Lateral diffusion and atmospheric CO₂ mixing compromise estimates of rhizosphere respiration in a forest soil

Abstract: Measurements of rhizosphere carbon efflux are critical to the determination of soil carbon balance by CO₂ flux measurements. We attempted to measure rhizosphere respiration in a forest ecosystem by transplanting ¹³C-enriched soils from a tallgrass prairie into a mixed-conifer forest soil but found that atmospheric air mixing and lateral diffusion confounded ¹³C-CO₂ measurements. Surface CO₂ efflux (¹³C = –20‰) was enriched 6‰ relative to soil CO₂ measured at depth because of the presence of atmospheric-derived CO₂ (–8‰) near the soil surface. The ¹³C-CO₂ value of transplanted soil CO₂ did not reflect its ¹³C-enriched carbon source but was within 1‰ of native soil CO₂ because of lateral diffusion from the surrounding native soil. A two-component steady-state model of lateral diffusion supported our assertion that this soil was susceptible to atmospheric air mixing and lateral diffusion because of its high effective porosity and relatively low concentration of soil CO₂. Percent rhizosphere respiration was estimated at 35 and 45% after applying corrections for atmospheric air mixing and (or) lateral diffusion. These confounding effects may be reduced or eliminated by utilizing a larger transplanted soil pit and by reducing soil CO₂ diffusivity, for example, by increasing water content.

Introduction

The role of soils in the global carbon (C) cycle is substantial, as soils contain more C than live biomass (Eswaran et al. 1993), and the emission of CO₂ from soil is a major flux of C to the atmosphere (Schlesinger and Andrews 2000). Soil CO₂ efflux has been widely measured in forest systems, but our understanding of the relative contributions by individual sources and how these sources will be affected by global change is poor. Carbon dioxide in soils results from root respiration and respiration by soil organisms that utilizes C derived from plant or soil organic matter. Rhizosphere respiration, the combined respiration from roots and microbial respiration utilizing C from root exudates, may account for about half of total soil respiration in forest soils (Hanson et al. 2000), but contributions up to 90% have...
been reported (Thiernon and Laudelout 1996). It is likely that the various processes responsible for soil CO$_2$ will respond differently to climate change (e.g., Boone et al. 1998), necessitating a better understanding of individual processes to adequately assess the response of soils to global change.

The measurement of rhizosphere respiration has been a challenging task. Current methodologies include component integration (Hendrickson and Robinson 1984; Edwards and Harris 1977; Anderson 1973), root exclusion (Ewel et al. 1987; Edwards 1975; Anderson 1973; Wiant 1967), and isotopic tracer (Horwath et al. 1994; Dörr and Männich 1987, 1986; Edwards and Harris 1977) techniques. Component integration and root exclusion suffer from excessive disturbance, with changes in temperature and soil moisture possibly altering respiration rates. Carbon isotopic methods utilizing either the radioactive 14C isotope or the stable 13C isotope are preferred, as they measure respiration rates in situ and do not require the alteration of the soil environment (Hanson et al. 2000). The natural stable isotope technique is the superior isotopic method, as soils and vegetation possess a natural 13C label, whereas the artificial addition of radioactive 13C approaches may pose health and waste-disposal hazards.

Techniques based on natural stable carbon isotopes take advantage of the photosynthetic discrimination against the heavier 13C isotope (Farquhar et al. 1989). Carbon-13 abundance is commonly reported as δ^{13}C, or the 13C/12C ratio relative to the Pee Dee Belemnite (PDB) standard. Vegetation with C_3 (δ^{13}C = $-27\%e$) and C_4 (δ^{13}C = $-12\%e$) photosynthetic pathways exhibit different levels of discrimination against the heavier 13C isotope. Soil respired CO$_2$ has a δ^{13}C value close to its organic substrate, as there is no net isotopic discrimination during respiration (Lin and Ehleringer 1997). A potential obstacle to the stable isotope approach is the small separation of δ^{13}C values between plant and soil organic matter derived C relative to the isotopic fractionation background in soils (Hanson et al. 2000). As a result, stable isotope experiments generally rely on the introduction of C from a non-native photosynthetic pathway. Examples include growing C$_4$ corn in a 13C-depleted soil previously supporting C$_3$ vegetation (Rochette et al. 1999; Rochette and Flanagan 1997) and the utilization of 13C-depleted CO$_2$ generated from natural gas (δ^{13}C = $-43\%e$) in elevated CO$_2$ studies (Andrews et al. 1999; Lin et al. 1999).

In an attempt to quantify the contribution of rhizosphere respiration within a forest ecosystem, we transplanted 13C-enriched soils (δ^{13}C = $-14\%e$) from a C_4-dominated tallgrass prairie into a mixed C_3 conifer stand (δ^{13}C = $-27\%e$) in the western Sierra Nevada mountain range. To test this natural 13C approach, we investigated the potential influences of lateral diffusion and the mixing of atmospheric-derived CO$_2$ on the δ^{13}C values of soil CO$_2$. Lateral soil CO$_2$ diffusion has not been traditionally considered in efflux and soil pCO$_2$ experiments in forested sites, as most studies consider the lateral extent of soil horizons to either be homogeneous or dwarfed by the large vertical gradient between soil CO$_2$ ($> 10,000$ μL·L$^{-1}$; δ^{13}C = $-23\%e$) and the bulk atmosphere (ca. 365 μL·L$^{-1}$; δ^{13}C = $-8\%e$). However, lateral diffusion from atmospheric air has been shown to significantly reduce soil pCO$_2$ over 150 cm away from an exposed soil pit wall (Davidson and Trumbore 1995). Rochette and Flanagan (1997) found that total soil respiration under corn, within the inter-rows and in nearby controls were not significantly different, indicating a homogenization of soil CO$_2$ by lateral diffusion. In an undisturbed system, lateral diffusion may be an important process in homogenizing δ^{13}C-CO$_2$ produced from spatially diverse sources.

The magnitude of the vertical mixing of atmospheric CO$_2$ with soil CO$_2$ will be small because of large vertical diffusion gradient between soil and atmospheric CO$_2$. The relative abundance of 13C can be used to assess this vertical mixing, as atmospheric CO$_2$ (δ^{13}C = $-8\%e$) is more enriched in 13C than soil CO$_2$ (δ^{13}C = $-23\%e$) in C_3-dominated ecosystems. The intensity of atmospheric air mixing has been reported to be a function of soil respiration rate and the rate of gaseous diffusion within the soil (Amundson et al. 1998; Dudzika and Halas 1996b; Cerling 1984). Diurnal variations in soil δ^{13}C-CO$_2$ may also result from atmospheric air mixing, as there will be a less intense mixing during daytime periods of higher rhizosphere respiration (Dudzika and Halas 1996a). The objectives of this paper were to (i) test the transplanted soil pit method; (ii) examine the mixing of atmospheric-derived CO$_2$ with soil CO$_2$; (iii) investigate the potential influence of lateral diffusion on the δ^{13}C value of soil CO$_2$ when soils of two dissimilar isotopic carbon signatures were juxtaposed; and (iv) discuss the implications that these processes may have on our ability to resolve the various C sources (e.g., air, roots, soil organic matter) contributing to soil CO$_2$.

Materials and methods

Site and soil description

Four paired native and transplanted soil plots were established in November 1999 in a mixed Sierra Nevada conifer stand at the Blodgett Experimental Forest, Georgetown, Calif., U.S.A. Transplanted soil plots consisted of 75 × 75 cm wide by 40 cm deep pits that were carefully excavated in such a manner that visible roots remained intact. To prevent vertical gaseous diffusion from underlying native soil, the pit bottom was lined with a vinyl barrier. Each pit was filled with a 13C-enriched (13C$_D$) soil obtained from the surface layer of a Mollisol soil (approximately 0–30 cm) at the Konza Prairie Long-Term Ecological Research Site in Kansas. Vegetation at this site had been dominated by C$_4$ grasses for possibly thousands of years. The soil was sieved (<2 mm), picked free of roots, homogenized, and air-dried prior to use. This clay loam soil had a pH of 7.6 and contained 23 mg·g$^{-1}$ of organic C and 2.0 mg·g$^{-1}$ of N. The δ^{13}C value of the total soil organic C was $-14.7\%e$. To apply the results obtained from the prairie soil to the natural forest setting, undisturbed forest soil plots near the transplanted soil but, rather, as a way to relate discrete rhizosphere respiration measurements within the transplanted prairie soil to continuous soil efflux measurements taken in the native forest soil. Table 1 lists selected properties of the native forest soil.

Surface and subsurface CO$_2$ trapping

Surface CO$_2$ efflux was trapped in August 2000 utilizing a closed-circulation, inverted plastic box technique following Cheng et al. (2000). The inverted box was 26.1 cm in length,
15.2 cm in width, 6.2 cm in height, and was inserted 1 cm into the soil. A vacuum pump pulled air from within the inverted box through a sand column filled with 4 M NaOH to trap CO₂. The inverted box apparatus was purged with CO₂-free air prior to the 48-h trapping period. The flow rate was maintained at 0.20 L·min⁻¹ with an inline needle valve. An aliquot of NaOH solution from each column was analyzed for inorganic C utilizing a Shimadzu 5050A TOC analyzer. Raw values were corrected for laboratory and field exposure to atmospheric air by subtracting out the C present in field controls. Another aliquot of NaOH solution was mixed with SrCl₂ to generate the SrCO₃ precipitate that was analyzed for δ¹³C by a PDZ Europa (Cheshire, U.K.) Hydra 20–20 continuous flow isotope ratio mass spectrometer (IRMS) (Harris et al. 1997) at the University of California, Davis. Surface respiration was measured using a separate automated, open-flow cuvette system (Cheng et al. 2000) that produced surface respiration rates comparable with LI-COR 6200 (LI-COR, Inc., Lincoln, Nebr.) equipped with a static soil respiration chamber.

Subsurface CO₂ was collected using gas wells (Johnson et al. 1994). In June 2000, gas wells at 5, 10, and 15 cm away from the ¹³C E (transplanted) and ¹²C O (native) soil boundary were inserted to 15 and 30 cm depths. Additional gas wells were placed at 15 and 30 cm depths in the native soil, at least 0.6 m from the adjacent ¹³C E soil plot. In August 2000, all gas wells within the ¹³C E plots were removed and were replaced by a single 30 cm deep gas well placed at the center of the plot. After insertion of each well, 15 mL of soil gas was immediately purged, followed by at least 8 h before the first gas collection. Seven milliliters of soil gas was purged from the gas well to displace the dead volume, followed by the collection of 11 mL that was immediately transferred into 10-mL vacutainers. The δ¹³C of CO₂ in the vacutainers was analyzed by a PDZ Europa TGII trace gas analyzer coupled to a Europa Geo IRMS at the University of California, Davis. As the diffusion of CO₂ within the soil naturally discriminates against the heavier ¹³C-CO₂ isotope by 4.4 ‰ (Cerling 1984; Cerling et al. 1991), observed δ¹³C-CO₂ values from the gas wells were adjusted to account for this influence. The δ¹³C values presented in the tables and figures include this correction, unless noted. Surface efflux measurements were considered to be at steady state and were not subject to this correction.

Statistical analyses

Mean comparisons of δ¹³C-CO₂ values between soil types and depths were accomplished by a pooled t test (α = 0.05) using the Data Desk software (Data Description, Inc., Ithaca, N.Y.). A Student’s t test (α = 0.05) was used to compare the means of soil δ¹³C values, carbon content, and root density with depth. Mean comparisons of soil δ¹³C-CO₂ between depths and distances from the native-transplanted boundary were accomplished by a post-hoc Bonferroni (α = 0.05) following a three-way analysis of variance (native and transplanted soils by three distances from the boundary by two depths) using the Data Desk software. Treatments were considered significant only when p ≤ 0.05 (according to the F test).

Partitioning rhizosphere and soil–microbial respiration

Based on Cerri et al. (1985), the following equation can be used to partition ¹³C enriched soil-derived (C₃) carbon from ¹²C depleted plant-derived (C₄) carbon:

\[\% RR = \frac{(\delta_t - \delta_s)}{(\delta_t - \delta_h)} \times 100 \]

where RR is the percentage of C derived from C₃ plant carbon; \(\delta_t \) and \(\delta_s \) are the δ¹³C values of C₃ plant C and C₄-derived soil C, respectively; and \(\delta_h \) was the δ¹³C value of the CO₂ sample. As there is no isotope discrimination during respiration (Lin and Ehleringer 1997), \(\delta_t \) and \(\delta_s \) were considered to be the δ¹³C of the soil organic matter (δ¹³C = −14‰) and the C₃ roots (δ¹³C = −27‰) present in the transplanted soil pits.

Calculation of vertical and lateral ¹³C-CO₂ diffusion

Cerling (1984) developed a steady-state CO₂ isotope diffusion model to investigate the vertical δ¹³C trends in soils containing pedogenic carbonates. This model concurred with field observations that soil δ¹³C-CO₂ is susceptible to isotopic discrimination by diffusion (Cerling et al. 1991; Cerling 1984; Dörr and Münnich 1980) and to diurnal and seasonal trends resulting from changes in atmospheric air mixing (Dudziak and Halas 1996a; Mook and Koopmans 1983). This model incorporated the different diffusivities of ¹²C- and ¹³C-CO₂ and assumed a constant production rate of CO₂ from soil respiration (Amundson et al. 1998):

\[R_{x}^{13} = \frac{\Phi R_{b}^{13} \left(L_x - \frac{x^2}{2} \right) + C_b R_{b}^{13}}{\Phi D_{x} \left(L_x - \frac{x^2}{2} \right) + C_b} \]

where \(R_{x}^{13} \) is the ratio of ¹³C to ¹²C in soil CO₂ at a given depth, \(\Phi \) is the CO₂ production in the soil (mol·cm⁻³·s⁻¹); \(D_{x} \) and \(D_{x}^{13} \) were the diffusion coefficients of ¹³CO₂ and bulk
CO$_2$ (cm2·s$^{-1}$), respectively; R_{b}^{13} and R_{b}^{12} were the 13C/12C ratios of soil respired CO$_2$ and atmospheric CO$_2$; x was the distance increment away from the soil surface (cm), and C_b is the atmospheric air CO$_2$ concentration (mol·cm$^{-3}$). The boundary conditions were the 13C-CO$_2$ at the soil surface ($x = 0$) and the maximum distance (L) at which soil respiration was equally distributed ($x = L$). Soil CO$_2$ production (q) was adjusted to correspond with measured pCO$_2$ levels at a 15 cm depth. This model varied from Cerling’s derivation in that [12CO$_2$] was approximated by bulk [CO$_2$] (Amundson et al. 1998). The diffusion coefficient of gaseous CO$_2$ was calculated from a number of variables, including porosity, temperature, and moisture content (Moldrup et al. 1996). Modeled scenarios differed by soil temperature and volumetric water content and included snowmelt, June, July, August, and “rainy September week” scenarios having diffusion coefficients of 0.0254, 0.0472, 0.0517, 0.0614, and 0.040 cm2·s$^{-1}$, respectively. Scenarios were based on actual monthly or weekly data collected at the site except for the arbitrarily defined snowmelt scenario. R_{b}^{13} was subsequently converted to standard notation:

$$\delta^{13}C = \left(\frac{R_{b}^{13} - R_{std}}{R_{std}} \right) \times 1000$$

where R_{std} is the 13CO$_2$/12CO$_2$ ratios of PDB carbonate.

Equation 2 was adapted to calculate lateral diffusion in transplanted soils by replacing the atmospheric air boundary conditions by those found at the native–transplanted soil interface: R_{b}^{13} and C_b became the 13C/12C ratio and concentration of soil respired CO$_2$ at the native–transplanted soil interface, and x became the distance increment away from the native–transplanted soil interface (cm). The CO$_2$ diffusion coefficient within transplanted soils was calculated to be 0.02 cm2·s$^{-1}$.

Results

δ^{13}C of surface efflux and subsurface CO$_2$ from native soils

Surface CO$_2$ efflux from the native soil (δ^{13}C = $-20.3\%e$) was considerably more enriched in 13C than soil CO$_2$ derived from soil organic matter (SOM; δ^{13}C = $-26.1\%e$; $P = 0.0002$) or plant roots (δ^{13}C = $-27\%e$) (Fig. 1). As isotopic discrimination did not occur during respiration (Lin and Ehleringer 1997; Cheng 1996), the observed enrichment in surface efflux could be attributed to experimental bias or atmospheric air mixing. The maximum contamination by atmospheric air calculated by eq. 1 was 35%, assuming negligible root respiration and CO$_2$ endmembers of atmospheric air and soil respiration. Native soil δ^{13}C-CO$_2$ at 30 cm (Fig. 1) was consistent with source SOM (Table 2) and rhizosphere C from this C$_3$-dominated ecosystem.

Soil δ^{13}C-CO$_2$ in the native soil was more 13C enriched with depth ($P = 0.0307$) because of the greater 13C enrichment in SOM and the diminishing role of rhizosphere respiration with depth (Table 2). The δ^{13}C value of SOM under forests is known to increase by about $1\%e$ with depth (Buchmann et al. 1988; Vitorello et al. 1989), because SOM deeper in the profile originated when atmospheric air was more enriched in 13C (Ehleringer et al. 2000), and there is less labile 13C in older, deeper SOM relative to younger litter-derived SOM (Schleser and Pohling 1980). Lower rooting density (Table 2) implies that rhizosphere respiration will decrease as δ^{13}C-CO$_2$ values increase with depth.

δ^{13}C values of surface efflux and subsurface CO$_2$ in transplanted soils

The δ^{13}C value of CO$_2$ in the centre of the transplanted soil pits were within $1\%e$ of native soil CO$_2$ in both the surface efflux and in soil CO$_2$ at a 30 cm depth (Fig. 1). The entire pit appeared to be contaminated by native soil CO$_2$, as measurements taken at different depths and distances from the pit boundary were within about $1\%e$ of each other (Table 3). Within the transplanted soil, surface efflux had a δ^{13}C value of $-19.0\%e$, and soil CO$_2$ at a 30 cm depth had a value of $-25.9\%e$. Rhizosphere respiration (eq. 1) contributed 35 and 91% of total soil respiration (% RR) at surface and 30 cm depths, respectively. The discrepancy between % RR at the surface and at a 30 cm depth, and their apparent disagreement with the 49% mean % RR in forest ecosystems (Hanson et al. 2000) suggested the presence of other CO$_2$ sources. The lateral diffusion of native soil CO$_2$ and the ver-
tical mixing of atmospheric CO₂ were considered the most likely sources.

Vertical and lateral δ¹³C-CO₂ diffusion

The effect of atmospheric air on soil δ¹³C-CO₂ under various soil moisture conditions was investigated using an existing steady-state model (Fig. 2; Amundson et al. 1998; Cerling 1984). Near the soil surface, atmospheric air mixing reduced the δ¹³C-CO₂ values by 4‰ under dry conditions (August) and by 2.5‰ under moist conditions (snowmelt) (Table 4). The effect of atmospheric air mixing at depth was negligible, as both scenarios changed less than 0.3‰. In this model, drier soil conditions increased effective porosity, resulting in a greater mixing of atmospheric air and soil CO₂.

The effect of lateral diffusion on δ¹³C-CO₂ values was investigated by recasting the vertical diffusion model presented in eq. 2 as a lateral diffusion model. In this model, soil δ¹³C-CO₂ at the transplanted–native soil interface was set to native soil δ¹³C-CO₂ at a 15 cm depth, and became more enriched in δ¹³C further into the transplanted soil because of the respiration of ¹³C E soil organic matter (Fig. 3). Using the 0.02 cm²·s⁻¹ diffusion coefficient calculated for this soil, δ¹³C-CO₂ increased from –23.2‰ at the transplanted–native soil interface to –21.2‰ at 20 cm away from the interface towards the centre of the pit. The extent of δ¹³C-CO₂ and δ¹³C-CO₂ mixing within the transplanted soil was dependent on the diffusion coefficient, which was the function of a number of variables, including porosity, temperature, and moisture content. Although observed δ¹³C values were within model predictions, the calculated values were probably underestimated, as the model did not account for lateral diffusion from other soil pit faces and assumed that soil CO₂ production was entirely from SOM sources.

Discussion

Methodological implications

The original objective of this research was to assess the contribution of rhizosphere respiration in a forest ecosystem by partitioning surface CO₂ efflux into its root- and soil-derived components using a natural ¹³C tracer method. The natural ¹³C tracer was introduced by soil transplanting approach and was necessary to measure rhizosphere respiration per unit of root volume (length, root C, or root N). Rhizosphere respiration from the native, undisturbed forest soil was to be calculated by applying a series of discrete stable isotope measurements from the transplanted soil analog to continuous soil efflux measurements taken in both transplanted and native soils by combining isotope and root dynamics measurements. Respiration measurements of the prairie soil may have been biased by the alteration of root distribution and soil disturbance during the excavation and subsequent transplanting of soils. The unintentional severing and removal of fine roots during excavation will decrease rhizosphere respiration relative to the respiration of soil-derived C. This was partly mitigated by a settling period to allow for new root growth. Disturbance of the prairie soil was expected to temporarily increase soil respiration because of the increased decomposition of labile organic matter (Blel-Charaudeau et al. 1990). We believe that the 8-month period between transplanting and measurement was adequate for soil disturbance effects to subside. Two previous mesocosom-scale greenhouse experiments (e.g., Cheng et al. 2000) using the same prairie soil exhibited strong soil respiration and nitrate leaching immediately after soil transplanting, which subsequently declined into stable equilibrium levels within 2–4 months (unpublished data).

There was a 6‰ discrepancy between surface efflux and subsurface CO₂ measured for native soil (P < 0.0001; Fig. 1), which may have been partly due to the experimental techniques used. Surface efflux and subsurface measurements reflected CO₂ trapped during different time scales; this was because gas well measurements were an instantaneous sample of the subsurface CO₂, whereas the inverted box technique provided a mean δ¹³C value of CO₂ trapped over two diurnal periods. Diurnal variation has been found to alter the δ¹³C value of surface efflux by up to 2.5‰ in a deciduous forest, partly attributed to the greater mixing of atmospheric air in the surface soil during lower nighttime biological activity (Dudziak and Halas 1996a). If the observed discrepancy was entirely attributed to the effects of diurnal variation, nighttime soil respiration at this site would have a δ¹³C value of –35‰. As there was no known mechanism to deplete δ¹³C-CO₂ by over 5‰ at night, diurnal varia-

<table>
<thead>
<tr>
<th>Depth (cm)</th>
<th>δ¹³C (‰)</th>
<th>Carbon (mg·g⁻¹)</th>
<th>Root density (mm root·cm⁻³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–15</td>
<td>–26.02 (0.10)a</td>
<td>46.1 (0.3)a</td>
<td>11.92 (1.03)a</td>
</tr>
<tr>
<td>15–30</td>
<td>–25.08 (0.31)b</td>
<td>29.8 (1.1)b</td>
<td>7.41 (0.60)b</td>
</tr>
<tr>
<td>30–45</td>
<td>–24.36 (0.07)b</td>
<td>15.8 (0.5)c</td>
<td>4.02 (0.33)c</td>
</tr>
</tbody>
</table>

Table 2. δ¹³C, carbon, and rooting density in native and transplanted soils.

<table>
<thead>
<tr>
<th>Depth (cm)</th>
<th>Distance to boundary (cm)</th>
<th>δ¹³C-CO₂ (‰)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Native</td>
<td>–28.5 (0.2)ab</td>
</tr>
<tr>
<td>15</td>
<td>5</td>
<td>–27.6 (0.5)ac</td>
</tr>
<tr>
<td>15</td>
<td>10</td>
<td>–27.4 (0.5)ac</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>–28.7 (0.3)a</td>
</tr>
<tr>
<td>30</td>
<td>Native</td>
<td>–27.2 (0.3)c</td>
</tr>
<tr>
<td>30</td>
<td>5</td>
<td>–27.6 (0.2)bc</td>
</tr>
<tr>
<td>30</td>
<td>15</td>
<td>–27.3 (0.6)ac</td>
</tr>
</tbody>
</table>

Table 3. δ¹³C-CO₂ values from native soils and in transplanted soil pits at 5, 10, and 15 cm from the native–transplanted soil boundary.

© 2002 NRC Canada
Fig. 2. Calculated steady-state pCO$_2$ (A) and soil δ^{13}C-CO$_2$ (B) within native δ^{13}C$_{\text{soil}}$ soils under different temperature and moisture conditions. The snowmelt scenario assumed a 10°C temperature (T) and 25% volumetric water content (θ). Other scenarios were based on measured averages (June: $T = 16.3^\circ$C, $\theta = 0.14$; July: $T = 15.7^\circ$C, $\theta = 0.11$; August: $T = 16.9^\circ$C, $\theta = 0.08$; rainy September week: $T = 13.1^\circ$C, $\theta = 0.17$). The diffusion coefficient was calculated following Moldrup et al. (1996) based on temperature, moisture, and a total porosity of 63%. This model was based on Amundson et al. (1998) and assumed that CO$_2$ was evenly produced over 50 cm, that the CO$_2$ (δ^{13}C = –27‰) production rate was 2.90 × 10$^{-3}$ mol·cm$^{-3}$·s$^{-1}$, and that atmospheric CO$_2$ (δ^{13}C = –8‰) had a concentration of 29 mmol·L$^{-1}$.

| Table 4. Change in δ^{13}C-CO$_2$ at selected depths and depth increments for the model scenarios described in Fig. 2. |
|---|---|---|---|---|
| Depth or depth increment | Snowmelt | June | July | August |
| At 5 cm | –1.01 | –0.38 | –0.25 | — | –0.58 |
| At 15 cm | –0.43 | –0.17 | –0.11 | — | –0.25 |
| At 30 cm | –0.27 | –0.11 | –0.07 | — | –0.16 |
| Change in δ^{13}C-CO$_2$ by depth increment (%) | | | | |
| A_{1-5} cm | –2.42 | –3.60 | –3.78 | –4.13 | –3.27 |
| A_{5-15} cm | –0.50 | –0.87 | –0.94 | –1.08 | –0.75 |
| A_{15-30} cm | –0.12 | –0.22 | –0.24 | –0.28 | –0.19 |
tion could not be solely responsible. Secondly, the more complex trapping methodology necessary to collect the surface efflux may have been susceptible to enrichment in δ13C by isotopic discrimination, pre-experiment contamination (e.g., CO2 in the NaOH pellets; Davidson 1995), or “leakage” of atmospheric air into the system during or after trapping. Previous studies utilizing this methodology have not been observed to fractionate CO2 isotopes (Cheng 1996; Cheng and Johnson 1998), nor has there been any evidence that the inverted box has introduced a systematic contamination of atmospheric CO2 during trapping (Cheng et al. 2000 and unpublished data). Field and laboratory contamination were accounted for by the use of blanks. Although methodological differences may account for a small discrepancy between surface efflux and soil δ13C-CO2 values, the results from previous experiments indicated that methodological differences could not account for the apparent 6‰ enrichment in surface efflux relative to soil CO2.

Atmospheric air mixing in native and transplanted soils

The most likely cause of this observed enrichment of surface efflux (Fig. 1) was the presence of atmospheric CO2 (δ13C = –8‰), estimated to contribute up to 35% of the near-surface soil gas. The soil atmosphere of dry, relatively unproductive soils can be composed of a significant concentration of atmospheric-derived CO2 (Amundson et al. 1988) as predicted by a two-component steady-state diffusion model (Amundson et al. 1998; Cerling 1984). Soils at this forested site were of a sandy clay loam texture, having a soil moisture content of 0.08 m3 m–3 at the time of sampling, with a summer–fall mean soil respiration rate of 5.6 ± 0.5 mmol CO2 cm–2 s–1, and a soil pCO2 of 6.9 ± 1.1 mmol·mol–1 at a 15 cm depth. The combination of coarse soil texture and low soil moisture content resulted in a high effective porosity (63% of the soil pore space was filled by air) and was the primary factor in this soil’s susceptibility to atmospheric air mixing. The presence of atmospheric air within the inverted
box was ascribed to the lateral diffusion of CO₂ underneath the box edges in response to the artificially lowered CO₂ concentration within the inverted box (Healy et al. 1996) and (or) natural lateral diffusion processes. Lateral diffusion beneath the box edges most likely occurred during previous isotopic trapping experiments utilizing the inverted box (Cheng et al. 2000 and unpublished data). However, the finer soil texture and considerably greater soil moisteres of those experiments reduced the effective soil porosity, most likely resulting in negligible atmospheric air mixing and a lower chamber-induced lateral diffusion rate. Atmospheric air contamination may be reduced or eliminated by either conducting the experiment under conditions less favorable to atmospheric air mixing (e.g., finer soil texture and greater soil moisture) or by reducing the importance of chamber-induced lateral diffusion by inserting the box edges deeper into the soil (Hutchinson and Livingston 2001). Deeper insertion of the box may sever roots and provide a barrier against future root growth and would not be effective against natural lateral diffusion processes.

Atmospheric air mixing should be spatially and temporally variable, as both net CO₂ production (Fang et al. 1998; Longdoz et al. 2000; Rayment and Jarvis 2000) and individual CO₂ sources are highly variable within the soil. The extent of C₃ plant cover and moisture has been found to exert a strong influence on the δ¹³C of the soil CO₂ in the Mojave Desert, California (Amundson et al. 1998). The response of atmospheric air mixing to the diurnal variation of soil CO₂ production has been attributed as one of the sources of diurnal variation in soil δ¹³CO₂ (Dudzik and Halas 1996a). Despite the soil δ¹³CO₂ being determined by local C₃ sources, mixing with atmospheric-derived CO₂ can significantly alter the δ¹³C value depending on several processes, including total respiration rate, soil moisture content, and soil texture. Soil moisture may be the most critical factor controlling the variability in δ¹³CO₂, as greater moisture contents independently stimulate biological activity and respiration rates, as well as reduces the rate of gaseous diffusion within the soil by physically occupying pore space, because gaseous diffusion in water is orders of magnitude smaller than through air.

Precipitation at this site was highly seasonal, resulting in a general pattern of the highest soil moisture content during spring snowmelt that steadily declined until winter precipitation. Therefore, the 6–8% enrichment attributed to atmospheric-derived CO₂ mixing during August was most likely representative only of the dry summer months. The two-component model (Fig. 2) affirmed that atmospheric air mixing increased δ¹³CO₂ by over 4% in the top 5 cm of dry soil (August scenario) compared with a 2.5% increase in moister soil (snowmelt scenario; Table 4). The snowmelt scenario was less susceptible to atmospheric air mixing, because its higher moisture levels reduced the ability of gas to diffuse through the soil, resulting in a greater soil CO₂ concentration. This response of δ¹³CO₂ to seasonal fluctuations in soil moisture content was greater than a seasonal shift of about 1% because of changes in rhizosphere respiration, modeled by adjusting % RR from 1 (winter) to 50% (summer). Seasonal changes due to atmospheric air mixing should actually be greater than predicted here, as the model did not account for seasonal changes in respiration rates or the source of CO₂ production in the soil.

Rhizosphere respiration

The difference in isotopic carbon signature of soil (–14‰) and plant-derived (–27‰) CO₂ sources present in the transplanted soil provided the basis from which to estimate the percentage of rhizosphere respiration (% RR). The % RR in surface efflux was 35% but was considered an underestimate because of the presence of atmospheric-derived CO₂. Assuming atmospheric air mixing had the same effect on both soil types, correcting this value for atmospheric-derived CO₂ mixing yielded a % RR of 83% (Table 5). Atmospheric air mixing in transplanted soils will likely be lower than in native soils because of a lower gaseous diffusion rate and finer texture of the transplanted soils. At a 30 cm depth, % RR was 95% after the soil δ¹³CO₂ value was adjusted for diffusive discrimination (Table 5). Both corrected estimates of % RR were greater than the 49% mean in forest soils (Hanson et al. 2000) and were not in agreement with a qualitative assessment of very low rooting density within the transplanted soil pits observed by minirhizotron (unpublished data). Rhizosphere respiration was expected to be lower than the forest mean, as the excavation and soil transplanting method invariably resulted in the severing and removal of some fraction of the highly active fine root biomass. Our inflated % RR estimates were most likely due to the presence of ¹³C-depleted CO₂ from the surrounding native soil. A vapor barrier beneath the transplanted soil minimized contamination by vertical diffusion from the underlying native soil CO₂. The diffusion of bulk CO₂ from the native soil into the pit was not a likely contamination mechanism, as the transplanted prairie soil had a greater pCO₂ concentration (11.8 ± 1.6 mmol·mol⁻¹ (mean ± SE) at a 30 cm depth) than native soil (9.0 ± 1.1 mmol·mol⁻¹). Instead, we believe that our inflated % RR measurements resulted from the lateral diffusion by the individual CO₂ isotopes between adjacent sources of ¹³C-enriched and ¹³C-depleted CO₂.

Lateral diffusion

The two-component mixing model of lateral diffusion (Fig. 3) supported our claim that lateral diffusion was the most likely mechanism causing the similar δ¹³C-CO₂ values in transplanted and native soils. For a soil with a 0.02 cm²·s⁻¹ diffusion coefficient, the lateral diffusion with native CO₂ reduced the δ¹³C value of soil CO₂ by two permil at the furthest extent away from the native soil (Fig. 3). The depletion of δ¹³C was more precipitous closer to the native soil, as soil CO₂ decreased by 5‰ within the first 25 cm of the native-transplanted soil interface. Applying these trends to observed values, δ¹³C-CO₂ at a 30 cm depth was corrected for lateral diffusion, resulting in a corrected % RR of 45% (Table 5). At the surface, this 5‰ correction for lateral diffusion was nearly offset by the –5.9‰ correction for atmospheric air mixing. The correction for lateral diffusion was conservative, as the one-dimensional model did not account for diffusion from other pit faces. Although lateral diffusion confounded our results from this site, the model suggested that an experiment having a larger pit volume and a soil with a lower effective porosity may be less susceptible.
Table 5. Corrections applied to the δ^{13}C values of soil CO$_2$.

<table>
<thead>
<tr>
<th></th>
<th>Raw values</th>
<th>Corrected for diffusive discriminationc</th>
<th>Corrected for atmospheric air mixingd</th>
<th>Corrected for lateral diffusione</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$% e$</td>
<td>$% \text{RR}^b$</td>
<td>$% e$</td>
<td>$% \text{RR}^b$</td>
</tr>
<tr>
<td>Surface CO$_2$ efflux</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transplanted</td>
<td>–19.0</td>
<td>35</td>
<td>–24.9</td>
<td>83</td>
</tr>
<tr>
<td>Native</td>
<td>–20.3</td>
<td></td>
<td>–27</td>
<td></td>
</tr>
<tr>
<td>Subsurface CO$_2$ (at a 30 cm depth)a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transplanted</td>
<td>–21.9</td>
<td>61</td>
<td>–26.3</td>
<td>95</td>
</tr>
<tr>
<td>Native</td>
<td>–22.6</td>
<td></td>
<td>–27</td>
<td></td>
</tr>
<tr>
<td>Endmembers used in % RR calculation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C$_3$ (plant derived)</td>
<td>–27</td>
<td>–27</td>
<td>–27</td>
<td>–27</td>
</tr>
<tr>
<td>C$_4$ (soil derived)</td>
<td>–14</td>
<td>–14</td>
<td>–14</td>
<td>–16</td>
</tr>
</tbody>
</table>

*a*Corrections applied to δ^{13}C-CO$_2$ are cumulative from left to right.

*b*The $–4.4\%$ correction for diffusive discrimination (Cerling 1991) was only applied to subsurface soil CO$_2$ values.

*c*The atmospheric air mixing correction was only applied to surface efflux measurements and was determined by difference from observed and diffusive discrimination corrected values at a 30 cm depth.

*d*The 5% correction for lateral diffusion was determined from the two-component steady-state model and included a correction for the C$_4$ endmember based on Fig. 3 (see text).

Summary

We attempted to quantify the contribution of rhizosphere respiration within a forest ecosystem using stable carbon isotopes by transplanting 13C-enriched soils from a C$_4$-dominated tall-grass prairie into a C$_3$ mixed conifer stand. Rhizosphere respiration measurements were confounded by the high effective porosity that resulted from a relatively coarse soil texture coupled with low soil moisture. The high effective porosity was a critical factor in the susceptibility of this soil to atmospheric air mixing and a contributing factor to the lateral diffusion of atmospheric air beneath the inverted box edges. Although the juxtaposition of these soils was artificial, the homogenization of soil δ^{13}C-CO$_2$ values by the lateral diffusion of 13C- and 12C-CO$_2$ isotopes suggested that soil δ^{13}C-CO$_2$ may not necessarily reflect the carbon signature of local C sources. The dependence of atmospheric air mixing and lateral diffusion on biological and physical processes results in a temporal and spatial heterogeneity that will be difficult to account for. We predicted that the transplanted soil and inverted box techniques can be successful by utilizing a larger transplanted soil pit and by minimizing soil diffusion processes by selecting a site having a greater water content and a finer soil texture.

Acknowledgements

We thank Bob Heald and the Center for Forestry at the University of California, Berkeley, for providing a suitable field site, and Dr. John Blair for helping us obtain the valuable tallgrass prairie soils used in this experiment. We greatly appreciate the comments and suggestions made by anonymous reviewers. This study was supported by a grant from the National Science Foundation. D.W.J.’s contribution was also supported in part by the Agricultural Experiment Station, University of Nevada, Reno.

References

Schleser, G., and Pohling, R. 1980. δ¹³C record in forest soil using...

