0,1)^{\left(d^{2}-1\right) \times \ell}$.
(2) Output: Bloch Vector $\vec{b}_{u}:=\frac{1}{\sqrt{2 d(d-1)}} \mathbf{Z}|u\rangle / \| \mathbf{Z}|u\rangle \|$

Main Theorem

For all $d \geq 2$, there exists an efficient approximation algorithm for Quantum Max- d-Cut that admits an α_{d-} approximation, where the constants α_{d} satisfy,
(1) $\alpha_{d}>\frac{1}{2}(1-1 / d)$ (i.e., non-trivial performance guarantee)
(2) $\alpha_{d}-\frac{1}{2}(1-1 / d) \sim \frac{1}{2 d^{3}}$
(3) $\alpha_{2} \geq 0.4987$ [GP19], $\alpha_{3} \geq 0.3729, \alpha_{4} \geq 0.3884$, $\alpha_{100} \geq 0.4950005$
(4) for $d \geq 3$ these constants match the algorithmic gap

We note that the Frieze-Jerrum algorithm, adapted to Quantum Max- d-Cut, additively improves on the trivial bound, $\frac{1}{2}(1-1 / d)$, by $\Theta\left(\frac{\ln d}{2 d^{2}}\right)$ [FJ97], beating our algorithm.

References

[FJ97] A. Frieze and M. Jerrum. Improved approximation algorithms for MAXk-CUT and MAX BISECTION. May 1997.
[GP19] Sevag Gharibian and Ojas Parekh. Almost Optimal Classical Approximation Algorithms for a Quantum Generalization of Max-Cut. 2019.
[Kin22] Robbie King. An Improved Approximation Algorithm for Quantum Max-Cut, September 2022.
[Lee22] Eunou Lee. Optimizing Quantum Circuit Parameters via SDP. 2022.
[PM21] Stephen Piddock and Ashley Montanaro. Universal Qudit Hamiltonians. 2021.
[PT22] Ojas Parekh and Kevin Thompson. An Optimal Product-State Approximation for 2-Local Quantum Hamiltonians with Positive Terms, June 2022.

