Prevention of Population Cycles by Parasite Removal

Peter J. Hudson; Andy P. Dobson; Dave Newborn

Stable URL:

Science is currently published by American Association for the Advancement of Science.

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/aaas.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is an independent not-for-profit organization dedicated to creating and preserving a digital archive of scholarly journals. For more information regarding JSTOR, please contact support@jstor.org.
dynamics of dissolved nutrient patches. We have yet to identify the frequency of occurrence and magnitude spectra of such patches in specific microbial food webs. They undoubtedly represent interesting ecological niches for bacteria, and they will also contribute much to our understanding of the flow of nutrients and energy in aquatic ecosystems if they prove to be major pathways.

References and Notes
7. N. Blackburn, unpublished observations.
9. Samples were taken, immediately before observation, from the vicinity of algal mats in a large seawater aquarium with high through-flow. The microbial community there is thought to be characterized as being rich and diverse. Identical communities have been observed in completely natural habitats. A standard microscope fitted with a dark-field condenser was used for observation with the objective giving a depth of field of ~20 μm. The magnification was increased for some recordings with a magnifying lens. Samples were observed in a chamber made by a 1.5-mm-thick rubber O-ring placed on top of a microscope slide and covered with a cover slip. A fiber optic light source was used for illumination to minimize heat transfer. A standard video camera and VCR were used for recordings.
15. Samples of seaweed were enriched with 0.02% tryptic soy broth and left overnight, after which the culture contained strains of highly motile bacteria. Samples were sandwiched between a slide and cover slip after the addition of cells from a pure culture of Pseudovia lutheri. A ring of bacteria around the air-water interface of the chamber indicated near anoxia inside the chamber.
18. N. Blackburn, T. Fenchel, J. Mitchell, data not shown.
22. Video sequences were digitized to computer memory at 25 frames s⁻¹. The resulting digital film-strips were analyzed frame by frame for trajectories of movement by LabTrack (DiMedia, Kivstgaard, Denmark). Objects moving out of the plane of focus resulted in short tracks and were filtered out of the set of track vectors. Tumblers were detected at points where changes in trajectory angle between two video frames exceeded 1 rad. Ronds were defined as periods between tumbling.
23. The steady-state concentration field C(r) was calculated as

\[C(r) = \frac{E}{4\pi D \sqrt{r}} \]

where oxygen exudation rate E = 0.25 fmol cm⁻² s⁻¹ was estimated from light-saturated photosynthesis of a cell 4 μm in diameter. The diffusion coefficient D = 10⁻⁵ cm² s⁻¹. The inverse square-root dependency on the distance r from the source was introduced instead of inverse proportionality [3] to more closely approximate its shape in the flat chamber.
24. The concentration field C(r) of a spreading patch was calculated as

\[C(r) = \frac{M}{4\pi D \ln(1 + r)} \]

where M is the amount of matter released (1 pmol), and D = 10⁻⁵ cm² s⁻¹. Simulations were based on 100 individuals initially distributed randomly within a radius of 1 mm from the source. Velocity ν = 50 μm s⁻¹, τ = 0.4 s.
25. The mass flow of a solute at concentration C with diffusion coefficient D toward a sphere of radius a is 4πaD.C.
26. We thank the Swedish Foundation for International Cooperation in Research and Higher Education (STINT), the Danish National Research Council (SNF), the Australian Research Council, and Flinders University for support of this study.

12 June 1998; accepted 3 November 1998

Prevention of Population Cycles by Parasite Removal

Peter J. Hudson,* Andy P. Dobson, Dave Newborn

The regular cyclic fluctuations in vertebrate numbers have intrigued scientists for more than 70 years, and yet the cause of such cycles has not been clearly demonstrated. Red grouse populations in Britain exhibit cyclic fluctuations in abundance, with periodic crashes. The hypothesis that these fluctuations are caused by the impact of a nematode parasite on host fecundity was tested by experimentally reducing parasite burdens in grouse. Treatment of the grouse population prevented population crashes, demonstrating that parasites were the cause of the cyclic fluctuations.

Mathematical models have shown that a density-dependent response acting with a time delay can generate population cycles between natural enemies and their prey (1). Indeed, trophic interactions rather than intrinsic mechanisms are now considered by many to be the principal cause of cycles in microtine rodents (2), snowshoe hares (3), and red grouse (4). The definitive test of these hypotheses is to stop population cycles by manipulating the causative mechanism. Here, we report on a long-term, large-scale, replicated field experiment that examined the capacity of parasites to cause cycles. The impact of the parasitic nematode Trichostrongylus tenus on individual red grouse (Lagopus lagopus scoticus) was reduced through the application of an antihelmintic before a cyclic population crash in northern England.

Extensive investigations of hunting records from 175 individually managed grouse populations, coupled with detailed intensive demographic studies, have shown that 77% of red grouse populations exhibit significant cyclic fluctuations with a period between 4 and 8 years (Fig. 1A) (4). Population growth rate is negatively related to the intensity of worm infection in adult grouse (Fig. 1B), and poor breeding production is correlated with worm intensity (Fig. 1C), so that population crashes are associated with high parasite intensities. Analyses of parasite-host models predict that parasitic helmints can cause population cycles when they induce a reduction in host fecundity.
that is large in relation to the impact of the parasite on host survival (3), and experimental studies have demonstrated that poor breeding in female grous e is caused by the nematode *Trichostrongylus tenius* (6). Extensive demographic studies have shown a clear relation between bag records and count data (4), although hunters tend to stop shooting when autum n densities are <30 birds km⁻² (Fig. 1A). Bag records are not influenced by any hunting restrictions, and in this system they provide a reasonable index of abundance and a very good qualitative description of the observed periodic crashes.

Long-term data from six independently managed grouse moors were used to predict cyclic crashes in grouse numbers in 1989 and again in 1993. In 1989, we worked with keepers and caught and orally treated grous e with the anthelmintic Levamisole hydrochloride in four of these six populations. In 1993, this was repeated on two of the populations, providing data from a total of six populations—two that had been treated to stop two population crashes, two that had been treated to stop one population crash, and two untreated control populations. During each treatment year, grous e were caught at night in early spring when most of the birds had formed mating pairs. Birds were dazzled with a strong quartz-halogen lamp while roosting, caught in a net, and treated with Levamisole hydrochloride. Each bird was marked with a reflective tag that could be seen on subsequent catching nights. It was possible for a team of two people to catch and treat more than 100 birds in a single night. Radio tagging and subsequent monitoring showed that tagged and treated birds remained on their territories and had improved breeding. Birds were caught at random from accessible parts of the grouse habitat. Females were caught in preference to males to ensure the greatest impact of parasite removal on breeding production. Catching and treatment continued from when the snow melted to when females began laying eggs. Overall, between 1000 and 3000 grous e were caught and treated from each population. Depending on the size of each grouse population, our estimates showed that we treated between 15 and 50% of the adult breeding population. A sample of treated birds was shot from each population, and the intensities of worm infection were compared with those of untreated birds to confirm that treatment reduced the worm burdens. The numbers of harvested grous e were recorded during the subsequent hunting season.

In each of the six treatments, the application of Levamisole hydrochloride reduced the tendency of the population to exhibit cyclic crashes.

Table 1. Population parameters for *T. tenius* and red grous e. The derivation of the parameter estimates is discussed elsewhere (4–6). NA, not applicable.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Estimated value</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grouse fecundity (year⁻¹)</td>
<td>a</td>
<td>1.8</td>
<td>0–2</td>
</tr>
<tr>
<td>Grouse mortality (year⁻¹)</td>
<td>b</td>
<td>1.05</td>
<td>NA</td>
</tr>
<tr>
<td>Parasite fecundity (year⁻¹)</td>
<td>λ</td>
<td>11</td>
<td>9.2–11.5</td>
</tr>
<tr>
<td>Adult worm mortality (year⁻¹)</td>
<td>μ</td>
<td>1.0</td>
<td>0.8–1.2</td>
</tr>
<tr>
<td>Mortality of free-living stages</td>
<td>γ</td>
<td>6.5–13</td>
<td>NA</td>
</tr>
<tr>
<td>(year⁻¹)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parasite pathogenicity (worm⁻¹ year⁻¹)</td>
<td>α</td>
<td>3 × 10⁻⁴</td>
<td>NA</td>
</tr>
<tr>
<td>Parasite reduction in host fecundity</td>
<td>δ</td>
<td>5 × 10⁻⁴</td>
<td>NA</td>
</tr>
<tr>
<td>(worm⁻¹ year⁻¹)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aggregation of parasites in host</td>
<td>k</td>
<td>1.0</td>
<td>0.5–1.8</td>
</tr>
<tr>
<td>Density-dependent reduction in</td>
<td>Δ</td>
<td>0.004</td>
<td>NA</td>
</tr>
<tr>
<td>grous e fecundity and survival</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Increase in worm mortality in</td>
<td>c</td>
<td>52 (life expectancy, 1 week)</td>
<td>NA</td>
</tr>
<tr>
<td>treated birds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transmission rate (larvae⁻¹ host⁻¹</td>
<td>β</td>
<td>0.11</td>
<td>0.06–0.15</td>
</tr>
<tr>
<td>year⁻¹)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 3. The influence of treatment on the cycling of grous e populations. Changes in the number of grous e are shown in relation to the proportion of grous e treated. No treatment, dashed line; 5%, dotted line; 10%, thick solid line; and 20%, thin solid line.
population crashes (7). Reducing the parasite burdens reduced the variance in the population growth rate and produced an apparent reduction in the decline of the treated populations (Fig. 2). This experiment illustrated that parasitic nematodes were necessary for the cyclic declines in abundance that were observed in grouse populations. In both populations that were treated twice (Fig. 2C) and in one of the populations that was treated once (Fig. 2B), the effect of the treatment was apparent in comparison with the controls, although the results are less clear in the remaining population, which was treated just once. We suspect this was because the keeper treated a relatively low proportion of the grouse population (~15%). Even with these results, the findings were still significant and demonstrate that parasites played a key role in causing population cycles.

To determine the effectiveness of the treatment, we calculated the proportion of the population that should be treated in order to prevent a population crash. We addressed this problem with a modified form of the general macroparasite model (5) that incorporates the experimental procedures of direct oral treatment (8) (Table 1). Individuals in the model were classified as either untreated (with natural levels of infection) or treated (with no parasites). Treatment of a proportion (p) of the population was triggered in the model whenever the growth rate of the parasite population increased (becomes positive). The worms in the treated grouse suffered an increased mortality rate, so their life expectancy was <1 week, whereas the remaining untreated birds (1 − p) continued to release infective stages into the environment, which infected both treated and untreated hosts. Numerical solutions of the model’s dynamics showed that treatment of >20% of the hosts was sufficient to prevent the cyclic crashes in host density (Fig. 3) and provided a good explanation for all the results of the experiment.

The results from this study show that population cycles in red grouse are the result of a single trophic interaction between a parasite and its host. Combined with the modified macroparasite model, these results show that parasites were both sufficient and necessary in causing cycles in these populations. They also show that intrinsic mechanisms do not need to be evoked as a cause of cyclic fluctuations in grouse abundance (9). Previous studies have undertaken detailed experiments at a lower spatial scale. For example, a factorial manipulation of the food and predators of snowshoe hares on 1-km² plots indicated that at least three trophic levels of interaction are involved in producing cycles (3). Nevertheless, to the best of our knowledge, this is the first time that manipulations of a mechanism in a cyclic species have demonstrated the cause of population cycles on a large scale.

Recent decades have brought dramatic increases in the prevalence and severity of allergic asthma. In the United States, 15 million people are currently thought to suffer from the disorder (1). Allergic asthma is characterized by airway hyperresponsiveness (AHR) to a variety of specific and nonspecific stimuli, chronic pulmonary eosinophilia, elevated serum immunoglobulin E (IgE), and excessive airway mucus production (2). The pathophysiology of asthma is thought to be mediated by CD4⁺ T lymphocytes producing type 2 cytokine profile: (i) CD4⁺ T cells are necessary for the induction of allergic asthma in murine models; (ii) CD4⁺ T cells producing type 2 cytokines undergo expansion in these models and in patients with allergic asthma; and (iii) the amount of type 2 cytokines is increased in the airway tissues of asthmatics and animal models (3–5). The circumstantial evidence for the importance of IL-4 and IL-5, which are paradigmatic type 2 cytokines, has been compelling (6–8). However, although an antibody-mediated blockade of IL-4 during allergen sensitization ablates the development of allergic asthma, a similar blockade of IL-4 before or during an antigen challenge inhibits neither allergic in-

References and Notes

7. Variance in the rate of population change (ln N, − ln N₀) was significantly greater in control populations than in populations that were treated once (f = 2.74, P < 0.05) and in populations that were treated twice (f = 36.53, P < 0.001), but there was no difference between control populations (f = 1.07, P > 0.2).
8. The dynamics of the parasitic nematode and the grous were modeled with six coupled differential equations. These describe changes in treated hosts (Hₐ), untreated hosts (H₀), the adult parasite population in these two classes of host (Pₐ and P₀, respectively), the free-living stages of the parasite (eggs and larvae) (W), and the chicks produced by the hosts (C). The parameter values and definitions are given in Table 1.

Interleukin-13: Central Mediator of Allergic Asthma

Marsha Wills-Karp,* Jackie Luyimbazi, Xueying Xu, Brian Schofield, Tamlyn Y. Neben, Christopher L. Karp, Debra D. Donaldson

The worldwide incidence, morbidity, and mortality of allergic asthma are increasing. The pathophysiologic features of allergic asthma are thought to result from the aberrant expansion of CD4⁺ T cells producing the type 2 cytokines interleukin-4 (IL-4) and IL-5, although a necessary role for these cytokines in allergic asthma has not been demonstrated. The type 2 cytokine IL-13, which shares a receptor component and signaling pathways with IL-4, was found to be necessary and sufficient for the expression of allergic asthma. IL-13 induces the pathophysiologic features of asthma in a manner that is independent of immunoglobulin E and eosinophils. Thus, IL-13 is critical to allergen-induced asthma but operates through mechanisms other than those that are classically implicated in allergic responses.

M. Wills-Karp, J. Luyimbazi, X. Xu, B. Schofield, Department of Environmental Health Sciences, Johns Hopkins University School of Hygiene and Public Health, Baltimore, MD 21205, USA; T. Y. Neben and D. D. Donaldson, Immunology Department, Genetics Institute, Cambridge, MA 02140, USA; C. L. Karp, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA, and Department of Molecular Microbiology and Immunology, Johns Hopkins University School of Medicine and Public Health, Baltimore, MD 21205, USA.

To whom correspondence should be addressed. E-mail: mkarp@welchlink.welch.jhu.edu

2258 18 DECEMBER 1998 VOL 282 SCIENCE www.sciencemag.org