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ABSTRACT This work introduces a residual-based adaptive threshold for detecting faults in
grid-forming inverters in AC microgrids islanded from the main grid. The inverters are modeled
as a nonlinear system with one-sided Lipschitz nonlinearities and modeling uncertainties. The
adaptive threshold response is evaluated using unwanted events such as busbar and sensor faults.
An inequality for the upper bound on the ℓ2 norm of the residual is derived and used for designing
the adaptive threshold. The upper bound is obtained via semidefinite programming with two linear
matrix inequality constraints. In the numerical tests, we consider an islanded-mode AC microgrid
with two grid-forming inverters, one grid-following inverter, and one synchronous machine with the
governor and excitation control. Primary and secondary control layers regulate the operation of
the inverters in the microgrid. The performance of our proposed adaptive threshold clearly edges
over a fixed threshold method.

INDEX TERMS Microgrids, grid-forming inverters, adaptive threshold, fault detection.

Nomenclature
αi Rotating angle of the i-th inverter
γdi,qi d-axis and q-axis auxiliary state variables for the

PI current controllers at the i-th inverter
ωb Nominal frequency of the microgrid
ωci Cut-off frequency of the low-pass filters for the

active and reactive power at the i-th inverter
ωi Frequency of the i-th inverter
ωni Nominal frequency of the i-th inverter
ωr Frequency of the common reference frame
ϕdi,qi d-axis and q-axis auxiliary state variables for the

PI voltage controllers at the i-th inverter
Cfi Capacitance of the LC filter at the i-th inverter
ibdi,bqi d-axis and q-axis current magnitude of the i-th

branch
ildi,lqi d-axis and q-axis output current magnitude of

the i-th inverter
i∗ldi,lqi d-axis and q-axis output current magnitude of

the PI voltage controller at the i-th inverter
ilodi,loqi d-axis and q-axis current magnitude of the i-th

load
iodi,oqi d-axis and q-axis current magnitude of the LC

filter at the i-th inverter
KICi Current PI controller’s integral gain at the i-th

inverter
KIVi Voltage PI controller’s integral gain at the i-th

inverter
KPCi Current PI controller’s proportional gain at the

i-th inverter
KPVi Voltage PI controller’s proportional gain at the

i-th inverter
Lbr Inductance of the i-th branch
Lci Output connector’s inductance at the i-th in-

verter
Lfi Inductance of the LC filter at the i-th inverter
Llo Inductance of the i-th load
mPi Active power droop coefficient at the i-th in-

verter
nQi Reactive power droop coefficient at the i-th

inverter
Pi Active power of the i-th inverter
Qi Reactive power of the i-th inverter
Rbr Resistance of the i-th branch
Rci Output connector’s resistance at the i-th inverter
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Rfi Resistance of the LC filter at the i-th inverter
Rlo Resistance of the i-th load
vbdi,bqi d-axis and q-axis bus voltage magnitude at the

PCC of the i-th inverter
vbi Total bus voltage magnitude

√
v2
bdi + v2

bqi of the
i-th inverter

v∗
idi,iqi d-axis and q-axis output voltage magnitude of

the PI current controller at the i-th inverter
Vni Nominal voltage magnitude of the i-th inverter
vodi,oqi d-axis and q-axis output voltage magnitude of

the i-th inverter
v∗
odi,oqi d-axis and q-axis voltage magnitude references

for the PI voltage controller at the i-th reference
frame

voi Total output voltage magnitude
√

v2
bdi + v2

bqi of
the i-th inverter

I. INTRODUCTION
Distributed energy resources (DERs) with power
electronics-based interfaces are evolving from grid-
following (GFL) to grid-forming inverters (GFM).
GFMs will be an essential asset for future microgrids
because they form the grid and offer better control at
different timescales. The GFMs provide voltage and fre-
quency support to the microgrid by resembling the role
of a synchronous generator (SG) but with a clean energy
source. The most important feature of GFMs is their
embedded cascaded controller that establishes the grid’s
reference voltage and frequency in grid-connected and
islanded modes. However, undesirable internal events,
such as busbar or sensor faults, can lead to an unstable
operation of the grid-forming inverters, affecting the sys-
tem’s overall stability. Threshold-based fault detection
is a workhorse in practice. In a naive way, a designer
can set a constant threshold to determine the presence
of a fault. However, a constant threshold may lead to
misdetection if its value is too high or false alarms if it is
too low. Moreover, islanded microgrids are considered in-
dependent systems that must ensure the supply-demand
power balance while providing voltage and frequency
support. The operation of an islanded microgrid is more
challenging than that of a grid-connected microgrid
regarding stability. To cope with these challenges, this
paper focuses on finding an adaptive threshold for grid-
forming inverters operating in an islanded-mode AC
microgrid.

A. PRIOR WORK
In general, fault detection algorithms for power convert-
ers can be categorized as data-driven, signal-processing,
and model-based techniques. Data-driven techniques
rely on various system measurements to extract fault
signatures, thereby implementing fault diagnosis with
intelligent algorithms [1]–[7]. In [1], the authors combine
the information change in SCADA data with a recurrent

neural network (RNN) to compute a residual and adap-
tive threshold for fault detection in inverters for wind
turbines. In [2], a new spatio-temporal multiscale neural
network provides an end-to-end fault diagnosis for wind
turbines using imbalanced SCADA data. The approach
uses multiple thresholding to isolate faults. The authors
in [3] design a fixed threshold and a novel fault diagnostic
method for three-phase multilevel converters using 2-D
convolutional neural networks and a window-based fea-
ture extraction technique. Another approach presented
in [4] combines a short-time wavelet entropy calculation
method with long short-term memory networks (LSTM)
and support vector machines (SVM) for fault detection
in multilevel converters. In [5], the authors propose a
convolutional neural network (CNN) for fault diagnosis
of open-circuit failure in three-phase inverters with mul-
tiple thresholds. Despite the merits of these works, data-
driven models usually suffer from issues such as high
computational burden, low interpretability, complicated
weights initialization, and sensitivity to input data.

Signal processing based methods generally sample
voltage, current, and auxiliary signals without an accu-
rate system model [8]–[12]. In [8], the authors propose a
detection method based on topology symmetry analysis
in healthy and faulty conditions for two-level three-
phase pulse-width modulating rectifiers. Although the
method is low-cost, robust, and uses a fixed threshold,
the method has poor rapidity and requires significant
tuning effort. The zero current in each phase current is
combined with different features to detect open-circuit
transistor faults in a type three-level rectifier, as referred
to in [9]. However, the proposed method uses fixed
thresholding and is specific to the inverter’s type. The
authors in [10] propose an improved diagnosis method
for open-circuit faults using a fixed threshold and AC
current distortion characteristics for voltage source rec-
tifiers. In [11], the authors propose a detection method
of calculating the mismatch among current paths using
solely existing current measurements. The authors in
[12] present an open-circuit fault detection method by
using fixed thresholding and checking the arm voltage
magnitude errors with no additional transducers or
measurements. However, the method inevitably delays
five control cycles to detect the faults.

Model-based methods are appropriate when the sys-
tems under study can be modeled accurately and allow
interoperability with existing control layers [13]–[19].
In [13], the authors propose an adaptive fast voltage-
based detection method for open-switch faults with an
adaptive threshold. However, the method is sensitive to
noise in measured currents. A detection method with
an adaptive threshold is designed for open-circuit faults
using a phase voltage vector residual [14]. Nonetheless,
the approach has a narrow diagnosis time. The authors
in [15] use a combination of a current observer, filter
circuits, and an adaptive threshold to detect open-switch
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faults of voltage source inverters. In [16], high-fidelity
model-based detection and isolation filters are employed
for open-circuit and current sensor faults. However, the
method is sensitive to communication latency. Refer-
ences [17], [18] leverage H−/H∞ optimization to design
fault detection filters with fixed thresholds for busbar
and line faults for inverter-based resources. The meth-
ods, however, are limited to system-level solutions that
do not scale. In [20], the authors present a model-based
method for designing adaptive thresholds for fault detec-
tion. However, the designed threshold is limited to linear
systems, has a narrow adaptive operation, and does
not consider the control input for its computation. The
authors in [21] propose a superimposed phase-current
scheme with a voltage restraint element to detect faults
in an islanded microgrid with grid-forming inverters.
Although the method correctly identifies faults, the
speed of detection is considerable.

From the review of the prior works, an internal fault
detection solution for grid-forming inverters operating
in islanded AC microgrids that is robust against distur-
bances and exhibits a fast detection response is still miss-
ing. To fill this gap, we develop a model- and residual-
based fault detection threshold that evolves according
to the input dynamics of the grid-forming inverter and
requires no additional sensors. First, we derive the math-
ematical model of the grid-forming inverter considering
the state space framework. The model considers external
disturbances and parametric uncertainties. Based on the
inverter model, we select a nonlinear H∞/H− observer
to compute the discrepancy between the output of the
grid-forming inverter and the model’s output. Then, a
reliable adaptive threshold is obtained by solving a semi-
definite program with linear matrix inequalities. Finally,
we study the performance of our design considering a
busbar and sensor fault with modeling errors, nonlinear
loads, and input delays.

B. CONTRIBUTIONS
Protecting grid-forming inverters against internal faults
is essential for improving islanded AC microgrids’ tran-
sient stability and operation. The low inertia charac-
teristic of the inverters makes fault currents increase at
high rates. Such a situation demands fast fault detection
and clearance of a few milliseconds. Otherwise, severe
and permanent harm may occur to the inverter and
microgrid components. The novel contributions of our
work are summarized as follows:
1) To the best of the authors’ knowledge, this is

the first attempt to propose an adaptive threshold
for detecting faults in grid-forming inverters. The
adaptive threshold is evaluated in an AC microgrid
with a technology mix to show the practical merits
of our method.

2) The proposed method exhibits fast fault detection
and clearance response times, minimizing to zero

FIGURE 1: Block diagram of grid-forming inverter [22].

the false alarm and missed detection rates for the
faults considered in this study.

3) The threshold design shows considerable sensitiv-
ity to the studied faults and excellent robustness
against disturbances and parametric uncertainties.

4) The proposed design is reliable under the effects of
modeling errors, nonlinear loads, and input delays.

C. NOTATION AND ORGANIZATION
R is the set of real numbers. Vectors are represented
by bold letters. a⊤ is the transpose of vector a. ∥a∥
represents Euclidean vector norm. ⟨a,b⟩ denotes the
inner product of vectors a and b. A ≻ 0 (A ≺ 0) means
that matrix A is positive (negative) definite. The symbol
× represents the Cartesian product. A zero matrix of
appropriate dimensions is expressed as 0. Ai is the i-th
column of matrix A.

The organization of this manuscript is presented as
follows. Section II presents the modeling of the grid-
forming inverter. Section III introduces the mathemat-
ical representation of nonlinear systems, the fault de-
tection scheme, and the proposed adaptive threshold
approach. The simulations and discussion are presented
in Sections IV and V, respectively. The conclusions and
final remarks are presented in Section VI.

II. GFM MODELING
The grid-forming inverter model considered in this work
is described in the block diagram shown in Fig. 1. We
assume that the GFMs are connected to a stable DC
source. The voltage, current, and power controllers are
tuned such that the GFM can form the microgrid’s refer-
ence voltage magnitude and frequency. The power con-
troller sets the operating frequency (ωi = ωni − mPiPi)
of the inverter bridge, provides the voltage magnitude
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references (v∗
odi = Vni − nQiQi, v∗

oqi = 0) to the voltage
controller, and contains the droop curves for power-
sharing coordination. Using a PI control strategy, the
voltage controller aligns the output voltage magnitude
perpendicular to the q-axis and provides the current
references to the current controller. The current con-
troller uses a PI control strategy to charge/discharge the
capacitor of the LC filter such that the desired voltage
magnitude is achieved. Both PI controllers introduce
auxiliary variables to simplify the state space modeling
where ϕ̇qi = v∗

oqi−voqi, ϕ̇di = v∗
odi−vodi, γ̇qi = i∗lqi− ilqi,

and γ̇di = i∗ldi − ildi. The output connector smoothens
the output current of the GFM and couples it with the
microgrid at the point of common coupling (PCC) [22],
[23].

The dq frame of one of the microgrid’s generators is
selected as the common reference frame rotating at the
frequency ωr. Under ambient conditions, the rotating
frame of the microgrid’s power injection technologies
overlaps the common reference frame. However, when a
disturbance occurs, the disturbance introduces a phase
difference δi =

∫
ωi − ωr between the power injection

technologies and the reference generator where ωi is the
rotation frequency of each technology’s frame. Conse-
quently, the frame of each technology no longer overlaps
with the common reference frame. According to [24], a
rotation matrix is used to map the reference frame to
the frame of each technology as follows[

xbdi
xbqi

]
=

[
cos(δi) sin(δi)
− sin(δi) cos(δi)

] [
xbDi
xbQi

]
, (1)

where x represents voltage (v) or current (i) magnitude.
For example, the voltage magnitude at the point of
common coupling, denoted as vbDi and vbQi, is converted
to the frame of the i-th GFM as vbdi = cos(δi)vbDi +
sin(δi)vbQi, and vbqi = −sin(δi)vbDi + cos(δi)vbQi. A
similar conversion is applied for the current magnitude
in the dq domain.

The ideal model of each GFM in the absence of faults
and disturbances can be expressed in the following state-
space form {

ẋ = Ax+ Bu+ ϕ(x,u)
y = Cx+ Du,

(2)

where y ∈ Rny is the measurements vector, x ∈ Rnx is
the state vector, u ∈ Rnu is the input vector, defined as

y = [v∗
odi] ,

x = [δi Pi Qi ϕdi ϕqi γdi γqi ildi ilqi vodi voqi iodi ioqi]
⊤
,

u = [ωr ωni Vni vbdi vbqi]
⊤
.

The state space is formed by collecting and manipu-
lating the equations (1)-(20) from [23]. The nonlinear
function and state space matrices are shown in (3). The
dynamic equations that govern the GFM state space
representation are given in the Appendix. Moreover, the

GFMs incorporate a distributed secondary control layer
for the voltage magnitude and frequency. The objective
of the secondary voltage controller is to set the input Vni
such that the voltage magnitude components converge
to voqi → 0 and vodi → vref . Similarly, the secondary
frequency controller chooses the input ωni such that
ωi reaches ωr. The distributed secondary control layer
details can be found in [22].

III. METHODOLOGY
This section presents the residual generation, evaluation,
and adaptive threshold design. The ideal state-space
model of a nonlinear system subject to faults can be
presented as follows{

ẋ = Ax+ Bu+ ϕ(x,u) + Ef f
y = Cx+ Du+ Ff f ,

(4)

where the terms Ef f and Ff f exist during the fault
occurrence. Ef , Ff , and f are formed by appropriately
manipulating and reorganizing the dynamic equations
and the state-space matrices.

A. STATE-SPACE REPRESENTATION FOR NONLINEAR
SYSTEMS
The state space model of a nonlinear dynamical system
with parametric uncertainties can be expressed as fol-
lows {

ẋ = Āx+ B̄u+ Ēww + Ef f + ϕ(x,u)

y = C̄x+ D̄u+ F̄ww + Ff f
, (5)

where,  Ā = A +∆A B̄ = B +∆B
C̄ = C +∆C D̄ = D +∆D

Ēw = Ew +∆Ew F̄w = Fw +∆Fw

,

and ϕ(x,u) captures the nonlinearities in the system.
f is the vector of faults, and w is the vector of distur-
bances. The model’s matrices are obtained based on the
system’s dynamical equations. Ef and Ff are the matrix
representation of faults, while Ew and Fw correspond
to the matrix representation of disturbances. The model
uncertainties ∆A, ∆B, ∆C, ∆D, ∆Ew, and ∆Fw belong
to the polytope defined as[

∆A ∆B ∆Ew
∆C ∆D ∆Fw

]
= Co {Ξ1, . . . ,Ξp} , (6)

Ξi =

[
Ai Bi Ewi
Ci Di Fwi

]
, ∀i = 1, . . . ,p, (7)

where Co denotes the convex hull. Ai, Bi, Ci, Di, Ewi,
and Fwi, ∀i = 1, . . . ,p are known matrices of appro-
priate dimensions. The region of bounded operation
of the system is defined as the Cartesian products of
the convex sets U and D. Each set is formed by the
Cartesian product of the system’s states’ and inputs’
maximum and minimum values [25]. The sets are defined
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A⊤ =



0 0 0 0 0 0 0 0 0 0 0 0 0

−mPi −ωci 0 0 0 0 0 0 0 0 0 0 0

0 0 −ωci −nQi 0 −KPVinQi 0 − 1
Lfi

KPCiKPVinQi 0 0 0 0 0

0 0 0 0 0 KIVi 0 1
Lfi

KPCiKIVi 0 0 0 0 0

0 0 0 0 0 0 KIVi 0 1
Lfi

KPCiKIVi 0 0 0 0

0 0 0 0 0 0 0 1
Lfi

KICi 0 0 0 0 0

0 0 0 0 0 0 0 0 1
Lfi

KICi 0 0 0 0

0 0 0 0 0 −1 0 −
(

Rfi
Lfi

+ 1
Lfi

KPCi

)
ωb

1
Cfi

0 0 0

0 0 0 0 0 0 −1 −ωb −
(

Rfi
Lfi

+ 1
Lfi

KPCi

)
0 1

Cfi
0 0

0 0 0 −1 0 −KPVi ωbCfi − 1
Lfi

+ 1
Lfi

KPCiKPVi
1

Lfi
KPCiωbCfi 0 0 1

Lci
0

0 0 0 0 −1 −ωbCfi −KPVi − 1
Lfi

KPCiωbCfi −
(

1
Lfi

+ 1
Lfi

KPCiKPVi

)
0 0 0 1

Lci

0 0 0 0 0 Fi 0 1
Lfi

KPCiFi 0 − 1
Cfi

0 −Rci
Lci

0

0 0 0 0 0 0 Fi 0 1
Lfi

KPCiFi 0 − 1
Cfi

0 −Rci
Lci



,

B =



−1 1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 KPVi 0 0

0 0 0 0 0

0 0 1
Lfi

KPCiKPVi 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 − 1
Lci

0

0 0 0 0 − 1
Lci



, C⊤ =



0

0

−nQi

0

0

0

0

0

0

0

0

0

0



, D⊤ =


0

0

1

0

0

 , ϕ(x,u) =



0

ωci(vodiiodi + voqiioqi)

ωci(voqiiodi − vodiioqi)

0

0

0

0

ωniilqi − mPiPiilqi

−ωniildi + mPiPiildi

ωnivoqi − mPiPivoqi

−ωnivodi + mPiPivodi

ωniioqi − mPiPiioqi

−ωniiodi + mPiPiiodi



(3)

as U = [umin
1 , umax

1 ] × · · · × [umin
p , umax

p ], and D =
[xmin

1 , xmax
1 ]× · · · × [xmin

n , xmax
n ].

A Luenberger observer for the dynamical model (5)
can be posed as follows{

˙̂x = Ax̂+ Bu+ L(y − ŷ) + ϕ(x̂,u)

ŷ = Cx̂+ Du
, (8)

where ŷ and x̂ represent the vector of estimated mea-
surements and states respectively. L corresponds to the
matrix gain of the observer. We assume the following
two conditions hold true

1) The system is observable.
2) The signals w and f are finite and square-integrable

in L2.

Remark 1. The design of an observer robust against
disturbances is not the aim of this work. Hence, the
observer matrix gain L is obtained following the prin-
ciples presented in [26], [27] while considering the non-
linearities of the grid-forming inverters as one-sided
Lipschitz continuous (refer to Appendix), enabling a less
restrictive design [28].

B. GENERATION OF THE RESIDUAL

Let us define the measurement error r = y − ŷ and
state error e = x− x̂. Define Φ ≜ ϕ(x,u)− ϕ(x̂,u) and
ϕ ≜ ϕ(x̂,u). Then, the dynamics of the state error can

be characterized as
ė = (A − LC) e+

(
Ēw − LF̄w

)
w + (Ef − LFf) f

+Φ+ (∆A − L∆C)x+ (∆B − L∆D)u

r = Ce+ F̄ww + Ff f +∆Cx+∆Du.
(9)

Let us rewrite the error dynamics as[
ė
ẋ

]
=

[
A − LC ∆A − L∆C

0 A +∆A

] [
e
x

]
+

[
∆B − L∆D

B +∆B

]
u

+

[
Ēw − LF̄w

Ēw

]
w +

[
Ef − LFf

Ef

]
f +

[
Φ
ϕ

]
,

r =
[
C ∆C

] [e
x

]
+
[
∆D

] [
u
]
+
[
F̄w
] [

w
]
+
[
Ff
] [
f
]
.

Also, let us define

ẽ =

[
e
x

]
, w̃ = w, ũ = u,

Ã =

[
A − LC ∆A − L∆C

0 A +∆A

]
, B̃ =

[
∆B − L∆D

B +∆B

]
,

C̃ =
[
C ∆C

]
, D̃ = [∆D] , Φ̃ =

[
Φ
ϕ

]
,

Ẽw =

[
Ēw − LF̄w

Ēw

]
, Ẽf =

[
Ef − LFf

Ef

]
F̃w =

[
F̄w
]
, F̃f = [Ff ] .
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Thus, the error dynamics and residual vectors are given
as {

˙̃e = Ãẽ+ B̃ũ+ Ẽww̃ + Ẽf f̃ + Φ̃

r = C̃ẽ+ D̃ũ+ F̃ww̃ + F̃f f̃
, (10)

which will be used for fault detection [29].

C. ADAPTIVE THRESHOLD DESIGN
The following theorem establishes an adaptive threshold
for fault detection in nonlinear systems.

Theorem 1. Given a scalar α ∈ R+, if there exist γ ∈ R
and a positive definite matrix P, such that the following
inequalities hold

P 0 0 C̃⊤

0 I 0 F̃⊤
w

0 0 I D̃⊤

C̃ F̃w D̃ γI

 ≻ 0 (11)


Ã⊤P + PÃ + αP PẼw PB̃ P

Ẽ⊤
wP 0 0 0

B̃⊤P 0 −I 0
P 0 0 0

 ≺ 0 (12)

Then, an adaptive threshold for the residual vector r is

Jth,adp(t) =
√
γ ×

(
e−αt ∗ ũ⊤ũ+ d̄ + ũ⊤ũ

)
. (13)

Proof. Define V = ẽ⊤P ẽ, W = w̃⊤w̃, and U = ũ⊤ũ.
We propose an upper bound for the residual norm square
r⊤r with γ > 0

r⊤r ≤ γ × (V + W + U)

= γ ×

 ẽ
w̃
ũ

⊤ P 0 0
0 I 0
0 0 I

 ẽ
w̃
ũ

 . (14)

According to (10), r⊤r can be rewritten as

r⊤r =

 ẽ
w̃
ũ

⊤
C̃⊤

F̃⊤
w

D̃⊤

[C̃ F̃w D̃
] ẽ

w̃
ũ

 . (15)

Combining (15) and (14), we get ẽ
w̃
ũ

⊤ 
P 0 0
0 I 0
0 0 I

− 1

γ

C̃⊤

F̃⊤
w

D̃⊤

[C̃ F̃w D̃
]
 ẽ
w̃
ũ

 ≥ 0,

(16)

which is equivalent to (11) by the Schur complement
[30].

Consider the first-order derivative of V

V̇ = ˙̃e⊤Pẽ+ ẽ⊤P ˙̃e

=
(
ẽ⊤Ã⊤ + ũ⊤B̃⊤ + w̃⊤Ẽ⊤

w + Φ̃⊤
)

Pẽ

+ ẽ⊤P
(
Ãẽ+ B̃ũ+ Ẽww̃ + Φ̃

)

=


ẽ
w̃
ũ

Φ̃


⊤ 

Ã⊤P + PÃ PẼw PB̃ P
Ẽ⊤

wP 0 0 0

B̃⊤P 0 0 0
P 0 0 0



ẽ
w̃
ũ

Φ̃

 . (17)

Given an appropriate value for α, V̇ can be upper-
bounded as

V̇ ≤ −αV + ũ⊤ũ, (18)

which can be rewritten as:
ẽ
w̃
ũ

Φ̃


⊤ 

Ã⊤P + PÃ + αP PẼw PB̃ P
Ẽ⊤

wP 0 0 0

B̃⊤P 0 −I 0
P 0 0 0



ẽ
w̃
ũ

Φ̃

 ≤ 0

(19)

yielding (12). Furthermore, from (18) we get

V ≤ e−αtV(0) +

∫ t

0

e−α(t−τ)
[
ũ⊤ũ

]
dτ

=

∫ t

0

e−α(t−τ)
[
ũ⊤ũ

]
dτ

= e−αt ∗ ũ⊤ũ. (20)

By setting w̃⊤w̃ ≤ d̄, we have

r⊤r ≤ γ ×
(
e−αt ∗ ũ⊤ũ+ d̄ + ũ⊤ũ

)
.

Therefore, we obtain the adaptive threshold as

Jth,dyn =
√

γ ×
(
e−αt ∗ ũ⊤ũ+ d̄ + ũ⊤ũ

)
.

We can minimize the upper bound by solving the
following semidefinite program

minimize
γ∈R,P≻0

γ

subject to (11) − (12).

Due to the polytopic uncertainty of the nonlinear
system, the LMIs (11) and (12) represent infinite LMI
constraints, making the optimization problem infinite-
dimensional and not tractable. To deal with this prob-
lem, let us introduce the following theorem

Theorem 2 (see [31]). The following are equivalent for
any H, Li, Ri.

H +
∑

i

Li∆Ri ≻ 0 ∀∆ ∈ Co (∆1, . . . ,∆k) (21)

H +
∑

i

Li∆jRi ≻ 0 ∀ j = 1, . . . , k (22)
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The theorem says that the LMIs with polytopic uncer-
tainty only need to hold at the vertices of the polytope
[31]. To apply Theorem 2 to the LMIs in (11) and (12),
we set Li = Ri = 1 with i = 1 in (22), and follow
a series of mathematical operations that transform the
LMIs into a finite set expressed as

P 0 0 C̃⊤
o

0 I 0 F̃⊤
wo

0 0 I D̃⊤
o

C̃o F̃wo D̃o γI

+


0 0 0 ∆C̃⊤

i
0 0 0 ∆F̃⊤

wi
0 0 0 ∆D̃⊤

i
∆C̃i ∆F̃wi ∆D̃i 0

 ≻ 0 ∀i = 1, . . . ,p


Ã⊤

o P + PÃo + αP PẼwo PB̃o P
Ẽ⊤

woP 0 0 0

B̃⊤
o P 0 −I 0
P 0 0 0

+


∆Ã⊤

i P + P∆Ãi P∆Ẽwi P∆B̃i 0

∆Ẽ⊤
wiP 0 0 0

∆B̃⊤
i P 0 0 0
0 0 0 0

 ≺ 0

∀i = 1, . . . ,p

where

Ão =

[
A − LC 0

0 A

]
, B̃o =

[
0
B

]
,

C̃o =
[
C 0

]
, D̃o = [0] ,

Ẽwo =

[
Ew − LFw

Ew

]
, F̃wo = [Fw] ,

∆Ãi =

[
0 ∆Ai − L∆Ci
0 ∆Ai

]
, ∆B̃i =

[
∆Bi − L∆Di

∆Bi

]
,

∆C̃i =
[
0 ∆Ci

]
, ∆D̃i = [∆Di] ,

∆Ẽi =

[
∆Ewi − L∆Fwi

∆Ewi

]
, ∆F̃wi = [∆Fwi] .

D. EVALUATION OF THE RESIDUAL
We follow the protocol presented in [32] to decide
whether a fault occurs. We define the function that eval-
uates the residual as J = ∥r∥2. Ideally, during a fault-
free scenario, the value of J must be zero and strictly
positive. Nonetheless, J is strictly positive even when a
fault is absent due to the presence of disturbances. The
adaptive threshold is set by considering the system is in

TABLE 1: Parameters of the Grid-Forming Inverters.

Parameter Value
#1 GFM #3 GFM

Power rating (kVA) 45 34
Voltage rating (V) 380 380

mPi 9.4× 10−5 12.5× 10−5

nQi 1.3× 10−3 1.5× 10−3

Rci (Ω) 0.03 0.03
Lci (mH) 0.35 0.35
Rfi (Ω) 0.1 0.1

Lfi (mH) 1.35 1.35
Cfi (µF) 50 50

KPVi 0.1 0.05
KIVi 420 390
KPCi 15 10.5
KICi 20000 16000

ωb (rad/s) 314.16 314.16

TABLE 2: Parameters of the AC microgrid.

Parameter Value

Branch 1 Rbr 0.23 Ω
Lbr 318 µH

Branch 2 Rbr 0.35 Ω
Lbr 1847 µH

Branch 3 Rbr 0.23 Ω
Lbr 318 µH

Load 1 Rlo 30 Ω
Llo 477 mH

Load 2 Rlo 20 Ω
Llo 318 mH

Load 3 Rlo 25 Ω
Llo 318 mH

Load 4 Rlo 25 Ω
Llo 477 mH

the absence of faults and subjected to disturbances. The
rule for detecting a fault is defined as{

Absence of faults, if J ≤ Jth
Fault alarm, if J > Jth.

(23)

An essential component in any scheme for detecting
faults is the threshold Jth. A trustworthy threshold
reduces the chances of false alarms and missed detection
while enhancing the fault detection capability.

IV. NUMERICAL TESTS
The simulations were run using Matlab and Simulink.
We use the YALMIP toolbox and the SDPT3 solver
to solve the optimization problem in Theorem 1. All
simulations correspond to the grid-forming inverter se-
lected as the reference generator. Similar simulation
results were obtained for the remaining inverters in the
microgrid test system. Our proposed adaptive threshold
is compared with a fixed threshold approach described
in a recent work [29]. The disturbance matrices are
designed as Ew = B and Fw = D. The busbar fault
is modeled as Ef = [B4 B5], and Ff = 0, whereas
the sensor fault is modeled as Ef = 0, and Ff = 1.
The parameter values for the residual thresholds are
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TABLE 3: Parameters of the adaptive threshold for the
busbar and sensor faults.

Busbar Sensor
Fault Fault

γ 0.493 0.026
α 1.290 0.121

FIGURE 2: Single line diagram of the AC microgrid test
system.

(a) (b)

(c) (d)

FIGURE 3: Impact of the internal faults on the voltage
magnitude (p.u.) and frequency (p.u.). (a) and (c)
busbar fault during 0.2 seconds; (b) and (d) sensor fault
during 1 second.

presented in Table 3. We select the parameters of the
LC filter as the uncertain parameters. Consequently, the
vertices of the polytope {Ξ1, . . . ,Ξp} are obtained by
uniformly selecting values of these parameters within
two percent of the nominal rating shown in Table 1.
The number of vertices of the polytope is set to p = 5.

A. MICROGRID TEST SYSTEM
We implement the islanded AC microgrid, shown in
Fig. 2, to test the proposed adaptive threshold. The
microgrid consists of two GFMs, one GFL, one SG, four
busbars, four loads, and three inductive RL branches.
The parameters and data of the GFMs and microgrid
are shown in Tables 1 and 2. GFM #1 is selected as the
reference generator. The GFMs are locally controlled
by the virtual synchronous machine technique (GFM
#1) and droop curves (GFM #2) [23]. In addition, the
voltage magnitude and frequency reference of the GFMs
are regulated by a secondary control layer as described
in [22]. The parameters of the GFL can be found in [22].
We consider the classical fourth-order nonlinear model
for the SG [33] with a BPA-GG governor [34] and low-
order exciter [35].

B. BUSBAR FAULT
The bus at the point of common coupling, which is
the bus that connects the GFM with the microgrid,
may be subject to a busbar fault. The busbar fault is
implemented as a symmetrical fault corresponding to the
sudden change of the PCC’s voltage magnitude (vbi).
Fig. 3a and Fig. 3c present the impact of the busbar
fault in the inverter’s output voltage magnitude (voi)
and frequency (ωi). The figures show that the busbar
fault perturbs the voltage magnitude at the PCC by
decreasing it when the fault occurs and increasing it
when the fault is cleared. We observe that the inverter’s
frequency remains idle during the presence of the fault.
In other words, the effects of the busbar fault are decou-
pled between the voltage magnitude and frequency.

The following analysis explains the reason for this phe-
nomenon. The voltage magnitude droop ωi = ωni−mPiPi
is equivalent to ωi = ωni − ∆ω and a characteristic
swing equation ∆̇ω = 1

Ji
(Pi,uf − Di∆ω), where Ji, Di,

Pi,uf are the equivalent synthetic inertia, damping, and
the unfiltered active power measurement for the i-th
GFM, respectively. Notice that the product 1

Ji
Pi,uf is

exceedingly diminutive because the equivalent inertia Ji
is inversely proportional to the droop coefficient mPi,
which is in the order of 10−5. Hence, any change in the
unfiltered active power Pi,uf due to the busbar fault does
not largely influence the dynamics of ∆ω.

Fig. 4a shows the adaptive threshold and residual
norm response when a busbar fault occurs at time t = 2
s at the PCC. After 0.2 seconds, the busbar fault is
cleared at time t = 2.2 s. Both thresholds remain
above the residual during the absence of the fault in the
entire simulation horizon. We observe that the adaptive
threshold decreases rapidly below the residual norm
when the fault happens, as shown in the left magnified
box. The fault is detected as early as 0.01 milliseconds.
Notice that the adaptive threshold quickly responds to
the fault presence, which makes the fault detection fast.
On the other hand, using a fixed threshold takes almost
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(a) (b) (c)

FIGURE 4: Residual norm, adaptive and fixed threshold comparison. (a) Busbar fault. (b) Busbar fault with
postprocessing. (c) Sensor fault in v∗

odi.

(a) (b) (c)

FIGURE 5: Residual norm, adaptive and fixed threshold comparison with modeling errors. (a) Busbar fault. (b)
Busbar fault with postprocessing. (c) Sensor fault in v∗

odi.

ten milliseconds to detect the busbar fault. In the right
magnified box, we observe the behavior of the thresholds
when the fault is cleared. Both thresholds yield similar
clearing times because it takes about 40 milliseconds to
restore the fault-free condition.

Postprocessing of the adaptive threshold can be used
to reduce the threshold’s fault-clearing time. In Fig.
4a, we observe that the adaptive threshold reaches a
maximum value of about six when the busbar fault is
cleared at time t = 2.2 s. This is because the threshold
is computed using the input vector u, which is severely
affected by the bus voltages vbdi and vbqi when the
busbar fault occurs. Fig. 4b presents the post-processed
response of the adaptive threshold and the residual
norm. The postprocessing consists of holding the value of
the dynamic residual for approximately 30 milliseconds
as soon as the maximum value of the threshold is
detected, i.e., immediately after the fault is cleared.
The threshold follows its original value afterward. A
limitation of such an approach is that a busbar fault
cannot be detected while postprocessing takes effect.

C. SENSOR FAULT
The sensor fault is implemented as a sudden increase
in v∗

odi, the reference voltage for the GFM’s voltage

controller, corresponding to at least the 10% of its
steady-state value. A sudden change above 10% will
excite the residual norm sufficiently for our proposed
adaptive threshold to detect the fault. Fig. 3b and
Fig. 3d present the impact of the sensor fault in the
inverter’s output voltage magnitude (voi) and frequency
(ωi). We notice that the fault is observable in the voltage
magnitude rather than in the frequency. The explanation
for this phenomenon is the same as the explanation
given for the busbar fault in Section IV-B. Fig. 3b
shows that the inverter’s voltage controller immediately
reacts at t = 2 s in opposition to the detected increase
in v∗

odi by reducing the output voltage magnitude vodi
and maintaining it around its pre-fault value. A similar
situation occurs when the fault is cleared at t = 3 s.

Fig. 4c presents the responses of the residual norm,
dynamic, and fixed thresholds under a v∗

odi sensor fault.
The sensor fault occurs at time t = 2 s and is cleared at
t = 3 s. We observe that the adaptive threshold obeys
the desired detection logic during the entire horizon.
The adaptive threshold remains above the residual norm
during fault-free intervals and below the norm during
fault occurrence. The proposed adaptive threshold min-
imizes the rates of false alarms and missed detection
to zero. Notice that the adaptive threshold allows for
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(a) (b) (c)

FIGURE 6: Response of the residual norm, fixed threshold, and adaptive threshold with postprocessing and
modeling errors under a busbar fault using nonlinear loads with (a) v = [v2

bdi v2
bqi]

⊤, (b) v = [v4
bdi v4

bqi]
⊤, (c)

v = [vbdiilodi vbqiilodi ]
⊤.

(a) (b) (c)

FIGURE 7: Response of the residual norm, fixed threshold, and adaptive threshold with modeling errors under a
sensor fault using nonlinear loads with (a) v = [v2

bdi v2
bqi]

⊤, (b) v = [v4
bdi v4

bqi]
⊤, (c) v = [vbdiilodi vbqiiloqi ]

⊤.

a fast detection of around 0.01 milliseconds. Also, it
can be seen that the fixed threshold is tighter than
the adaptive threshold. However, the adaptive threshold
stays farther from the residual than the fixed threshold.
Such a distance may help to avoid false alarms and
missed detections under potential new disturbances.

D. MODELING ERRORS

To account for the influence of modeling errors, we
double the resistance (Rfi), inductance (Lfi), and ca-
pacitance (Cfi) values of the LC filter. Also, we double
the resistance (Rci) and inductance (Lci) values of the
output connector. Meanwhile, the adaptive threshold
parameters are the same as those presented in Table
3. Fig. 5a, 5b, and 5c show the response of the adaptive
threshold with modeling errors for the busbar fault and
sensor fault, respectively. The figures show that the
thresholds still follow the same response as the original
ones without errors. The adaptive threshold for busbar
fault exhibits a slight positive bias; see Fig. 5a and 5b.
The adaptive threshold for the sensor fault presents a
small negative bias; see Fig. 5c.

E. NONLINEAR LOADS
We evaluate the merits of our proposed adaptive thresh-
old design using three types of nonlinear loads by
running experiments for both busbar and sensor faults.
In general, the dynamics of the loads in the dq domain
are expressed as i̇lo = J ilo +v where ilo = [ilodi iloqi]

⊤,
v = [vbdi vbqi]

⊤ and

J =

[
−Rlo

Llo
ωr

−ωr −Rlo
Llo

]
.

We modify v as a two-dimensional vector with entries
nonlinear in terms of vbdi and vbqi to model the non-
linear models. For these experiments, we consider three
types of nonlinear loads defined by v = [v2

bdi v2
bqi]

⊤,
v = [v4

bdi v4
bqi]

⊤, and v = [vbdiilodi vbqiiloqi]
⊤. Figures 6,

and 7 show that the response of our adaptive threshold
design remains almost invariant to the three types of
nonlinear load dynamics across all the experiments. Such
a result is congruent with the fault modeling and state-
space representation of the inverter that considers the
rest of the microgrid and its components as external
entities. Notice that, from the GFM side, the dynamics
of the nonlinear loads and other microgrid components
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(a) (b) (c)

FIGURE 8: Response of the residual norm, fixed threshold, and adaptive threshold with postprocessing and modeling
errors under a busbar fault with an input delay of (a) d = 1 ms, (b) d = 5 ms, (c) d = 10 ms.

(a) (b) (c)

FIGURE 9: Response of the residual norm, fixed threshold, and adaptive threshold with modeling errors under a
sensor fault with an input delay of (a) d = 1 ms, (b) d = 5 ms, (c) d = 10 ms.

show up in the bus voltage magnitudes vbdi and vbqi,
which are inputs of the state-space GFM modeling.
Despite these results, we acknowledge that other types
of nonlinear loads should be used to test the robustness
of our approach. Nonetheless, these preliminary results
show that our adaptive threshold design achieves an
accurate response in the presence of the considered
nonlinear loads.

F. INPUT DELAYS
In this section, we evaluate the performance of the
proposed approach when the input vector u is delayed d
units of time. Notice that three out of five input signals,
ωr, ωni, and Vni might be subject to delays because these
signals travel through the communication network es-
tablished by the secondary control layer. The other two
input signals, the dq bus voltage magnitudes (vbdi) and
(vbqi), are not influenced by the communication delays
because they are physical signals. Figures 8 and 9 show
the response of the residual norm, fixed threshold, and
adaptive threshold with postprocessing and modeling
errors under a busbar and sensor fault for input delays
of 1 ms, 5 ms, and 10 ms. We observe that the input
delay setbacks the response of the adaptive threshold
proportionally to the value of d. The higher the delay

TABLE 4: Comparison of the proposed method with
other fault detection techniques.

Methods Focus on Response Type of Type of
GFMs Time Threshold Faults

[36] No Medium Adaptive Sensor
[37] Yes Slow Fixed Busbar

Proposed Yes Fast Adaptive Busbar& Sensor

d, the longer the adaptive threshold responds to the
fault occurrence or clearance. Figures 8a and 9a show
that the response of the adaptive threshold and residual
norm preserve the accuracy of the fault detection logic.
However, as shown in Figure 9c, when the delay is d = 10
ms, both the observer residual and adaptive threshold do
not synchronize correctly, leading to unwanted outcomes
of the detection logic for almost 5 ms.

V. DISCUSSION
A. APPLICABILITY OF THE PROPOSED METHOD
The observer and adaptive threshold can be merged into
one module that exchanges inputs and outputs with
the inverter’s sensor and controller. The module can be
implemented in real-time within the inverter’s embedded
microcontroller as code written in any programming
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language with appropriate software libraries. The pro-
cessing extra burden exerted over the microcontroller
is minimal due to the advancements in computational
processing power for microcontrollers. A significant ad-
vantage of our approach is that its implementation
requires no additional hardware because the module uses
signals already measured by the grid-forming inverter.
Such a solution is cost-effective, with the additional
benefit of making it an entirely internal solution where
other external information is not required.

B. COMPARISON WITH SIMILAR DETECTION
TECHNIQUES
Table 4 compares our proposed method with similar
fault detection techniques for inverters operating in
islanded AC microgrids. The comparison aims to assess
the efficacy and limitations of the techniques presented
in [36] and [37]. The authors in [36] develop a model- and
observer-based fault detection strategy with an adaptive
threshold to protect inverters. Although the strategy
exhibits a medium detection speed, the method is tested
on grid-side converters and is limited to sensor faults.
Also, the adaptive threshold shows low sensitivity to
faults, causing missed and false detections. In [37], the
authors develop a signal-based strategy that superim-
poses current components and combines them with a
voltage restraint quantity. Even though the method can
capture the presence of faults, it introduces a windowing
strategy to compute the restraint threshold, delaying the
detection of the fault. Our proposed method overcomes
the drawbacks of these works by effectively designing
an adaptive threshold that minimizes misdetections and
timely detects faults.

C. LIMITATIONS
The grid-forming inverters operate under the regulation
of a secondary control layer that relies on a com-
munication network. Our proposed approach will be
affected by network delays because it uses the state-
space input signals transported through the network’s
communication channels. Although the convergence of
the observer with input delays is guaranteed, its response
will be delayed, delaying the residual signal used to
compare it with the adaptive threshold. It is beyond
the scope of this work to design an observer robust to
input delays because our goal is to design an adaptive
threshold for residual-based fault detection. We assume
that such an observer has already been designed and
provided. The designed adaptive threshold performs well
with input delays of less than 10 ms but will exhibit
a slow response for longer delays. For this reason, we
suggest that our proposed adaptive threshold should be
chosen for secondary control layers running over a low-
latency communication protocol such as DNP3 Ethernet
[38], [39].

D. FUTURE WORK
Despite the merits of our proposed fault detection
adaptive threshold design for grid-forming inverters,
our method requires further analysis for its immedi-
ate application to inverter-dominant large-scale power
systems. The fundamental reason is that large-scale
power systems with high penetration of inverters bring
significant stability challenges [40]. The dynamics of
inverters and their controls operate on a similar time
scale as the line dynamics, which can result in resonance
phenomena and, ultimately, instability. In addition, the
imbalance in microgrids is a known power quality issue
that leads to harmful effects such as increased neutral
currents and voltages, power oscillations, and equipment
malfunctioning [41]. In this regard, we suggest additional
tests of our proposed method under asymmetric currents
in islanded microgrids. Furthermore, efforts to under-
ground power lines to reduce wildfire risk will require our
proposed method to handle capacitive lines. We leave
these investigations as part of future endeavors.

VI. CONCLUSION
This paper develops an adaptive threshold strategy for
GFMs in islanded-mode AC microgrids. The proposed
threshold is computed as an upper bound on the ℓ2 norm
of the residual vector under a fault-free condition. The
bound parameters are successfully obtained by solving
a semidefinite program with two constraints of linear
matrix inequalities. A microgrid with two GFMs, one
GFL, and one synchronous machine is used to evaluate
the performance of the proposed threshold under a
busbar and sensor fault. The GFMs are synchronized
with a secondary control for the frequency and volt-
age magnitude. The numerical results show our pro-
posed approach’s practical contributions, effectiveness,
and implementation feasibility. Moreover, the proposed
adaptive threshold alleviates the issues of using a fixed
threshold, which may introduce false alarms or missed
detections.

APPENDIX.

A. GFM DYNAMIC EQUATIONS
The dynamic equations of the inverter’s auxiliary vari-
ables are given as

ϕ̇di = v∗
odi − vodi, (24a)

ϕ̇qi = −voqi, (24b)
γ̇di = Fiiodi − ωbCfivoqi + KPViv∗

odi − KPVivodi (24c)
+ KIViϕdi − ildi,

γ̇qi = Fiioqi + ωbCfivodi − KPVivoqi + KIViϕqi − ilqi.
(24d)

The dynamic equations governing the inverter’s power
angle, active power, and reactive power are presented as
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follows

δ̇i = ωi − ωr, (25a)

Ṗi = −ωciPi + ωci(vodiiodi + voqiioqi), (25b)

Q̇i = −ωciQi + ωci(voqiiodi − vodiioqi). (25c)

The differential equations of the inverter’s output cur-
rent magnitudes, voltage magnitudes, and LC filter
output current magnitudes are

i̇ldi = −Rfi

Lfi
ildi + ωniilqi +

1

Lfi
(vidi − vodi), (26a)

i̇lqi = −Rfi

Lfi
ilqi − ωniildi +

1

Lfi
(viqi − voqi), (26b)

v̇odi = ωnivoqi +
1

Cfi
(ildi − iodi), (26c)

v̇oqi = −ωnivodi +
1

Cfi
(ilqi − ioqi), (26d)

i̇odi = −Rci

Lci
iodi + ωniioqi +

1

Lci
(vodi − vbdi), (26e)

i̇oqi = −Rci

Lci
ioqi − ωniiodi +

1

Lci
(voqi − vbqi). (26f)

B. GFM NONLINEAR TERM AS A ONE-SIDED LIPSCHITZ
FUNCTION
The observer design necessitates the nonlinearity ϕ(x,u)
to be one-sided Lipschitz continuous, defined as

Definition 1. The function f(·) is one-sided Lipschitz
continuous if a constant ρ ∈ R exists such that ∀ u ∈ U
and ∀ x, x̂ ∈ D:

⟨f(x,u)− f(x̂,u),x− x̂⟩ ≤ ρ∥x− x̂∥2. (27)

The constant ρ is obtained by sampling the states-
inputs operating region (D × U) of the GFM such that
each interval contains equally spaced sample points. We
select 100 sample points per interval by acknowledg-
ing the trade-off between computational burden and a
denser sample space for a more precise constant calcula-
tion. According to [25], the one-sided Lipschitz constant
can be computed as ρ = lim sup

(
α
(

∂ϕ
∂x

))
∀(x,u) ∈

D × U , where α(∂ϕ∂x ) represents the logarithmic matrix
norm of the Jacobian matrix ∂ϕ

∂x of the nonlinear term
defined as follows [42]

α

(
∂ϕ

∂x

)
= λmax

(
1

2

(
∂ϕ

∂x
+

∂ϕ

∂x

⊤
))

,

and λmax represents the maximum eigenvalue function.
We confirm that the nonlinear term ϕ(x,u) is one-sided
Lipschitz because the value of the one-sided Lipschitz
constant is ρ = 22.36 by applying Algorithm 1 described
in [25].
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