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4 CONTENTS

Background

0.1. Project Description. During the fall quarter, 2006, a graduate course
in algebraic number theory is being held at the University of California, Santa Cruz.
For approximately one hour per week, the participants in this course discuss the
first part of Serre’s book “A Course in Arithmetic” in great detail. In addition, the
participants take turns preparing annotations to accompany this book, in order to
aid this discussion. Herein lie the annotations.

0.2. Notation and references. All notation will be the same as Serre’s no-
tation, unless otherwise specified. References to Serre will refer to the chapter,
section, and subsection. For example, referring to I.1.1 of Serre refers to the first
chapter (Finite Fields), the first section (Generalities), and the first subsection (Fi-
nite Fields). When referring to theorems, the chapter, section, and subsection will
also be mentioned so that the theorem can easily be found. For example, Theorem
6 of I.3.3 is Gauss’s theorem of quadratic reciprocity.

We will label chapters, sections, and subsections, in these notes, to precisely
mirror Serre’s divisions.

0.3. Authorship of these notes. Since there are many authors of these
notes, we will write the author’s name at the beginning of each section he or she
has responsibility for writing.



CHAPTER 1

Finite Fields

1. Generalities

Notes by: M.H. Weissman
In this section, Serre proves the basic structural results for finite fields. This

includes their construction, complete classification, and essentially their Galois the-
ory. It also includes the very fundamental theorem, that their multiplicative groups
are cyclic - this result is not obvious at all, and can be thought of as a huge gener-
alization and strengthening of Fermat’s little theorem.

1.1. Finite Fields. A ring will always mean a commutative ring with unit.
Ring homomorphisms are always assumed to take the unit element to the unit
element.

Remarks on: The characteristic subring

For any ring R, there is a unique ring homomorphism φ from Z to R. The
image of φ is a subring of R, and a quotient ring of Z. Thus R contains a subring
isomorphic to Z/NZ for some integer N ≥ 0.

If R is an integral domain, then the image φ(Z) is an integral domain. Hence
N = 0 or N = p for some positive prime integer p, since the principal ideals < 0 >
and < p > are the only prime ideals of Z. In particular, if R is a field, then φ(Z)
is isomorphic to Z or Fp = Z/pZ. Moreover, if R is a field, and φ(Z) is isomorphic
to Z, then R contains Q.

Remarks on: The Lemma

Suppose that K is a field, of characteristic p (a prime). Let σ(x) = xp be
the resulting isomorphism of K onto its subfield Kp. There are examples when
Kp 6= K. For example, consider the field K = Fp(X) = Quot(Fp[X]). Elements
of K are “rational functions” (i.e. quotients of polynomials) in a variable X with
coefficients in Fp. Raising such a quotient to the p-power raises the numerator and
denominator to the p-power. Since σ is a ring homomorphism, a polynomial raised
to the p-power becomes a polynomial in the variable Xp. Hence, one can see that
Kp = Fp(Xp) (rational functions in the variable Xp).

It should be remarked that the binomial formula (for expanding (a + b)n) is
valid in any (commutative) ring – the typical inductive proof uses only the ring
axioms.

Every homomorphism of fields is injective (the zero-ring is not considered a
field by us, though perhaps Deitmar and others would disagree!). This explains
why “σ is clearly injective”.

Remarks on: Theorem 1
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Supposing that K is a finite field, it contains Fp for some prime number p. Thus
K is naturally an Fp-vector space. It is finite-dimensional, since its cardinality is
pf , where f denotes its dimension as an Fp-vector space. This also implies that the
additive structure of K (as an abelian group) is (Z/pZ)f . Of course, this is not the
ring structure of K, unless f = 1.

When Ω is an algebraically closed field of characteristic p, the automorphism
σ is often called “Frobenius”. In general, if α is an automorphism of a field F , the
elements of F fixed by α form a subfield. Applied to Ω, one arrives at subfields Fq

containing Fp, fixed by σf .
It’s a general fact from field theory, that if P is a polynomial in F [X], in an

algebraically closed field F , then r is a repeated root of P (when P is factored
(uniquely) into linear factors, X − r occurs at least twice) if and only if F (r) = 0
and F ′(r) = 0. Thus the polynomial Xq −X has no repeated roots, as Serre says,
in Ω. The basic assertions of Theorem 1 are:

• The subfield Fq of Ω is precisely the set of elements of Ω which are fixed
by the automorphism σf (when q = pf ).

• The subfield Fq is also equal to the set of roots of the polynomial Xq −X
in Ω.

• If F is a subfield of Ω with q elements, then F = Fq.

1.2. The multiplicative group of a finite field. Remarks on: Theorem 2

Serre’s proof that F∗q is cyclic reduces to a counting argument. His proof can
be somewhat simplified, it seems, if one is willing to use the structure theorem for
finite abelian groups. Serre is certainly aware of this structure theorem - perhaps
he resists using it because the proof of the structure theorem itself is quite involved,
and he is trying to assume minimal prerequisites.

We provide a proof of Lemma 2, in the abelian case:

Lemma 1.1. Let H be a finite abelian group of order n. Suppose that, for all
divisors d of n, the set of x ∈ H such that xd = 1 has at most d elements. Then H
is cyclic.

Proof. Since H is a finite abelian group, there is an isomorphism of abelian
groups:

H ∼= Z
e1Z

× · · · × Z
ekZ

.

Moreover, we can assume that if k > 1, then GCD(ei, ej) > 1 for all i 6= j. In other
words, we make k as small as possible in the decomposition. Thus, if k > 1, there
exists an integer d dividing both e1 and e2. Let E1 and E2 denote the subgroups of
Z/e1Z and Z/e2Z, consisting of elements of order dividing d. Then the cardinality
of E1 is at least d, and the cardinality of E2 is at least d. Finally, we see that H
contains a subgroup E isomorphic to E1 × E2, all of whose elements have order
dividing d. There are at least d2 elements in this subgroup E - a contradiction.

Hence k = 1, and H must be cyclic. ¤
Examples on: Theorem 2

Since the multiplicative group of a finite field is cyclic, one may immediately deduce
facts about perfect powers. If q is odd, then q−1 is even. Hence there are (q−1)/2
perfect squares in F×q , when q is odd. Moreover, multiplying two non-squares always
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yields a square. When q is even, every element of Fq is a perfect square (squaring
is an automorphism of the field!).

Similarly, when q − 1 is divisible by 3, there are (q − 1)/3 perfect cubes in F×q .
When q − 1 is not divisible by 3, every element of Fq is a perfect cube!

Most generally, when q − 1 is relatively prime to k (k a positive integer), for
every element x of Fq, there exists a unique element y ∈ Fq, such that yk = x.

2. Equations over a finite field

Notes by: M.H. Weissman
In this section, Serre applies some computations over a finite field to prob-

lems involving counting solutions to polynomial equations. This culminates in the
Chevalley-Warning theorem, which has applications to Diophantine equations.

2.1. Power sums. Remarks on: The Lemma

The proof of this Lemma may seem a bit ad-hoc. It relies on the following
three properties of functions from K to K (when K is a finite field):

• ∑

x∈K

1 = 0.

• ∑

x∈K×
1 = −1.

• ∑

x∈K

f(xy) =
∑

x∈K

f(x),

when y ∈ K×, and f : K → K is any function.

2.2. Chevalley theorem. Remarks on: Theorem 3

The proof of the Chevalley-Warning theorem follows the general plan for study-
ing the vanishing locus V of a system of polynomials fα in n variables over a finite
field K.

• Remarkably, it is possible to “cook up” a single polynomial P in n vari-
ables over K, such that P is the characteristic function of V (P (~v) = 1 if
~v ∈ V , and P (~v) = 0 if ~v 6∈ V ).

• The cardinality of V , mod p, is equal to the summation of P over the
domain Kn. This reduces the counting problem to a fact about power
sums.

• By construction, deg(P ) < n(q − 1). This means that for each monomial
M in P , there exists a variable Xi such that the degree of Xi in M is less
than q − 1. Thus the power sum for that monomial vanishes (mod p, of
course).

The Chevalley theorem is an extremely useful way to prove that a system of
polynomial equations over a finite field has a nontrivial solution. The general idea
is:

• Prove that the system of polynomial equations has at least one solution
(usually a “trivial solution”).
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• Prove that the the total number N of solutions to the system is divisible
by p, a prime number.

• Since N ≥ 1, and N ≡ 0 mod p, we must have N ≥ p. Thus there are at
least p− 1 nontrivial solutions.

Examples on: Theorem 3

The requirements of the Chevalley theorem are that the number of variables
is large compared to the degree of the equations. The Chevalley theorem is quite
easy to use when one is working with a homogeneous equation (so that a trivial
solution exists). We focus on some illustrative examples here.

Suppose first that we have a single polynomial f ∈ K[X1, . . . , Xn]. Define the
vanishing locus:

V = {~x ∈ Kn such that f(~x) = 0}.
If n > deg(f), then Card(V ) ≡ 0 mod p, by the Chevalley theorem.

The Chevalley theorem applies if f is quadratic in at least 3 variables, cubic
in at least 4 variables, quartic in at least 5 variables, etc... If f(0, . . . , 0) = 0 (for
example, if f is homogeneous, or more generally, if f does not have a constant
term), then the Chevalley theorem implies that Card(V ) > 1.

There is an important way to convert an inhomogeneous equation into a homo-
geneous equation, to apply Chevalley’s theorem. Consider the following example:
let f(X, Y ) = X2 + 2Y 2 + Y + 1. We might ask if there exist x, y ∈ K such that
f(x, y) = 0. Unfortunately, Chevalley’s theorem does not apply, and even if it did,
we might not be able to find a “trivial solution” to begin with.

The trick is to homogenize the polynomial f by putting in a new variable Z:

F (X, Y, Z) = X2 + 2Y 2 + Y Z + Z2.

Here, we multiply each term by a suitable power of Z, so that each resulting term
has degree 2.

Now, we have an quadratic equation in 3 variables, with an obvious solution
(0, 0, 0). Hence the number of solutions to the equation F (X, Y, Z) = 0 is divisible
by p . There are two types of solutions: those with Z = 0, and those with Z 6= 0.
When Z = 0, F (X, Y, Z) = 0 if and only if X2 + 2Y 2 = 0. If 2 = u2 in K, and
p 6= 2, then X = ±uY (if p 6= 2). Thus there are 2p − 1 such solutions. Hence
there must be one at least one solution to F (X,Y, Z) = 0, when Z 6= 0. Dividing
through by Z yields: if 2 is a square in K, and p 6= 2, then there exists a solution
to f(X,Y ) = 0 in K.

3. Quadratic reciprocity law

In this section, Serre gives a proof of quadratic reciprocity. Although conjec-
tured before, the first proof of this theorem is due to Gauss (around 1799). During
his lifetime, Gauss gave eight proofs of quadratic reciprocity.

The proof of Serre owes a great deal to proofs of Gauss, though it is probably
slicker in places.

3.1. Squares in Fq. Remarks on: Theorem 4

The fact that all elements of Fq are squares when q = 2f makes the study of
squares in Fq irrelevant. From a more advanced standpoint, this fact is suggestive.
It suggests the question: what are the quadratic extensions of Fq? In fact, every
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quadratic extension of a field of characteristic 2 is obtained by adjoining a root of
X2 +X +a, for some element a of the field. Therefore, one should ask the question:
when does X2 + X + a have a root in Fq?

Part (b) of Theorem 4 suggests the definition of the Legendre symbol. The fact
that squares form a subgroup of index two relies essentially on the fact that F×q is
a cyclic group of even order. Moreover, every subgroup of a cyclic group is cyclic.

Let us prove part (b), just with basic group theory. If g is a generator of the
cyclic group F×q , then g2d = 1 for some positive integer d, which we can choose
minimally. In fact, the minimal d is (q − 1)/2 It follows that the squares F×2

q are
the elements g2i for i = 1, . . . , d. If x = g2i, then x(q−1)/2 = g2di = 1.

Conversely, if xd = 1, and x = gj , then gjd = 1, so jd must be a multiple of
2d, so j is even. Thus x is a square.

Finally, if x = gj for any j, we see that xd = gjd and x2d = g2jd = 1. Thus xd

is a square root of 1, and hence equals ±1.

3.2. Legendre symbol (elementary case). The crucial fact to remember
about the Legendre symbol is that it has a formulaic definition as well as an inter-
pretation in terms of squares. Suppose that p is prime, and x 6≡ 0 mod p. Then(

x
p

)
is equal to 1 or −1, depending on whether x is a square or not in Fp. When

x ≡ 0 mod p, we define
(

x
p

)
= 0. Uniformly speaking,

(
x
p

)
is equal to the number

of square roots of x in Fp, decreased by 1.

The formulaic definition of
(

x
p

)
is that

(
x
p

)
= x(p−1)/2 (in Fp).

The multiplicativity of the Legendre symbol follows easily from the formu-
laic definition; and without too much difficulty from its interpretation in terms of
squares, given the cyclicity of F×q .

Remarks on: Theorem 5

1 is always a square – nuff said.
The fact that

(
−1
p

)
= (−1)ε(p) is based on the fact that ε(p) ≡ (p−1)/2 mod 2.

Thus the fact follows from the formulaic definition of the Legendre symbol. Again,
one could approach this from the interpretation in terms of squares. −1 is a square
in Fp, if and only if there is a fourth root of unity in Fp. This would require that
p− 1 is divisible by 4, by the cyclicity of F×p .

The proof that
(

2
p

)
= (−1)ω(p) is quite slick here. There are, to be certain,

other proofs out there, one using Wilson’s theorem that is cute.
Consider a primitive eighth root of unity α in Ω, as Serre suggests. This means

that α8 = 1, and if αd = 1 for 1 < d, then d is divisible by 8. However, even a
primitive eighth root of unity has degree at most 4 over Fq, since α4 = −1. Here,
we note that α4 must be a square root of unity, and cannot equal 1 since α is
primitive.

If y = α + α−1, then y2 = α2 + α−2 + 2; since α4 = −1, we have α2 = −1/α2,
so α−2 = −α2. Thus y2 = 2 as Serre says.

If p ≡ ±1 mod 8, then αp = α±1. This is why yp ≡ y if p ≡ ±1 mod 8. Thus(
2
p

)
=

(
y2

p

)
= y(p−1) = 1 in this case. Note that computations are taking place in

the algebraic closure Ω, though the results lie in Fp!
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When p ≡ ±5 mod 8, we have yp = α5 + α−5. We have α5 = α4α = −α, and
α−5 = α−4α−1 = −α−1. Hence yp = −y, and the proof follows.

3.3. Quadratic reciprocity law. Quadratic reciprocity, in addition to being
a beautiful theorem, is also a very practical one. The formula, when p and ` are
distinct odd primes, is: (p

`

)
=

(
`

p

)
(−1)ε(p)ε(`).

To remember this, one can simply remember the following:
(p

`

)
=

(
`

p

)
, unless p and ` are 3 mod 4.

Of course, if both are 3 mod 4, then one switches the sign. It is a theorem worth
memorizing!

Many proofs of quadratic reciprocity use “Gauss sums”. Serre works with
Gauss sums in the algebraic closure of Fp, which slickens some proofs.

Remarks on: Lemma 1

Here y =
∑

x∈F`

(
x
`

)
wx, where w is a primitive l-th root of unity in an algebraic

closure of Fp. This is very confusing, because x is in F` (a number mod `), and w
is in F̄p. Thus we have an exponent and base that live in different worlds! It works
precisely because of the choice of w as such a root of unity. More confusing still, is
that

(
x
`

)
, though it equals 0, 1, or −1, it is being interpreted as an element of Fp

in the formula for y.
The result that y2 = (−1)ε(`)` is somewhat deep; a similar fact is true if one

works in C, but the sign can be difficult to obtain. The computations are essentially
“calculus tricks” transferred to this finite situation.

In the first step, summing over x, z ∈ F` becomes summing over t, u ∈ F` with
the change of variables x + z = u, x = t.

The second step, computing
(

t(u−t)
`

)
when t 6= 0 simply uses the property that

the Legendre symbol is multiplicative, and the formula for
(−1

`

)
. Of course, this

Legendre symbol equals zero when t = 0.
The first and second steps together yield the new expression for (−1)ε(`)y2.

The rest is a direct computation and counting of squares and nonsquares.
Note that nowhere is the characteristic p nature of the Gauss sum being used!

Only the fact that w is a primitive root of unity.
Remarks on: Lemma 2

Here the characteristic p nature of Serre’s Gauss sum is exploited. There is a
typo in the first equation of the proof; it should read:

yp =
∑

x∈F`

(x

`

)
wxp =

∑

z∈F`

(
zp−1

`

)
wz =

(
p−1

`

)
y =

(p

`

)
y;

Note that the first step is a simple change of variables, letting x = zp−1 (in F`!).
The second step uses only the multiplicativity of the Legendre symbol. The third
step uses the fact that p is a square iff p−1 is a square (mod `).



CHAPTER 2

p-Adic Fields

1. The ring Zp and the field Qp

Notes by: J. Fassler
In this section, Serre defines the p-adic integers Zp and proves several of their

properties. These include a charicterization of the units in Zp and a description of
their topology. The p-adic numbers Qp are introduced as the field of fractions of
Zp.

1.1. Definitions. As usual p denotes a prime number. We let An = Z/pnZ
and φn : An → An−1 be the canonical homomorphism.

Remarks on: Definition 1

We use the following to define the p-adic integers:

Definition 1.1. A projective system is a sequence of objects {Cn} and maps
{fn} such that fn : Cn → Cn−1 for n ≥ 1. The projective limit (or inverse limit)
of the system is defined to be

lim←−Cn = {(cn) ∈
∏

n≥1

Cn|cn−1 = fn(cn) for all n}

We then define Zp = lim←−An.
We can equivalently define the p-adic integers as infinite sums of the form∑∞

k=0 akpk where ak ∈ {0, 1, . . . , p− 1}. Thus p-adic integers can be represented as
infinite base p numbers. For example, . . . 44444. = · · ·+4·54+4·53+4·52+4·51+4·50

is −1 in Z5. With this representation addition and multiplication is performed in
the same way we add and multiply decimal numbers.

Examples on: Arithmetic in Zp

Addition:

. . . 333333.
+ . . . 111112.

. . . 000000.

11
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Multiplication

. . . 444444.
× . . . 111111.

. . . 444444

. . . 444440

. . . 444400

+
...
. . . 333334.

Remarks on: The topology of Zp

The An are finite and thus with the discrete topology are compact. By Tychonoff’s
theorem the product ring is compact and since Zp = f−1({0}) where f : x ∈ Zp →
y ∈ Zp is given by (yn) = (φn+1(xn+1)− xn) thus Zp is closed in the product ring
and compact.

1.2. Properties of Zp. Remarks on: Proposition 1

For the proof that ker(εn) ⊂ im(pn), we let x ∈ ker(εn) (note this is a typo
in Serre), since xm ≡ xn (mod pn) we have that xm ≡ 0 (mod pn) for all m ≥
n. This implies that in Am, xm ≡ pnym−n (mod pm) where ym−n ∈ Am−n is
well defined, since pnZ/pmZ ∼= Am−n. Since xm = pnym−n and xm ≡ xm−1

(mod pm−1) we have pnym−n ≡ pnym−n−1 (mod pm−1) which implies ym−n ≡
ym−n−1 (mod pm−n−1) and thus y = (ym) ∈ Zp.

That εn is surjective is easy since for any xn ∈ An we can form the sequence
(. . . , xn, xn, . . . , xn) ∈ Zp.

Remarks on: Proposition 2
For part (a), if x = (xn) ∈ Zp is not divisible by p then, in particular, x1 6= 0
(mod p) thus there exists α ∈ Z such that αx1 ≡ 1 (mod p). Let z = 1 − αx, we
can compute the inverse of x as follows:

αx = 1− z

(1− z)(1 + z + z2 + · · · ) = 1
Thus x−1 = α(1 + z + z2 + · · · )

We note that since z ends in at least one zero, zk end in at least k zeros. Therefore,
even though our expression for the inverse involves an infinite sum, it is well defined
since there are only finitely many non-zero terms in any given position.

For part (b), the uniqueness follows from the fact that pn is an injective map,
which was shown in proposition 1.

We remark that, by part (a), Z×p = Zp�(p) which implies that Zp is a local
ring with maximal ideal (p).

Remarks on: The p-adic valuation
Let x = pnu and y = pmv where u, v ∈ Zp and suppose n ≥ m then νp(x + y) =
νp(pnu + pmv) = νp(pm(pn−mu + v) ≥ m = inf(νp(x), νp(y)). With the metric
defined by d(x, y) = p−νp(x−y) the above inequality implies that the metric satisfies
the ultrametric inequality d(x, z) ≤ sup(d(x, y), d(x, z)).
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Remarks on: Proposition 3
Recall from point set topology that an open set in the product topology is a product
of open sets such that only finitely many are not the whole space, thus an open
neighborhood of zero in the product topology is of the form · · ·×An+2×An+1×0×
· · ·×0. Hence, the ideals pnZp form a basis of neighborhoods of 0. The addition and
multiplication operations on the p-adics are continuous with this topology, which
makes Zp a topological ring.

1.3. The Field Qp. In our base-p notation the p-adic numbers are of the form∑∞
n=k anpn where an ∈ {0, 1, . . . , p− 1} and k ∈ Z.

Remarks on: Proposition 4
As before pnZp form open neighborhoods of zero and are compact since Zp is.
Furthermore, we have the inclusions · · · ⊂ pnZp ⊂ pn−1Zp ⊂ · · · ⊂ p0Zp ⊂ p−1Zp ⊂
· · · , thus Zp is an open subset of Qp. Finally, any element in Qp is of the form
pnu for n ∈ Z and u ∈ Z×p thus since Z is dense in Zp we have a sequence yn ∈ Z
converging to u and thus pnyn ∈ Q converges to x.

2. p-adic equations

2.1. Solutions. In this section, Serre discusses when polynomial equations
over the p-adic numbers have solutions.

Remarks on: Lemma
We have the following picture in this proof:

. . . // D4
//

!!

D3
//

""

D2
//

""

D1

D3,4

""

?Â

OO

D2,3

""

?Â

OO

D1,2

?Â

OO

D2,4

""

?Â

OO

D1,3

?Â

OO

D1,4

?Â

OO

...
...

...
...

. . . E4
// E3

// E2
// E1

Examples on: Proposition 5
We can use this proposition to prove that a polynomial has a solution in Zp by
proving it has a solution in each An. For example, we find

√
2 in Z7 by finding

the roots of f(x) = x2 − 2 in Z/7nZ for all n. We proceed by induction on n.
Clearly 32 ≡ 2 (mod 7); we assume that x2

n ≡ 2 (mod 7n) with xn ∈ An and find
an element xn+1 ∈ An+1 satisfying the equation. Clearly, if xn+1 ≡ xn (mod pn)
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then xn+1 = xn + 7nh for some h ∈ A1.

(xn + 7nh)2 ≡ 2 (mod 7n+1)
x2

n + 2xnh(7n) ≡ 2 (mod 7n+1)
2xnh(7n) ≡ −(x2

n − 2) (mod 7n+1)
2xnh(7n) ≡ k(7n) (mod 7n+1) for some k in An

thus 2xnh ≡ k (mod 7)

Since two and xn are invertible in Z/7Z, we can find h and thus xn+1. Finally,√
2 = (xn) in Zp.

2.2. Amerlioration of approximate solutions. Notes by: M. Weiss-
man

Propositions 5 and 6 imply that in order to find a solution in Zp to an equation
(or system of equations) with integer coefficients, it suffices to find solutions in
Z/pnZ for all n. It is (surprisingly) not necessary to find a compatible system of
solutions, i.e., solutions for all n which form a compatible system with respect to
the projection maps.

In this section, Serre discusses the “amelioration” process. The classic SAT
vocabulary word “ameliorate” means “to make a situation better or more toler-
able”. When Serre speaks of ameliorating approximate solutions, he is thinking
geometrically. Finding a solution to an equation mod pn is the same as finding a
value which is within radius p−n of a solution, in the p-adic metric. When n is
large, this could be thought of as an approximate solution. If one can successively
increase n, and find better and better approximations, to any degree of precision,
then a genuine solution exists.

Thus the amelioration process, when it works (as dictated by the Lemma),
yields a genuine solution (as in Theorem 1 and its subsequent corollaries).

Serre remarks that the amelioration process is a p-adic version of Newton’s
method. In Newton’s method, one begins with a polynomial f ∈ R[X], and a guess
x0, which may be close to a root. It is a recursive process, according to the rule:

xn+1 = xn − f(xn)
f ′(xn)

.

Of course, this recursion fails, if f ′(xn) = 0; in general, the success of the method
depends on f ′(xn) being significantly larger than f(xn); obviously, this makes the
change from xn to xn+1 gradual. The same principles apply p-adically.

Remarks on: Lemma

Suppose that f ∈ Zp[X], with derivative f ′. The Lemma states that if |f(x)| <
p−n (n ≥ 1), and |f ′(x)| > p−n/2, then there exists y ∈ Zp such that |f(y)| < p−n−1

(y is closer to being a root), and |f ′(y)| = |f ′(x)|. In addition, one finds such a y
with |y − x| < pk−n where k = vp(f ′(x)) = vp(f ′(y)) < n.

Note that the conclusion that |f ′(y)| = |f ′(x)| implies that:

|f ′(y)| > p−n/2 > p(−n−1)/2.

Hence, replacing x by y, one may apply the Lemma repeatedly to get a sequence
(xi)inZp with |f(xi)| < p−n−i for all i ≥ 0.
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The Lemma is most often applied in situations when |f ′(x)| = 1. In this
situation, one has Corollary 1 and 2. For simplicity, we go through the proof of
Lemma 1, when |f ′(x)| = 1.

In this case, we are given |f(x)| < p−n and |f ′(x)| = 1, and we are looking for
y such that y = x + pnz, and |f(y)| < p−n−1, and |f ′(y)| = 1. Plugging in, we get:

f(y) = f(x) + f ′(x)pnz + f ′′(x)p2nz2 + · · · .

This is simply the finite Taylor expansion of a polynomial, which works over any
ring. Noting that only f(x) and f ′(x)pnz matter for our desired level of approxi-
mation, we are looking for z such that:

|f(x) + f ′(x)pnz| < p−n−1.

In other words, we would like:

f(x) + f ′(x)pnz ≡ 0 mod pn+1.

Since f ′(x) has absolute value 1, it is invertible in Zp. Moreover, f(x) = pnq, for
some q ∈ Zp. Thus we can satisfy the above congruence by setting:

z ≡ −q(f ′(x))−1 mod p.

This yields a better approximation:

y = x− f(x)f ′(x)−1,

for any choice of integer f ′(x)−1 which behaves as a reciprocal mod p. Notice the
formal similarity with the real Newton’s method. Here of course, we are only using
a modular inverse.

Finally, note that f ′(y) = f ′(x) + f ′′(x)pnz + · · · . Since f ′(x) has absolute
value 1, and pn has absolute value p−n, and higher terms are even smaller, the
ultrametric inequality implies that |f ′(y)| = 1. Thus the Lemma is proven in this
simple case.

Examples on: Lemma

Suppose that p 6= 2, and t ∈ Z. Then t has a square root in Zp if and only if t
has a square root in Fp and t is not divisible by p. For if x̄ is a square root of t, mod
p, then x̄ yields an approximate solution x ∈ Zp. The equation f(X) = X2 − t has
derivative f ′(X) = 2X. As long as 2 6= 0, and t 6= 0, we see that f ′(x̄) is nonzero in
Fp. Hence |f ′(x)| = 1. The Lemma applies, and we may successively approximate
better solutions, yielding a solution in Zp.

However, if p = 2, and t ∈ Z, and t is odd, then t has a square root in Z2

if and only if t has a square root in Z/8Z! Indeed, if t has a square root x̄ in
Z/8Z, then x̄ yields an approximate solution x ∈ Z2 with |f(x)| < 1/8 = 2−3. We
have f ′(x) = 2x, and since x is odd, |f ′(x)| > 1/2 > 2−3/2. The inequality in the
Lemma applies, and we may “ameliorate” our approximate root to get a genuine
square root in Z2.

3. The multiplicative group of Qp

Serre considers the structure of the abelian group Q×p (nonzero elements of Qp

under multiplication). Serre’s approach is completely algebraic, but it is possible
and useful to consider a more analytic approach. We describe this analytic approach
here.
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3.1. The filtration of the group of units. Serre defines U to be the group
of p-adic units: U = Z×p . Note that Zp is a local ring; the units are all elements of
Zp which are not multiples of p. For every n ≥ 1, he puts:

Un = 1 + pnZp.

In other words,
Un = {x ∈ Zp such that |x− 1| ≤ p−n}.

It is closed under multiplication, by direct computation. It is also closed under
inverses, as can be seen from direct computation with a bit more trouble.

While Serre analyzes the structure of Un algebraically, we work analytically
instead. Then we claim the following:

Proposition 3.1. Define the formal power series:

exp(X) = 1 + X + X2/2! + X3/3! + · · · ∈ Qp[[X]].

If p 6= 2, then, for all x ∈ pZp, the series exp(x) converges to an element of U1. If
p = 2, then for all x ∈ 4Z2, the series exp(x) converges to an element of U2.

Proof. The proposition follows if |xn/n!| → 0, under the given conditions.
When x ∈ pZp, we see that |xn| < p−n. Moreover, counting multiples of p, p2, p3,
et cetera, in n!, yields:

vp(n!) < n/p + n/p2 + n/p3 + · · · ≤ n

(
1

p− 1

)
.

Hence we compute:
|xn/n!| < pn(2−p)/(p−1) → 0,

as n → ∞ if p > 2. This yields convergence. Every partial sum is in U1, so the
limit is in U1, since U1 is compact.

When p = 2, and x ∈ 4Z2, we have:

|xn/n!| < 2n(3−2p)/(p−1) → 0.

Again, convergence is guaranteed. Every partial sum is in U2, so the limit is in U2,
since U2 is compact. ¤

Proposition 3.2. Define the formal power series:

log(X) = (X − 1)− (X − 1)2/2 + (X − 1)3/3− (X − 1)4/4 · · · ∈ Qp[[X − 1]].

If p 6= 2, then for all x ∈ U1, the series log(x) converges to an element of pZp. If
p = 2, then for all x ∈ U2, the series log(x) converges to an element of 4Z2.

Proof. When p 6= 2, and x ∈ U1, we have x− 1 ∈ pZp. It follows that:

|(x− 1)n/n| ≤ np−n → 0.

It is also true that every term is in pZp in this case. Hence the sum converges to
an element of pZp. The case p = 2 is similar; ¤

One can check, using partial sums and continuity, the following facts about exp
and log in this setting:

• exp is a homomorphism from pZp (or 4Z2), under addition, to U1 (or U2)
under multiplication.

• log is a homomorphism from U1 (or U2) to pZp (or 4Z2).
• log ◦ exp = Id and exp ◦ log = Id, on the appropriate domains.
• Both log and exp are continuous functions.
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These yield the isomorphisms discussed by Serre:

Theorem 3.3. The group U1 is topologically isomorphic to pZp, when p 6= 2.
The group U2 is topologically isomorphic to 4Z2, when p = 2.

3.2. Structure of the group U1. In the Corollary of Serre, he notes that the
field Qp contains the (p−1)th roots of unity (when p 6= 2 to make this meaningful).
This can be seen by “amelioration” as follows: the polynomial f(X) = Xp−1 − 1
has p−1 distinct roots in Fp. Since these roots are not repeated, they are not roots
of the derivative. Hence every root may be lifted to a distinct root in Zp. Thus we
get a map: ω : F×p ↪→ Z×p . Note that only the root 1 ∈ F×p maps to an element of
U1. It follows that:

• ω(F×p ) ∩ U1 = 1.
• ω(F×p ) · U1 = Z×p . Indeed, every element of Z×p can be multiplied by ω of

the inverse of its units digit, to arrive at an element of U1.
Hence, there is a group isomorphism:

Z×p ∼= F×p × U1
∼= F×p × pZp

∼= F×p × Zp.

Here, the last isomorphism comes from the group isomorphism Zp
∼= pZp via mul-

tiplication by p.
A similar argument yields an isomorphism:

Z×2 ∼= {±1} × U2
∼= {±1} × 4Z2

∼= {±1} × Z2.

Finally, every element of Q×p can be uniquely expressed as pnu, for u ∈ U = Z×p .
Theorem 2 of Serre follows immediately:

Theorem 3.4. If p 6= 2, then Q×p ∼= Z × F×p × Zp. If p = 2, then Q×2 ∼=
Z× {±1} × Z2.

3.3. Squares in Q×p . Knowing the structure of the groups Q×p , and having
specific isomorphisms, allows us to identify the squares. We begin, as Serre does
in Theorem 3, with the easier case when p 6= 2. In this case, we can identify Q×2

p

with the group
2Z× F×2

p × 2Zp.

Note that 2Zp = Zp, since 2 is invertible in Zp (since p 6= 2). Thus, the squares are
identified with 2Z×F×2

p ×Zp. Thus the squares inQ×p have the form p2k·ω(s)·exp(z),
where k ∈ Z, and s ∈ F×2

p , and z ∈ pZp is arbitary.
Alternatively, since exp(pZp) = 1 + pZp, we can characterize the squares as

follows:

Proposition 3.5. An element x of Q×p is a square if val(x) is even, and the
final nonzero digit of x is a quadratic residue, mod p.

In particular, we see a Corollary of Serre:

Q×p /Q×2
p
∼= Z/2Z× Z/2Z.

In other words, there are two ways for an element of Q×p to fail to be a square – its
valuation could be odd, or it could have a nonsquare last digit (or both!)

Knowing the structure of the group Q×2 allows us to understand the squares
here as well. The squares correspond to elements of the subgroup:

2Z× {1} × 2Z2 ⊂ Z× {±1} × Z2.
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In particular, the squares correspond to all elements of the form 22k · exp(z), where
z ∈ 8Z2. Since exp(8Z2) = U3 = 1+8Z2, we can characterize the squares as follows:

Proposition 3.6. An element x of Q×2 is a square if val(x) is even, and the
final three digits of x are 001.

This is another way of phrasing Theorem 4 of Serre.
As a Corollary, we get:

Q×2 /Q×2
2
∼= Z/2Z× Z/2Z× Z/2Z.

In other words, there are three ways for an element of Q×2 to fail to be a square
– its valuation could be odd, its second-to-last digit could be 1, or its third-to-last
digit could be 1.



CHAPTER 3

Hilbert Symbol

1. Local Properties

This section describes the Hilbert symbol, on the fields R or Qp when p is a
prime number. We begin by describing “symbols” in more generality.

Suppose that k is a field, and k× is the abelian group (Z-module) of invertible
elements in k. Then we may consider the group:

k× ⊗Z k×.

It is quite confusing to work in this group, since composition is denoted by multi-
plication in k×, but usually by addition in Z-modules. We give a sample of some
identities in k× ⊗Z k×:

• x2 ⊗ y = x⊗ y2.
• x−1 ⊗ y = −(x⊗ y).
• x1 ⊗ y + x2 ⊗ y = (x1x2)⊗ y.

Within the group k×⊗Zk×, we consider the subgroup generated by all elements
u⊗ (1− u), where u 6= 0, 1. The quotient is called K2(k):

K2(k) =
k× ⊗Z k×

〈u⊗ (1− u)〉u6=0,1
.

A degree d symbol on k is a homomorphism σ : K2(k) → Z/dZ. In particular,
we think of a quadratic symbol as a homomorphism from K2(k) to Z/2Z, or equiv-
alently to {1,−1}. Since a symbol is determined by its values on simple tensors,
we are really interested in:

(a, b)σ = σ(a⊗ b),

for a, b ∈ k×. Any quadratic symbol satisfies the following basic properties:

• (a, b2) = 1 and (a2, b) = 1, for all a, b ∈ k×.
• (a, 1− a) = 1 for all a ∈ k×.
• (ab, c) = (a, c)(b, c) for all a, b, c ∈ k×.
• (a, bc) = (a, b)(a, c) for all a, b, c ∈ k×.

Conversely, any function (·, ·) from k× × k× to ±1, satisfying the above four prop-
erties (actually, the last three suffice), arises from a unique quadratic symbol.

In particular, note that any quadratic symbol depends only on the cosets of
k×/k×2. Thus, the symbol can be viewed as a function:

(·, ·) : k×/k×2 × k×/k×2 → {±1}.
For any field k, the abelian group k×/k×2 can be viewed as an F2-vector space, since
it is two-torsion. We call this vector space Sk. The abelian group {±1}, can also be

19
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viewed as the additive group of F2. The “bilinearity” relations (ab, c) = (a, c)(b, c)
and (a, bc) = (a, b)(a, c) show that a quadratic symbol yields a bilinear form:

〈·, ·〉 : Sk ⊗F2 Sk → F2.

This captures almost all of the properties of the symbol - except the “strange”
property that (a, 1 − a) = 1. The strange property somehow sees the interaction
between addition and multiplication in the field k.

1.1. Definition and first properties. The Hilbert symbol for k = Qp or R
is given by Serre as follows:

(a, b) = 1, if z2 − ax2 − by2 = 0 has a solution (x, y, z) 6= (0, 0, 0) ∈ k3,

and (a, b) = −1 otherwise. We only consider (a, b) when a, b ∈ k×. In fact, this
is the definition of the Hilbert symbol for finite extensions of Qp, or C as well. Of
course, for C, we have (a, b) = 1 for all a, b.

When a or b is a square, it is clear that (a, b) = 1. Indeed, if c2 = b, then we
have x = 0, y = 1, z = c as a solution. Thus, it suffices to consider the Hilbert
symbol when neither a nor b is a square.

Remarks on: Proposition 1

Proposition 1 states that (a, b) = 1 if and only if a ∈ N(k(
√

b)×), where N

denotes the norm map. Of course, when b = 1, k(
√

b) = k, and the norm map is
trivial, so (a, b) = 1 without any further consideration.

When b is not a square, kb = k(
√

b) is a quadratic extension of k. Every
element of k(

√
b) can be written as z + βy, where β =

√
b. The norm is given by:

N(z + βy) = z2 − by2. If a is such a norm, then we have:

a = z2 − by2.

It follows that x = 1, y, z is a solution to the Diophantine equation. Thus if a ∈
N(k×b ), then (a, b) = 1.

Conversely, if (a, b) = 1, we have a solution z2− ax2− by2 = 0, with x, y, z not
all zero. If x = 0, then b would be a square, contradicting our initial assumption.
Dividing through by x2, yields z2 − a− by2 = 0, and a = z2 − by2, a norm.

Note that the nature of the field k was used nowhere in this proof, except
perhaps that char(k) 6= 2.

Remarks on: Proposition 2
The properties of the Hilbert symbol are the following:

• The Hilbert symbol is a quadratic symbol.
• The Hilbert symbol is symmetric ( as a bilinear form over F2). In other

words, (a, b) = (b, a).
• (a,−a) = 1.
•

These properties are proven in a somewhat weird (but perhaps unavoidable)
order in Serre.

(1) The definition of the Hilbert symbol is symmetric. It is thus clear that
(a, b) = (b, a) for all a, b ∈ k×.

(2) We have already seen that (a, b2) = (a2, b) = 1, for all a, b ∈ k×.
(3) We have (a,−a) = 1, since the equation z2 − ax2 + ay2 has the solution

x = 1, y = 1, z = 0.
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(4) We have (a, 1 − a) = 1, since the equation z2 − ax2 + ay2 − y2 has the
solution x = 1, y = 1, z = 1.

Weak bilinearity If (a, b) = 1, then (aa′, b) = (a′, b). Indeed, if (a, b) = 1, then a is a norm
from kb. Hence aa′ is a norm from kb if and only if a′ is a norm from kb,
since these norms form a group.

Bilinearity will follow from explicit formulae later. It can almost be seen from
looking at norms. We would like to show that (aa′, b) = (a, b)(a′, b). If both a, a′

are norms from kb, then a · a′ is also a norm from kb. Similarly, if a is a norm, and
a′ is not a norm, then a · a′ is not a norm. These facts follow from the fact that
N(k(

√
b)×) is a group. The only thing remaining is to show that if a, a′ are both

not norms from kb, then aa′ is a norm. We will be done showing bilinearity if we
can prove:

Proposition 1.1. The index of Nk×b in k× is equal to two.

1.2. Computation of (a, b). Explicit computation of (a, b) will show that the
Hilbert symbol is bilinear and non-degenerate. When k = R, it is easy to compute.
For, if we consider the equation z2 = ax2 + by2, the graph is a double-cone, unless
both a, b are negative. In particular, there are nonzero solutions (x, y, z), unless
a, b are negative. Hence:

(a, b) = 1 if a > 0 or if b > 0,

and (a, b) = −1 if both a, b < 0.
Remarks on: Theorem 1

We begin by proving the formula for the Hilbert symbol when p is an odd prime:

Proposition 1.2. If p is an odd prime, and a = pαu, and b = pβv, where
α, β ∈ Z, and u, v ∈ Z×p , then:

(a, b) = (−1)αβε(p)

(
u

p

)β (
v

p

)α

.

Proof. Since (a, b) depends only on a, b modulo Q×2
p , there are four cases to

consider for a, b. We must consider four cases each for a and b:

a, b ∈ {1, p, u, up},
where 0 < u ≤ p − 1 is any fixed non-square, mod p. Since the Hilbert symbol is
symmetric, and (1, x) = (x, 1) = 1 for all x ∈ Q×p , this reduces to the following
cases:

(p, p), (p, u), (p, up), (u, u), (u, up), (up, up).
We compute these cases, like Serre does:

• Consider the equation z2 − ux2 − uy2 = 0. Modulo p, it has a solution
(x, y, z) ∈ Fp, since it is a homogeneous quadratic in 3 variables, by the
Chevalley-Waring theorem. Since p 6= 2, at least one of the partial deriva-
tives of f(x, y, z) = z2− ux2− uy2 does note vanish; this implies that the
solution lifts to a solution in Zp. Hence (u, u) = 1.

• Consider the symbol (u, up). Since (u, u) = 1, we have (u, up) = (u, p)
by “weak bilinearity”. Thus, computing (u, up) and (u, p) can be done at
once. To compute (u, p), we consider the Diophantine equation:

z2 − px2 − uy2 = 0
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. If it has a solution, it has a solution where x, y, z are in Zp, and not all
are divisible by p. In this case, y is not divisible by p, since otherwise, z
would be divisible by p, and px2 would necessarily be divisible by p2, so
x would be divisible by p, a contradiction.

Hence, (u, p) = 1 if and only if there exists a solution to z2 − px2 −
uy2 = 0, with y and z not divisible by p. But in this case, reducing mod
p yields z2 = uy2, so u would have to be a square, mod p. This is a
contradiction. Hence (u, p) = −1.

• Consider (up, up). We have:

(up, up) = (up,−up)(up, up) = (up,−u2p2) = (up,−1).

If −1 is a square, mod p, then (up, up) = 1. Otherwise, by the previous
item, (up,−1) = (up, u) = −1.

• Consider (p, p). We have:

(p, p) = (p,−p)(p, p) = (p,−p2) = (p,−1).

Again, if −1 is a square, mod p, then (p, p) = 1. Otherwise, (p,−1) =
(p, u) = −1.

• Finally, consider (p, up). We have:

(p, up) = (p,−p)(p, up) = (p,−up2) = (p,−u).

If −1 is a nonsquare, mod p, then (p,−u) = (p, 1) = 1. Otherwise, if −1
is a square, then (p,−u) = (p, u) = −1.

One may check directly that the formula in Theorem 1 holds. We also can
write the Hilbert symbol as a bilinear form, using the above computations.

We fix a F2-vector space structure on Q×p /Q×2
p as follows. A basis will be given

by {ū, p̄}. Note that vector space addition of ū and p̄ corresponds to the product
up, where “bar” denotes the map from Q×p to the F2 vector space Q×p /Q×2

p .
With respect to the basis {ū, p̄}, the matrix of the bilinear form is:

Hilp =
(

(u, u) (u, p)
(p, u) (p, p)

)
=

(
0 1
1 (p− 1/2) mod 2

)
.

Note that in the above matrix of numbers, we are replacing the group elements ±1
by the additive group elements 0, 1 in F2. The bilinear form is nondegenerate, since
the determinant is equal to 1, regardless of p.

When p = 2, the computations are more complicated. The F2-vector space
Q×2 /Q×2

2 is three-dimensional. Thus, we must compute (a, b) for 8 possible values of
a, and 8 possible values of b. After excluding a = 1 and b = 1, and using symmetry,
we are left with “7 choose 2” or 21 pairs (a, b) to check. Weak bilinearity and the
relation (a,−a) = 1 reduces this further – Serre performs such a reduction, but in
the end, a case-by-case analysis is required.

2. Global Properties

Notes by: Filix Maisch This section makes use of the embedding of Q into
Qv, where v is a prime or ∞, adopting the convention that Q∞ is equal to R. For
a, b ∈ Q× we let (a, b)v denote the Hilbert symbol on the images of a,b in Qv. We
shall let V (set of places) denotes the set of primes union the infinity symbol.
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Theorem 2.1. If a, b ∈ Q×, then (a, b)v = 1 for all but finitely many v ∈ V
and ∏

v∈V

(a, b)v = 1.

Remarks on: Theorem 2.1
In the following proof it is good to note that we have explicit formulas for the
Hilbert symbol through the Legendre symbol. For any two a,b in the form pαu, pβv
respectively, where u and v are p-adic units we have the following:

• (a, b)p = (−1)αβε(p)
(

u
p

)β (
v
p

)α

if p 6= 2

• (a, b)p = (−1)ε(u)ε(v)+αω(v)+βω(u) if p = 2

Proof. The Hilbert symbol is bilinear, which implies that it suffices to show
the theorem for a,b equal to -1 or a prime. This is done via cases:

(1) (a = b = −1) Then (−1,−1)∞ = −1 = (−1,−1)2 and (−1,−1)v = 1 for
all v 6= 2,∞.

(2) (a = −1, b = l with l a prime) If l = 2, then (−1, 2)v = 1 for all v ∈ V . If
l 6= 2, then (−1, l)v = 1 for all v 6= 2, l and (−1, l)2 = (−1, l)l = (−1)ε(l)

(3) (a = l, b = l′ with both l and l′ primes) If l = l′, then proposition 2.2
(iv) implies (l, l′)v = (−1, l′)v for all v ∈ V and so that brings us back
to case number 2. If l 6= l′ = 2, then (l, 2)v = 1 for all v 6= 2, l while
(l, 2)2 = (−1)ω(l) and (l, 2)l =

(
2
l

)
= (−1)ω(l). If l 6= l′ and both are

not 2, then one has (l, l′)v = 1 for all v 6= 2, l, l′ and moreover we have
that (l, l′)2 = (−1)ε(l)ε(l′); (l, l′)l =

(
l′
l

)
; (l, l′)l′ =

(
l
l′
)
. By quadratic

reciprocity, we have that
(

l
l′
) (

l′
l

)
= (−1)ε(l)ε(l′) which implies that the

product is one.
¤

Note that quadratic reciprocity is equivalent to this theorem about the global
Hilbert symbol. The next theorem considers the existence of rational numbers with
given Hilbert symbols. The theorem will follow from three lemmas, including the
Chinese remainder theorem.

2.1. Existence of rational numbers with given Hilbert symbols.

Theorem 2.2. Let (ai)i∈I be a finite family in Qx and let (εi,v)i∈I,v∈V be
a family of numbers equal to ±1. In order that there exists x ∈ Qx such that
(ai, x)v = εi,v for every i,v it is necessary and sufficient that

(1) All but finitely many εi,v = 1.
(2) For all i ∈ I, ∏

v∈V

εi,v = 1

(3) For all v ∈ V there exists xv ∈ Qx
v such that (ai, xv)v = εi,v for all i ∈ I.

Remarks on: Theorem 2.2
The necessity of (1) follows from theorem 2.1 and is clear, because otherwise the
product would not be well-defined, it could simply alternate forever. The necessity
of (2) also follows from theorem 2.1, and (2) is really the important global condition.
In other words, (2) is a parity condition, revealing that for a given i, the finite
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number of εi,v = −1 is precisely even. The necessity of (3) is easy, just set xv = x
for every v, after all (3) is really just the local version of the theorem. It is to prove
sufficiency of these conditions that requires the three lemmas.

The first lemma is the Chinese remainder theorem. Remarks on: First lemma
We use the form of this theorem that states that for any list of integers ai, i = 1, ..., n
and any list of pairwise relatively prime integers mi, i = 1, ..., n there exists an
integer a, such that a ≡ ai(mod mi) for all i = 1, ..., n.

The second lemma is the so-called Approximation theorem.
Remarks on: Second lemma and its proof
This lemma basically states that for any finite set of places, that is a finite subset
S of V , the of image of the rational numbers is dense in the product of the p-adics
for p in S. To prove this, we simply suppose that

S = {∞, p1, ..., pn : such that pi are distinct primes}.
This is without loss of generality, since if the rational numbers are dense over a
larger product space, then they are dense over any subset of that space. So we may
enlarge S and assume the above.

Next we pick a point in the product space over S, say (x∞, x1, ..., xn), and via
multiplication by some integer, we may assume that the xi ∈ Zpi for i = 1, .., n.
We let ε be any positive real number and N be any natural number. By lemma 1
(Chinese remainder theorem) there exists some x0 ∈ Z such that νpi(x0 − xi) ≥ N
for all i. This follows from the existence of x0 ∈ Z such that x0 ≡ xi (mod pN

i ).
Now an integer q ≥ 2 is chosen relatively prime to all the pi. Rational numbers of
the form a

qm with a ∈ Z and m some non-negative number are dense among the real
numbers. This follows from the divergence of qm as m goes to infinity. So we find a
number u = a

qm such that |x0−x∞+upN
1 ...pN

n | ≤ ε. So if we set x = x0 +upN
1 ...pN

n

we have the desired effects:

|x− x∞| ≤ ε, and,

νpi(x− xi) ≥ N

The next lemma is called the Dirichlet theorem, and Serre postpones the proof
until chapter 4. This lemma gives us, for relatively prime integers greater than or
equal to one, a and m, there exists infinitely many primes such that the prime is
congruent to a (mod m).

Finally we can tie together these ideas to prove the sufficiency of the conditions
of the theorem 2.2. We let (εi,v) be a family of numbers satisfying (1),(2), and (3).
Via multiplication by square of some integer (recall Hilbert symbol is trivial on
squares) we may assume that the ai are integers. So we let

S = {∞, 2} ∪ { prime factors of ai},
T = {v ∈ V : ∃i ∈ I, εi,v = −1}.

Note that both sets above are clearly finite. The argument now splits into two
cases.

1) S ∩ T = ∅: We set the following:

a =
∏

l∈T ,l 6=∞
l and

m = 8
∏

l∈S,l 6=2,∞
l.
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Since the intersection of S and T is empty, clearly a and m are relatively prime. By
lemma 3, there must exist a prime p 6∈ S∪T such that p ≡ a( mod m) – There are
infinitely many such primes, so of course we can choose one outside of any finite set
of places, like S

⋃
T . We want to show that x = ap will have the desired property

and satisfy theorem 2.2.
If v ∈ S then v 6∈ T implying that εi,v = 1. So we must check that (ai, x)v = 1.

If v = ∞, this follows from the fact x > 0. If v = l, a prime, then x ≡ a2( mod m),
and hence we have that x ≡ a2 (mod 8) if l=2 and x ≡ a2 (mod l) if l 6= 2. Since
x and a are l-adic units this shows that x is a square in Qx

l implying (ai, x)v = 1.
If v = l /∈ S, ai is an l-adic unit. Since l 6= 2,

(ai, b)l =
(ai

l

)νl(b)

.

If l 6∈ T ∪ {p}, x is an l-adic unit, hence νl(x) = 0 =⇒ (ai, x)l = 1. On the
other hand we have that εi,l = 1 because l is not in T. If l ∈ T then νl(x) = 1.
(3) =⇒ ∃xl ∈ Qx

l such that (ai, xl)l = εi,l for all i; since one of the εi,l = −1 for

some i, νl(xl) = 1 (mod 2) =⇒ (ai, x)l =
(

ai

xl

)
= (ai, xl)l = εi,l for all i. If l=p

then we deduce using the product formula that:

(ai, x)p =
∏

v 6=p

(ai, x)v =
∏

v 6=p

εi,v = εi,p

and so we have shown the sufficiency of (1),(2), and (3) when the intersection of S
and T is empty.

2) General case.
We have from chapter 2 that the (Qx

v)2 form an open subgroup of Qx
v . By lemma

2, there exists some x′ ∈ Qx such that x′/xv is a square in Qx
v for all v. So we have

that (ai, x
′)v = (ai, xv)v = εi,v for all v. If we set ηi,v = εi,v(ai, x

′)v the family
(ηi,v) verifies (1),(2), and (3) and is equal to one if v is in S. Now by the first case
we have that there exists y ∈ Qx such that (ai, y)v = ηi,v for all i and for all v. If
we set x = yx′ it is clear we are done.





CHAPTER 4

Quadratic Forms over Qp and Q

1. Quadratic Forms

1.1. Definitions. Serre begins by discussing quadratic forms over an arbi-
trary commutative ring. If 2 is invertible in a commutative ring A, then quadratic
forms are essentially interchangable with symmetric bilinear forms. But if 2 is not
invertible, then there is an important distinction. We emphasize that this subtlety
arises, not only in the case of a field of characteristic 2, but also for rings, such as
Z, in which 2 is not invertible!

Following Serre, we recall the definitions of quadratic modules, symmetric bi-
linear forms, and the connection between the two:

Definition 1.1. A quadratic module (over a commutative ring A) is a pair
(V, Q), where V is a module over A, and Q : V → A is a function satisfying Q(ax) =
a2Q(x), for all a ∈ A, x ∈ V , and such that (x, y) 7→ Q(x + y) − Q(x) − Q(y) is a
bilinear form.

If 2 is invertible in A, and (V, Q) is a quadratic module over A, we write BQ

for the associated symmetric bilinear form on V :

BQ(x, y) =
1
2
(Q(x + y)−Q(x)−Q(y)).

Note the important factor 1/2 in the definition of BQ. Conversely, if B is a sym-
metric bilinear form on an A-module V , we write

QB(x) = B(x, x).

This establishes a bijection between symmetric bilinear forms and quadratic mod-
ules. In fact, this bijection is functorial. One may define two categories, QModA

and SBilA, whose objects are quadratic modules and symmetric bilinear forms
over A, respectively, and whose morphisms are A-module homomorphisms preserv-
ing the quadratic form or symmetric bilinear form.

In this chapter, Serre works over a field k, with char(k) 6= 2. This implies
that we may pass freely between quadratic modules and symmetric bilinear forms.
Moreover, this implies that “modules” are vector spaces, and hence are determined
up to isomorphism by their dimension. We also assume that these vector spaces
are finite-dimensional.

Working over a vector space V , over such a field k, we may always choose a
basis {ei}. If Q is a quadratic form on V , then we let qij = BQ(ei, ej) be the
associated matrix. This is called the matrix of Q, corresponding to the basis ei.
Changing basis changes the matrix in a non-trivial way. Namely, if g ∈ GL(V )
denotes a change of basis matrix, then the matrix of Q corresponding to the new
basis is g · (qij) · tg.

27
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In particular, the square-class of the determinant of qij depends only on Q,
and not on the choice of basis. This square-class is called the discriminant: Either
disc(Q) = 0 or else, disc(Q) ∈ k×/k×2.

1.2. Orthogonality. Serre continues discussing basic facts about quadratic
forms, over fields k with char(k) 6= 2. As before, V will be a vector space, with
quadratic form Q. We write BQ for the associated bilinear form (as opposed to
Serre, who simply writes x.y where we would write B(x, y)).

We also differ in notation from Serre. We write x ⊥ y if BQ(x, y) = 0, and we
say that x and y are orthogonal (or perpindicular). If H is a subset of V , then we
write H⊥ for the set of elements orthogonal to every element of H. If V1, V2 are
subspaces of V , we write V1 ⊥ V2 if V1 ⊂ V ⊥

2 (or equivalently V2 ⊂ V ⊥
1 .

We write rad(V ) = V ⊥. If rad(V ) = {0}, then Q is called non-degenerate.
The bilinear form BQ induces a k-linear map:

DQ : V → V ′ = Homk(V, k).

This is given by:
[DQ(x)](y) = BQ(x, y).

The following are equivalent:
• Q is non-degenerate.
• disc(Q) 6= 0.
• DQ is an isomorphism of k-vector spaces.

In Definition 2, Serre discusses the direct sum of quadratic modules. In fact,
there is also a tensor product of quadratic modules as well. We define both of these
here:

Definition 1.2. Suppose that (V1, Q1) and (V2, Q2) are two quadratic modules
over k. There are natural quadratic modules (V1⊕V2, Q1⊕Q2), and (V1⊗V2, Q1⊗
Q2), where the quadratic forms are defined by:

• (Q1 ⊕Q2)(v1, v2) = Q1(v1) + Q2(v2).
• (Q1 ⊗Q2)(

∑
i vi

1 ⊗ vi
2) =

∑
i,j BQ1(v

i
1, v

j
1)BQ2(v

j
2, v

j
2).

When (V, Q) is a quadratic module, and U1, U2 are subspaces of V , we may
decompose (V, Q) as a direct sum under the following conditions:

• V = U1⊕U2, as vector spaces. In other words, U1+U2 = V and U1∩U2 =
{0}.

• Q(u1 + u2) = Q(u1) + Q(u2), for all u1 ∈ U1, u2 ∈ U2.
Serre write V = U1⊕̂U2, when V is the direct sum of U1 and U2, and the

quadratic form satisfies the above conditions. In this case, (V,Q) is isomorphic to
(U1, Q|U1)⊕ (U2, Q|U2).

Remarks on: Proposition 2

Proposition 2 discusses a number of consequences of non-degeneracy. If (V,Q)
is non-degenerate, then:

(1) All morphisms φ from (V, Q) to another quadratic module (V ′, Q′) are
injective. Indeed, ker(φ) would clearly be in Rad(V ) = {0}.

(2) If U is a vector subspace of V , then U⊥⊥ = U , and dim(U)+ dim(U⊥) =
dim(V ), and Rad(U) = Rad(U⊥) = U ∩ U⊥.
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(3) If V is the orthogonal sum of two subspaces, then each of them is nonde-
generate.

The first item is obvious. The second item follows from “playing with duality”.
Recall that we have an isomorphism DQ : V → V ′, which is an isomorphism. When
U is a subspace of V , there is a canonical projection pU : V ′ → U ′. It is surjective,
since functionals on U can always be extended to functionals on V . Thus we get a
surjection V → U ′, given by pU ◦DQ. The kernel is easily seen to be U⊥. Thus we
have:

0 → U⊥ → V → U ′ → 0.

This yields the dimension identity

dim(U) + dim(U⊥) = dim(U ′) + dim(U⊥) = dim(V ).

It is important to note that V 6= U ⊕ U⊥, in general! It follows that dim(U) =
dim(U⊥⊥). It is clear that U ⊂ U⊥⊥, and hence U = U⊥⊥. Since rad(U) = U∩U⊥

(by chasing the definition), we have

rad(U⊥) = U⊥ ∩ U⊥⊥ = U⊥ ∩ U.

Hence rad(U) = rad(U⊥).
The third item is not particularly difficult. In fact, if V = U1⊕̂U2, then:

Rad(V ) = Rad(U1)⊕Rad(U2).

Thus Rad(V ) = {0} if and only if the same is true of U1 and U2.

1.3. Isotropic Vectors. An isotropic vector in a quadratic module (V,Q) is
simply a vector v satisfying Q(v) = 0. Such vectors form a “quadric hypersurface”
in V . More generally, a subspace U ⊂ V is called isotropic if all of its vectors are.

A “hyperbolic plane” is a quadratic module of rank two, which is isomorphic
to (k2, η), where η(x, y) = xy. Equivalently, a hyperbolic plane is a quadratic
module (V,Q) of rank two, which has a basis of isotropic vectors v1, v2, satisfying
BQ(v1, v2) 6= 0. Its discriminant is −1.

Remarks on: Proposition 3
Proposition 3 essentially says that in a non-degenerate quadratic module, every
nonzero isotropic vector is contained in a hyperbolic plane. It is proven by con-
struction. If v is a nonzero isotropic vector, non-degeneracy yields a second vector
w with BQ(v, w) = 1. Note that non-degeneracy also implies that dim(V ) > 1.
The trick is to set:

y = 2w −Q(w)v.

Then:

Q(y) = 4Q(w) + Q(w)2Q(v) + 2BQ(2w,−Q(w)v) = 4Q(w)− 4Q(w)BQ(w, v) = 0.

Hence y is isotropic. The span of v and w is a hyperbolic plane.
Remarks on: Corollary

Hyperbolic planes “represent” every number. This corollary is the first about rep-
resentations by a quadratic form. If x ∈ k, and (V,Q) is a quadratic module, we
say that Q represents x if there exists v ∈ V satisfying Q(v) = x. The quadratic
module (k2, eta), with η(x, y) = xy clearly represents every element of k. Hence
any quadratic module with an embedded hyperbolic plane represents every element
of k. Hence every non-degenerate quadratic module, with at least one isotropic
vector, represents every element of k.
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1.4. Orthogonal Basis. The existence of an orthogonal basis for a quadratic
module allows us to “get our hands dirty”. A basis e1, . . . , en is called an orthogonal
basis of a quadratic module (V,Q), if it is a basis, and ei ⊥ ej whenever i 6= j. In
this case, V = e1k⊕̂ · · · ⊕̂enk. Thus, the quadratic form Q is completely determined
by its values ai = Q(ei). In other words, the quadratic module can be identified
with kn, with the quadratic form:

Q(x1, . . . , xn) = a1x
2
1 + · · ·+ anx2

n.

In this case, rather than writing (V, Q) and discussing quadratic modules, we write
[a1, a2, . . . , an] for the associated quadratic form on kn.

Remarks on: Theorem 1
This theorem says that every quadratic module has an orthogonal basis. It allows
us to restrict our studies to quadratic forms [a1, . . . , an], for various ai ∈ k. Its
proof is not difficult – in linear algebra classes, one usually uses the Gram-Schmidt
process. The proof in Serre is somewhat slicker.

The proof is inductive on dim(V ), the theorem being trivial in dimension zero.
We V is itself isotropic, then Q is the “zero-form”, and every element of V is
orthogonal to every other element of V . Hence any basis is an orthogonal basis.
Otherwise, we choose e1 ∈ V , with Q(e1) 6= 0. Let V ′ = (e1k)⊥. Since “pairing with
e1” is a nonzero linear functional on V , its kernel is dim(V ) − 1-dimensional, and
we see that V ′ ⊕ (e1k) = V . Moreover, this sum is orthogonal, so V = V ′⊕̂(e1k).
By induction, we may find an orthogonal basis of V ′, say e2, . . . , en, yielding an
orthogonal basis e1, . . . , en of V .

Remarks on: Theorem 2
The central question in our study of quadratic forms is: when are two quadratic
forms isomorphic? Isomorphism can be expressed via a linear isomorphism from a
quadratic module (V, Q) to another (V ′, Q′). But, after choosing orthogonal bases
of V and V ′, this question reduces to: when is the quadratic form [a1, . . . , an]
equivalent to the quadratic form [b1, . . . , bn]? Here equivalence can be thought of
as a linear isomorphism from kn to kn, or equivalently, as a change of basis matrix.

The main theorem, Theorem 2, implies that if [a1, . . . , an] ∼ [b1, . . . , bn] (the
quadratic forms are equivalent), and the ai and bi are nonzero (so (V, Q) is non-
degenerate), and n ≥ 3, then the equivalence may be broken up in stages. In each
stage, we have an equivalence:

[α1, . . . , αn] ∼ [β1, . . . , βn],

in which at least one of the αi is equal to one of the βj .
In terms of changing basis, this means that we change at most n − 1 basis

elements at each stage. We give an example here:

Example 1.3. Consider the quadratic forms [2, 1, 6] and [3, 5, 5] over F7. These
are equivalent, but perhaps not obviously so. The theorem implies that there exists
a chain of equivalences such as:

[2, 1, 6] ∼ [3, 5, 6] ∼ [3, 5, 5].

Note that at every stage, we leave at least one number fixed.

In proving Theorem 2, we fix a quadratic module (V, Q), and two orthogonal
bases ~e,~e′ of V . Here we use vector notation, to abbreviate ~e = (e1, . . . , en) and
~e′ = (e′1, . . . , e

′
n). Given that these are two orthogonal bases, we wish to find a chain
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~e(i) of orthogonal bases, with ~e(0) = ~e, and ~e(m) = ~e′, such that ~e(i) is contiguous
to ~e(i+1) for all 0 ≤ i ≤ m− 1.

When e1 and e′1 have the property Q(e1)Q(e′1)−BQ(e1, e
′
1)

2 6= 0, one can find
a chain of length two (i.e. m = 2) linking ~e and ~e′. This is the “easy case”. In this
case, we let P = ke1⊕ke2. The aforementioned property implies that Q, restricted
to P , is non-degenerate. Hence e1, and e′1 may be completed to orthogonal bases
of P , yielding:

P = e1k⊕̂ε2k = e′1k ⊕ ε′2k.

Let f3, . . . , fn be an orthogonal basis of P⊥. We have V = P ⊕̂P⊥, since P is
non-degenerate. Thus we have a chain of orthogonal bases:

~e → (e1, ε2, f3, . . . , fn) → (ε1, e2, f3, . . . , fn) → ~e′.

The hard case in the proof is when one can not find two basis elements ei, e
′
j

which span a nondegenerate plane. In particular, ke1 ⊕ ke′1 is degenerate, and
ke1 ⊕ ke′2 is degenerate. But in this case, the Lemma implies that there exists
x ∈ k such that e′x = e′1 + xe′2 generates a nondegenerate plane with e1, and is
nonisotropic.

Indeed, to have e′x be nonisotropic, we must have:

Q(e′x) = Q(e′1) + x2Q(e′2) 6= 0 since e′1 ⊥ e′2.

Thus as long as x2 6= −Q(e′1)/Q(e′2), this will be satisfied. For e1 and e′x to generate
a nondegenerate plane, we must have:

0 6= Q(e1)Q(e′x)−BQ(e1, e
′
x)2

= Q(e1)Q(e′1) + x2Q(e1)Q(e′2)− (BQ(e1, e
′
1) + xBQ(e1, e

′
2))

2

= Q(e1)Q(e′1) + x2Q(e1)Q(e′2)−BQ(e1, e
′
1)

2 − 2xBQ(e1, e
′
1)BQ(e1, e

′
2)− x2BQ(e1, e

′
2)

2

= Q(e1)Q(e′1) + x2Q(e1)Q(e′2)−Q(e1)Q(e′1)− 2xBQ(e1, e
′
1)BQ(e1, e

′
2)− x2Q(e1)Q(e′2)

= −2xBQ(e1, e
′
1)BQ(e1, e

′
2).

Nondegeneracy, together with the fact that BQ(e1, e
′
1)

2 = Q(e1)Q(e′1) and
BQ(e1, e

′
2)

2 = Q(e1)Q(e′2) implies that for x 6= 0, the above condition is satis-
fied. The existence of e′x such that e′x is nondegenerate, and with e1 it generates a
nondegerate plane, follows from finding x ∈ k with:

0 6= x, and x2 6= −Q(e′1)/Q(e′2)

. This eliminates at most three values of x. We don’t consider k = F2, because we
assume char(k) 6= 2. In F3, all squares are 0 or 1, and the condition Q(e1)Q(e′1) =
BQ(e1, e

′
1)

2 and Q(e1)Q(e′2) = BQ(e1, e
′
2)

2 implies that Q(e′1)/Q(e′2) = 1. Thus,
choosing x2 6= −1 does not place any condition on x. Such an x exists.

Now, in order to make the transition from ~e to ~e′, we use the intermediate basis
~e′x given by:

~e′x = (e′x, e′2, e
′
3, . . . , e

′
n).

This basis is contiguous to ~e′. By the “easy case”, we can find a chain linking ~e to
~e′x.
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1.5. Witt’s theorem. Notes by: Jordan Fassler
In this section, we consider metric morphisms between quadratic modules and

when they can be extended. Specifically, given two nondegenerate quadratic mod-
ules (V1, Q1) and (V2, Q2), an injective morphism

s : U → V2

between U ⊂ V1, a submodule, and V2 which preserves the associated bilinear form,
we try to extend s to all of V1. An extension of s is a morphism from a larger space,
containing U as a subspace, which is equal to s when restricted to U . Our main
result is Witt’s theorem which says that such an extension exists if V1 and V2 are
isomorphic.

Remarks on: Lemma
This lemma takes care of the case when U is degenerate and says that given an s as
above we can extend to an s1 : U1 → V2 where U is a subspace of U1 of codimension
one. Since U is degenerate, we can choose a nonzero x ∈ rad(U). Furthermore,
since V is non-degenerate we can find a y ∈ V such that l1(x) := [DQ1(y)](x) = 1
(recall [DQ1(y)](u) = BQ1(y, u)). We can also assume that y is isotropic (if not
replace y by y − 1

2Q1(y)x, which is clearly isotropic). We then set U1 = U ⊕ ky.
Let U ′ = s(U). Since s is injective we can form a linear functional l2 : on U ′

by l2 = l1(y)◦ s−1. As we’ve seen, V2 being nondegenerate implies that there exists
y2 such that l2 = DQ2(y2). Thus if we define the map s1 : U1 → V2 by letting s1

equal s on U and s1(y) = y2 and extend linearly, then s1 is a metric morphism.
Remarks on: Theorem 3

We construct our extension inductively on the dimension of U . If U is degenerate,
we can apply the above lemma repeatedly until we arrive at a non-degenerate
submodule, thus we can make the simplifying assumption that U is non-degenerate.
Furthermore, since V1 and V2 are isomorphic, we can assume that V = V1 = V2.

dim U = 1: Since U is non-degenerate and one-dimensional, it is generated by
a non-isotropic element x. Let y = s(x), then we have Q(x) = Q(y) and we can
choose an ε = ±1 such that x + εy is not isotropic; if not we would have:

Q(x + y) = 0
Q(x− y) = 0

expanding the left hand side:

BQ(x, x) + BQ(x, y) + BQ(y, x) + BQ(y, y) = 0
BQ(x, x)−BQ(x, y)−BQ(y, x) + BQ(y, y) = 0

since BQ(x, x) = BQ(y, y) and BQ(x, y) = BQ(y, x) we have:

2BQ(x, x) + 2BQ(x, y) = 0
2BQ(x, x)− 2BQ(x, y) = 0

which implies that Q(x) = 0. Given such an ε, we let H be the orthogonal comple-
ment of z = x + εy; we have V = kz⊕̂H. Define σ to be the automorphism of V
which is the identity on H and which sends z to −z. Thus

σ(x + εy) = −x− εy

σ(x− εy) = x− εysince x− εy ∈ H

implying σ(x) = −εy, thus −εσ extends s.
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dim U > 1: We can decompose U as U1⊕̂U2 both not zero; restricting s to
U1 and extending by induction we get an automorphism, σ1, of V which extends
s when restricted to U1. By substituting s with σ−1

1 ◦ s we can suppose s is the
identity on U1. Since s is the identity on U1 and injective we have that U2 is
contained in the orthogonal complement of U1, U⊥

1 , and thus it suffices to extend
s|U2 to a σ2 : U⊥

1 → U⊥
1 which we can do by the induction hypothesis. Thus our

desired extension is σ which is σ2 on U⊥
1 and σ−1

1 ◦ s on U1.
Remarks on: Corollary

Witt’s Theorem and this corollary will give us a cancellation law for quadratic
forms, which will be made more explicit in the next section. Essentially, if we
have a nondegenerate quadratic module (V,Q) with subspaces U1 and U2 such that
U1

∼= U2 then we extend the isomorphisms of the subspaces to an automorphism
of V , since V ∼= U1⊕̂U⊥

1
∼= U2⊕̂U⊥

2 when we restrict the automorphism to the
orthogonal complements we can “cancel” and get U⊥

1
∼= U⊥

2

1.6. Translations. In this section Serre defines the translation of one qua-
dratic form by another and then translates several of our previous results in
terms of these translations. Let X ∈ kn, we consider a quadratic form f(X) =∑n

i=1 aiiX
2
i +2

∑
i>j aijXiXj in n variables over k. Set aij = aji for i > j, the ma-

trix A = (aij) is symmetric and the pair (kn, A) is a quadratic module, associated
to f . Two quadratic forms f and f ′, in n variables, are equivalent, f ∼ f ′, if there
is a an invertible matrix M such that f(MX) = f ′(X). This is equivalent to the
definition given by Serre that the associated modules of f and f ′ are isomorphic.

Let f(X1, . . . , Xn) and g(X1, . . . , Xm) be two quadratic forms. The translation
of a one quadratic form by another, denoted f+̇g, is defined to be the quadratic
form given by:

f+̇g = f(X1, . . . , Xn) + g(Xn+1, . . . , Xn+m)
In terms of the associated modules, this operation corresponds to the orthogonal
sum. We similarly define f−̇g for f+̇(−g).

We now translate several of our definitions and theorems in terms of transla-
tions. First notice that our hyperbolic plane has associated form f(X) = X1X2 ∼
X2

1 −X2
2 which is clearly a translation of two one variable forms. Furthermore we

say that a form represents an element a ∈ k if there exists a vectoer x ∈ kn such
that f(x) = a.

Remarks on: Corollary 1
This corollary will be useful in our classification of quadratic forms.

(i) ⇒ (ii): If g represents a then there exists a vector x such that g(x) = a
and thus we can find the orthogonal complement H of x and since our translation
sum of forms corresponds to orthogonal sums of modules, if h is the quadratic
form associated to H then since G = H⊕̂kx in quadratic form language this says
g ∼ h+̇aZ2.

(ii) ⇒ (iii): Since g ∼ h+̇aZ2 it clearly represents a (the vector (0, . . . , 0, 1)
works on the right hand side). Thus g−̇aZ2 represents 0.

(iii) ⇒ (i): If the form f = g−̇aZ2 represents zero, we have a nontrivial vector
x0 = (x1, ..., xn−1, z) such that f(x0) = 0. If z = 0 in this vector this implies
that g represents zero and by proposition 3’, g represents all of k. If z 6= 0 then
f(x1/z, ..., xn−1/z, 1) = g(x1/z, ..., xn−1/z)− a = 0 and g represents a.

Remarks on: Corollary 2
We discuss just the implication (a) ⇒ (b), the other implications being clear from
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the previous corollary. If f represents zero there is a vector (x, y) such that f(x, y) =
g(x)−h(y) = 0 thus g(x) = h(y). There are two cases, if g(x) = a 6= 0 we are done.
If g(x) = 0 then from proposition 3’ g represents all of k in particular g represents
any nonzero value taken by h.

We return to our translations of previous results. From theorem 1 we know
that a quadratic module has an orthogonal basis, in terms of our quadratic form
this gives us the familiar “sums of squares” form of our quadratic form f :

f ∼ a1X
2
1 + · · ·+ anX2

n

We define the rank of f to be the number of indices i such that ai 6= 0. And clearly
the rank is n if and only if discriminate of f a1 · · · an 6= 0.

Remarks on: Theorem 4
As was discussed before in the remark to the corollary of Witt’s theorem, this the-
orem gives us a cancellation law for quadratic forms. The theorem is an immediate
consequence of the corollary and is equivalent to Witt’s Theorem.

Remarks on: Corollary
From proposition 3’ f ∼ g1+̇h1 with g1 and h1 nondegenerate. Repeatedly applying
the proposition we get the claimed decomposition. For uniqueness, suppose f ∼
g1+̇ · · · +̇gm+̇h ∼ g′1+̇ · · · +̇g′k+̇h′ then using the cancellation law, we see that h ∼
h′ and m = k. The h is called the anisotropic part of f .

1.7. Quadratic forms over Fq. In this section we completely classify the
quadratic forms over the finite fields of characteristic different than two. With the
tools we have developed, the classification is fairly straightforward. We let p be
prime 6= 2 and q = pf . Let Fq be the field with q elements.

Remarks on: Proposition 4
Recall that Chevalley’s theorem states that if number of variables exceeds the degree
of a polynomial in the finite field K then the cardinality of the set of zeros is
congruent to 0 mod p. Thus if we consider a quadratic form f in three variables,
by Chevalley’s Theorem it represents zero. Similarly, if we consider a form g in two
variables, the form g−̇aZ2 with a ∈ Fx

q , represents 0 since it is in three variables
and by corollary 1 from the previous section, that implies g represents a.

Remarks on: Proposition 5
This proposition along with it’s corollary, completes our classification of quadratic
forms over Fq. We proceed by induction. Let f be a quadratic form over Fq of
rank n. If n = 1, since the group Fx

q/Fx2
q has two elements, any quadratic form in

one variable is either of the form X2 or aX2. If n ≥ 2 by proposition 4 the form
represents 1 and thus f ∼ X2

1 +̇g and g is of lesser rank and by induction we are
done.

We finally see that quadratic forms over Fq are completely determined (up to
equivalence) by their rank and their discriminant.

2. Quadratic forms over Qp

Notes by: Filix Maisch
Conventions for the section include that p is a prime number, k is the p-adic

number field and quadratic modules and forms over k are assumed to be non-
degenerate.



2. QUADRATIC FORMS OVER Qp 35

2.1. The two invariants. Here we let (V, Q) be a quadratic module of rank
n and d(Q) ∈ k×/(k×)2 its discriminant. If e = (e1, ..., en) is an orthogonal basis
of V and we set ai = ei · ei, then

d(Q) =
n∏

i

ai

Recall for a, b ∈ k×, the Hilbert symbol (a, b) ∈ {±1} is already defined. We
define

ε(e) :=
∏

i<j

(ai, aj) ∈ {±1}

We shall show that this ε(e) is an invariant of (V, Q), that is, it does not depend
on the choice of orthogonal basis e. This is the statement of theorem 5.

Remarks on: Theorem 5

The proof of this theorem is done via induction on the rank of V. If n = 1 then
ε(e) = 1 since the product is vacuous. So we need to do n = 2 as a base case. If
n = 2 then we have that

ε(e) = 1 ⇔ Z2 − a1X
2 − a2Y

2 represents 0 ⇔ a1X
2 + a2Y

2 represents 1

⇔ ∃ v ∈ V s.t. Q(v) = 1 and such a v is independent of any choice of basis
For n ≥ 3, induction is used. By theorem 2 and transitivity it is enough to

show that ε(e) = ε(e′) when e and e′ are contiguous. Moreover the symmetry of
the Hilbert symbol implies that we can assume that e′ = (e′1, ..., e

′
n) with e1 = e′1.

So with a′i = e′i · e′i it follows that a1 = a′1. We then write

ε(e) =
n∏

k=2

(a1, ak)
∏

2≤i<j

(ai, aj) = (a1, a2···an)
∏

2≤i<j

(ai, aj) = (a1, d(Q)a1)
∏

2≤i<j

(ai, aj)

Similarly we have
ε(e′) = (a1, d(Q)a1)

∏

2≤i<j

(a′i, a
′
j)

and so the proof is done by induction. So given a quadratic form we immediately
have two invariants, the discriminant and the epsilon sign invariant.

2.2. Representation of an element of k by a quadratic form. This
section begins with a lemma. Part (a) of the lemma states that the number of
elements in the F2 − v.s. k×/(k×)2 is 2r with r = 2 (resp. r = 3) if p 6= 2 (resp.
p = 2). For parts (b) and (c) we need the following definition given a ∈ k×/(k×)2

and ε = ±1:
Hε

a := {x ∈ k×/(k×)2 : (x, a) = ε}
Part (b) states two cases. If a = 1, the H1

a has 2r elements and H−1
a = ∅. If a 6= 1,

Hε
a has 2r−1 elements. Consider a, a′ ∈ k×/(k×)2 and ε, ε′ = ±1. Assume that

Hε
a 6= ∅ 6= Hε′

a′ . Part (c) states that for Hε
a

⋂
Hε′

a′ = ∅ it is necessary and sufficient
that a = a′, ε = −ε′.

Remarks on: Lemma

Part (a) has been already shown, see section 3.3 in chapter 2. The assertion in
(b) in trivial for a = 1 (1 is a square). For a 6= 1, we have the following surjective
homomorphism, ϕ : k×/(k×)2 ³ {±1} given by b 7→ (a, b). Hence ker ϕ = Hε

a =
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hyperplane, and so has 2r−1 elements. Part (c) follows from (b) and the non-
degeneracy of the Hilbert symbol since 2r−1 + 2r−1 = 2r and (x, a) = (x, a′) ∀ x
implies that a = a′, ε = −ε′.

For theorem 6, f is a quadratic form of rank n and d = d(f) and ε = ε(f) are
the invariants as previously defined.

Remarks on: Theorem 6

This theorem states that for f to represent 0, it is necessary and sufficient that
(1) n = 2 and d = −1 ∈ k×/(k×)2

(2) n = 3 and (−1,−d) = ε
(3) n = 4 and either d 6= 1 or d = 1 and ε = (−1,−1)
(4) n ≥ 5 (Thus all quadratic forms in at least five variables represent zero)

Letting a ∈ k×/(k×)2 and fa = f − aZ2 (”dot” above minus sign) we have fa

represents 0 ⇔ f represents a. Nothing this and d(fa) = −ad and ε(fa) = (−a, d)ε
we get a corollary to theorem 6 which gives the necessary and sufficient conditions
for f to represent any a, not just zero. This conditions depend only on the rank,
discriminant and invariant epsilon.

2.3. Classification. Theorem 7 states that two quadratic forms over k are
equivalent if and only if they have the same rank, discriminant and invariant epsilon.

Remarks on: Theorem 7

The forward direction follows directly from definitions. The converse is shown
by induction on the rank n. The case n = 0 is trivial. If we let f and g be two
quadratic forms of rank n, discriminant d and invariant ε then by the Corollary from
section 2.2 of this chapter, both f and g represent the exact same elements from
k×/(k×)2 and so we can find some a that is represented by both which implies
that f ∼ aZ2 + f ′ and g ∼ aZ2 + g′ with f ′, g′ quadratic forms of rank n − 1,
d(f ′) = ad(f) = ad(g) = d(g′) and ε(f ′) = ε(f)(a, d(f ′)) = ε(g)(a, d(g′)) = ε(g′), so
the proof is complete by induction.

Remarks on: Proposition 6

Given an n ≥ 1, d ∈ k×/(k×)2 and ε = ±1 the proposition states that in order
that there exists a quadratic form with the above invariants, it is necessary and
sufficient that n = 1, ε = 1 or n = 2, d 6= 1 or n = 2, ε = 1 or n ≥ 3. This proposition
has a consequential corollary, that gives the number of classes of quadratic forms
of rank n over k. For p 6= 2 (resp. p = 2) that number is 4 (resp. 8) if n = 1 and 7
(resp. 15) if n = 2 and 8 (resp. 16) if n ≥ 3.

2.4. The real case. In this subsection, we let f be a quadratic form of rank
n over the real numbers. We know f is equivalent to

X2
1 + ... + X2

r − Y 2
1 − ...− Y 2

s

where r,s are two non-negative integers whose sum is n. The pair r,s depend only on
f and is called the signature of the form f. The form f is positive or negative definite
if s = 0 or r = 0 and otherwise f is indefinite (f represents 0 in that case and only
in that case). The invariant ε(f) is defined as before and due to (−1,−1) = −1 we
have the following:

ε(f) = (−1)s(s−1)/2 and d(f) = (−1)s
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So if n is less than or equal to three, these two invariants determine f up to
equivalence!

3. Quadratic Forms over Q

Notes by: M. Weissman In this section, all quadratic forms have coefficients
in Q, and are non-degenerate. We use the following notation (which Serre does
not): let [a1, . . . , an] denote the quadratic form:

Q(X1, . . . , Xn) = a1X
2
1 + · · ·+ anX2

n.

Every quadratic module has an orthogonal basis, and thus is equivalent to some
[a1, . . . , an]. In this section, we always assume that 0 6= ai ∈ Q for all 1 ≤ i ≤ n.

3.1. Invariants of a form. Recall that V is the set of places of Q, and∞ ∈ V
is the “real place”, with Q∞ = R.

Two invariants of a nondegenerate quadratic form, over any field k of charac-
teristic not equal to 2, are:

• The discriminant d =
∏n

i=1 ai. It is interpreted in k×/k×2

• The ε-invariant (essentially the Hasse invariant) is defined by:

ε =
∏

1≤i<j≤n

(ai, aj) ∈ {±1},

where (ai, aj) denotes the (quadratic) Hilbert symbol.

If f is a quadratic form over Q, we write εv = ±1 for the Hasse invariant of f ,
viewed as a quadratic form over Qv, and we write dv ∈ Q×v /Q×2

v for the discriminant
of f viewed as a quadratic form over Qv. We write r, s for the number of ones and
negative ones, as invariants of f over R.

We are interested in three similar problems involving a quadratic forms:

• Given two quadratic forms f, g over Q, when is f equivalent to g over Q?
• Given a quadratic form f , and a ∈ Q×, does f represent a?
• Given a quadratic form f , does f represent zero?

We will see that answering the final question yields an answer for the previous two
(seemingly more difficult) questions.

The Hasse-Minkowski Theorem answers the final question – it is Theorem 8 in
Serre:

Theorem 3.1. In order that a nondegenerate quadratic form f over Q represent
0, it is necessary and sufficient that for all v ∈ V , fv represents 0.

Necessity is obvious. Sufficiency requires proof. The proof of the Hasse-
Minkowski theorem will use almost every technique discussed previously in Serre’s
text. Following Serre’s treatment, we handle these questions case-by-case based on
the rank of quadratic forms.

Note that if f = [a1, . . . , an], then f represents zero iff a1f =
[a2

1, a1a2, . . . , a1an] ∼ [1, a1a2, . . . , a1an] represents zero. Thus, we may assume
hereafter that f = [1, a2, . . . , an], in proving the Hasse-Minkowski theorem.
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3.1.1. Quadratic forms of rank 2. In rank 2, we have the following principle
(valid over any field): Whether a binary quadratic form represents zero is
equivalent to whether a related number is a square or not.

Suppose that f = [1, a] over Q. Suppose also that f represents zero over every
Qv. Since f represents zero over R, we have a < 0. Thus it suffices to consider
f = [1,−a] with 0 < a ∈ Q. This represents zero if and only if a ∈ Q×2.

Since f represents 0 over Qp, for every p, we have a ∈ Q×2
p . Thus, valp(a) is

even for all p; recall that valp(a) is the exponent of p in the prime factorization
of a−1. Since a is positive, we see that a =

∏
p pep , for even integers ep. Hence

a ∈ Q×2 as desired.
3.1.2. Quadratic Forms of Rank 3. This is the most difficult case in the theo-

rem. In rank 3, we have the following principle (valid over any field): Whether a
ternary quadratic form represents zero is equivalent to whether a related
Hilbert symbol is 1 or −1.

It suffices to consider quadratic forms f = [1,−a,−b] – here, we use the signs
for convenience. Thus, we may rephrase the Hasse-Minkowski theorem in Rank 3
as the following statement:

Proposition 3.2. Suppose that a, b ∈ Q×. Then, if (a, b)v = 1 for all places
v ∈ V , then (a, b) = 1.

Note that if (a, b)v = −1 for even one place v ∈ V , then (a, b) = −1. This
follows from the definition of the Hilbert symbol, and the fact that Q is a subfield
of Qv for all v.

By altering a and b by rational squares (using the fact that (ac2, b) = (a, b) for
all a, b, c ∈ Q×), we may assume that a and b are squarefree (positive or negative)
integers.

So, suppose that a, b are squarefree nonzero integers, and that (a, b)v = 1 for
all v ∈ V . We prove that (a, b) = 1 by induction on m = |a|+ |b|, following Serre’s
treatment.

Since a and b are nonzero, the base step is m = 2. Here there are three
possibilities (1, 1), (1,−1), (−1,−1). We have (−1,−1)R = −1, so this case is
irrelevant. It is easy to see that (1, 1) = 1, and (1,−1) = 1 (since the quadratic
form X2 + Y 2 − Z2 represents zero over any field). This finishes the base step.

Now, we treat the case m > 2 by induction. Without loss of generality, assume
that |a| ≤ |b|. Let b = ±p1 · · · · · pk be the prime factorization of b (noting that b
is squarefree). Note that we may assume b 6= ±1 since this is covered by the base
step – hence there exists a prime p = p1 in the factorization of b.

Serre proves the following:

Lemma 3.3. a is a square, modulo p.

Proof. If a ≡ 0 mod p, then a is automatically a square, modulo p. Other-
wise, a ∈ Z×p . Since (a, b)p = 1, there exist x, y, z ∈ Qp such that z2−ax2−by2 = 0.
We may assume that (x, y, z) ∈ Z3

p by scaling by powers of p. We may assume also
that (x, y, z) is primitive, in the sense that (x, y, z) 6∈ (pZp)3 by scaling carefully.
Since p|b, we have z2−ax2 ≡ 0 mod p. If x ≡ 0 mod p, then z ≡ 0 mod p, which
implies that by2 ≡ 0 mod p2, which implies that y ≡ 0 mod p, since b is square-
free, contradicting primitivity. Thus x 6≡ 0 mod p, so a ≡ (z/x)2 mod p. ¤

This lemma implies the following:
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Corollary 3.4. a is a square, modulo b.

Proof. The ring Z/bZ is isomorphic to the ring
∏

(Z/piZ). Thus, an element
of Z/bZ is a square if and only if it is a square modulo pi for all i. The previous
lemma applies. ¤

Now, we are ready to perform the reduction. Since a is a square modulo b,
there exist integers t, b′ such that:

t2 = a + bb′.

Since t2 = (−t)2 ≡ (b− t)2 mod b, we may assume that 0 ≤ |t| ≤ |b|/2. The above
formula shows that bb′ = t2−a = N(t+

√
a) is a norm from the extension k(

√
a)/k

when k = Q or Qv. Thus we have:

(a, b) = (a, b′), globally, and locally, (a, b)v = (a, b′)v.

If b′ is not squarefree, then b′ = b′′u2, where u ∈ Z, and in particular |b′′| ≤
|b′| < |b|, and finally,

(a, b) = (a, b′′), globally, and locally, (a, b)v = (a, b′′)v.

By induction, since |b′′| < |b| and b′′ is squarefree, and since (a, b′′)v = (a, b)v = 1
for all v, we have (a, b′′) = 1. Hence (a, b) = (a, b′′) = 1, and this finishes the
inductive argument.

3.1.3. Quadratic forms of rank 4. In rank 4, there is again a general principle
(over any field k of characteristic not equal to 2): A quaternary quadratic form
[a, b, c, d] represents zero if and only if there exists some x represented by
both [a, b] and [−c,−d]. This principle follows from Corollary 2 to Proposition 3’,
in IV.1.6 (essentially, from Witt cancellation, and the fact that hyperbolic planes
represent everything).

Since we are given that [a, b,−c,−d] represents zero over every Qv, there exists
some xv ∈ Qv such that [a, b] represents xv, and [c, d] represents xv, over every v.
Over Qv, [a, b] represents xv iff [a, b,−xv] represents zero, iff [1, ab,−axv] represents
zero, iff (−ab, axv)v = 1, iff (−ab, a)v(−ab, xv)v = 1, iff (−a, a)v(a, b)v(−ab, xv)v =
1, iff (a, b)v = (−ab, xv)v.

Thus, we know that (a, b)v = (−ab, xv)v for all places v. Similarly, we know
that (c, d)v = (−cd, xv)v for all v. Note moreover that

∏
v(a, b)v =

∏
v(c, d)v = 1.

Thus, the constants ε1,v = (−ab, xv)v and ε2,v = (−cd, xv) satisfy the conditions of
Theorem 4 of Chapter III.2.2. Hence, there exists x ∈ Q× such that:

(a, b)v = (−ab, x)v, and (c, d)v = (−cd, x)v for all v ∈ V.

Thus [a, b, x] represents zero in every Qv, and [c, d, x] represents zero in every Qv.
By the Hasse-Minkowski Theorem in rank 3, [a, b, x] represents zero in Q, and
[c, d, x] represents zero in Q. Thus [a, b] represents x in Q, and [c, d] represents x
in Q. Thus [a, b,−c,−d] represents x in Q.

3.2. Quadratic forms of rank n ≥ 5. In rank n ≥ 5, we apply induction on
n. The base steps are provided by the previously proven cases. Suppose that we
are given f = [a1, a2, a3, . . . , an]. Let h = [a1, a2] and g = [−a3, . . . ,−an], so that
f = h−̇g, in Serre’s notation.

We assume that f represents zero over every Qv. By a similar principle as the
rank 4 case, there exists xv ∈ Qv such that h represents xv, and g represents xv
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over Qv. In other words, there exist elements zv
1 , . . . , zv

n ∈ Qv, such that:

h(zv
1 , zv

2 ) = xv = g(zv
3 , . . . , zv

n).

Here Serre uses a topological argument. The topological facts that he uses are
the following:

• If S is a finite set of places (a finite subset of V ), then Q is dense in
QS =

∏
v∈S Qv.

• Multiplication and addition are continuous maps in Qv. In particular, h
determines a continuous map from Q2

v to Qv, and g determines a contin-
uous map from Qn−2

v to Qv.
• The subset Q×2

v is an open subset of Qv. Indeed, if z ∈ Q×2
v , and d ∈ Qv,

and val(d) > 3 + val(z), then z + d ∈ Q×2
v (since the valuations of z and

z + d, and the last three digits of z and z + d are the same).
Since Q×2

v is open in Qv, and multiplication is continuous, we see that the
translate xv · Q×v is open in Qv. Since h, g are continuous, the pre-images Hv =
h−1(xv ·Q×v ) and Gv = g−1(xv ·Q×v ) are open in Q2

v and Qn−2
v , respectively.

Let S be the finite subset of V containing ∞, 2, and all primes p such that
valp(ai) 6= 0 for some i ≥ 3. Let HS and GS denote the product of the open subsets
Hv and Gv, for v ∈ S, respectively. Then, since Q is dense in QS , we have Qm is
dense in Qm

S for all positive integers m. Therefore, we see that:

Q2 ∩HS 6= ∅, and Qn−2 ∩GS 6= ∅.
Tracing through the definitions, this implies that there exists z1, z2 ∈ Q such

that x = h(z1, z2) ∈ xvQ×2
v . Let f1 = [x, a3, a4, . . . , an] = [x]−̇g. Then, we observe

the following properties of f1:
• If v ∈ S, then g represents xv, and hence g represents x over Qv (since x

is equivalent to xv modulo squares in Qv). Thus f1 represents zero over
Qv.

• If v 6∈ S, then a3, . . . , an are v-adic units. Hence the discriminant is a
v-adic unit and the Hasse invariant εv is trivial (note that the Hilbert
symbol is trivial on units, away from the places v = 2,∞). It follows that
(−1,−d)v = εv = 1. Applying Theorem 6 of Section 2.2, g represents zero,
and thus every element of Qv (since g has rank at least 3). In particular,
g represents x, so that f1 represents zero over Qv.

Since f1 represents zero over Qv for v ∈ S and for v 6∈ S, we see that f1 represents
zero over Q by induction (f1 has rank one less that the rank of f). Since f1 = [x]−̇g,
and f1 represents zero over Q, we see that g represents x over Q. Since h represents
x over Q, and f = h−̇g, this implies that f represents zero over Q.

This concludes the proof of the Hasse-Minkowski Theorem.
Serre now presents a series of important corollaries:

Corollary 3.5. Let a ∈ Q×. In order that f represent a in Q, it is necessary
and sufficient that f represents a in every Qv.

Proof. Recall that f represents a (over a field k) iff [a]−̇f represents zero. ¤
Corollary 3.6. A quadratic form of rank at least 5 represents zero iff it is

indefinite (represents zero over R).

Proof. Every quadratic form of rank at least 5 represents zero over Qp for
every p. Thus only the real place must be checked. ¤
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Corollary 3.7. Suppose that n is the rank of f , and that n = 3 (or n = 4
and d(f) = 1). If f represents zero at all Qv, except at most one place, then f
represents zero.

Proof. When n = 3, we see that f represents zero over Qv iff (−1,−d)v = εv.
The product formula for the Hilbert symbol proves that if this equality is satisfied
for all but at most one place, then it is satisfied for every place. Similarly, when
n = 4, f represents zero over Qv if and only if d = 1 (which is given) and εv =
(−1,−1)v. Again, by the product formula for the Hilbert symbol, εv = (−1,−1)v

is true for all but at most one place iff it is true for all places. ¤
Serre remarks that for n = 2, if f represents zero over Qv for all but a finite

number of places, then f represents zero over Q. It suffices to consider f = [1,−a],
where a = −p1, . . . , pk is a squarefree integer. For f = [1,−a] to represent zero
over k, it is necessary and sufficient for a to be a square in k×. Suppose that a is
a square in Q×p for all but finitely many places – since a ∈ Z, this means that a is
a square, modulo p, for all but finitely many primes.

Let Pi denote the set of primes p for which pi is a square modulo p. Equivalently,
Pi is the set of primes p in a finite set of congruence classes modulo pi, by quadratic
reciprocity. By the Chinese Remainder Theorem, we see that the set of primes p
for which a is a non-square modulo p is a finite collection of congruence classes.
The infinitude of primes in arithmetic progressions shows that if these congruence
classes are nonempty, then they contain an infinite number of primes; thus a must
be a square in at every finite place Qp.

3.3. Classification. Perhaps the most important formulation of the Hasse-
Minkowski theorem is the following, Theorem 9 of Serre:

Theorem 3.8. Let f and f ′ be two quadratic forms over Q. For f and f ′ to be
equivalent over Q, it is necessary and sufficient that they are equivalent over each
Qv.

Proof. Necessity being trivial, we must show that if f and f ′ are equivalent
over Qv for all v, then they are equivalent over Q. The proof is inductive, via Witt’s
cancellation theorem. The base step, in rank 0, is trivial. So suppose that f, f ′ have
rank n > 0, and are equivalent over every Qv. Choose some a ∈ Q× represented
by f . Then a is represented by f ′ (by a previous corollary to the Hasse-Minkowski
Theorem). Thus we may write f ∼ [a] + g and f ′ ∼ [a] + g′, for some quadratic
forms g, g′ over Q. By Witt’s cancellation theorem, this implies that g ∼ g′ over
every Qv, since f ∼ f ′ and [a] ∼ [a] over every Qv. By induction, g ∼ g′ over Q.
Hence f ∼ f ′ over Q as well. ¤

In the corollary following this theorem, Serre uses the classification of quadratic
forms over Qv to classify quadratic forms over Q. Namely, for f, f ′ quadratic forms
over Q to be equivalent, it is necessary and sufficient for all of the local invariants
of f, f ′ to be the same. Namely, one must have rank(f) = rank(f ′), d(f) = d(f ′)
(the discriminants are equal in Q×/Q×2), (r, s) = (r′, s′) (the real signatures are
the same), and εv(f) = εv(f ′) (the local Hasse invariants are the same).

On the surface, it seems that this result might be difficult to use – there are an
infinite number of local invariants! However, if f is a quadratic form over Q, then
f ∼ [a1, . . . , an], where every ai is a squarefree integer (by multiplying by squares).
Let S denote the finite set of places, containing 2, ∞, and all primes dividing the
ai for some 1 ≤ i ≤ n. Then the Hilbert symbol (ai, aj)v is trivial for v 6∈ S. Thus
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the local invariants εv(f) are trivial outside of S. One only has to compute a finite
collection of invariants to know the equivalence class of a quadratic form over Q.

Since quadratic forms over Q are completely determined by the set of invari-
ants (n = rank, d, εv, r, s), the final question is what invariants actually arise from
quadratic forms. The list of conditions required is given by Serre:

(1) εv = 1 for almost all v ∈ V , and
∏

v εv = 1. Necessity of this condition
follows from properties of the Hilbert symbol.

(2) εv = 1 if n = 1, or if n = 2 and −d ∈ Q×2
v . For n = 1, necessity of this

condition is obvious. For n = 2, f = [a, b], d = ab, and if −d ∈ Q×2
v then

(a, b)v = (a,−ab)v(a,−a)v = (a,−d)v(a,−a)v = 1.

This proves the necessity in case n = 2 and −d ∈ Q×2
v .

(3) r, s ≥ 0 and r + s = n. This is obviously necessary, since any quadratic
form over R can be written in standard form: f ∼ [1, . . . , 1]+[−1, . . . ,−1],
with r ones and s negative ones.

(4) d∞ = sign(d) = (−1)s. Again this arises from the standard form over R.
(5) ε∞ = (−1)s(s−1)/2. Again, this follows from a computation over R.

Proposition 7 shows that these five conditions are the only restrictions on the
invariants of a quadratic form over Q. In other words, for every collection (0 ≤ n ∈
Z, d ∈ Q×/Q×2, εv ∈ ±1, 0 ≤ r, s ∈ Z), satisfying the above five conditions, there
is a quadratic form (unique up to equivalence) over Q having that collection as its
invariants. This completes the classification of quadratic forms over Q.

Remarks on: On the Hasse Principle

Consider a set of polynomials T ⊂ Q[X1, . . . , Xn]. For example, one might
consider the set of degree 2 polynomials, or the set of polynomials of the form
X2

1 = X3
2 + aX2 + b for arbitrary a, b ∈ Q. We say that the set of polynomials T

obeys the Hasse principle if the following holds: for every f ∈ T , for there to exist
a solution to f(X1, . . . , Xn) = 0 over Q, it is necessary and sufficient for there to
exist a solution to f(X1, . . . , Xn) = 0 over every Qv.

We have now seen that the Hasse principle holds for homogeneous quadratic
polynomials. By “homogenizing”, it also holds for inhomogeneous quadratic poly-
nomials. The Hasse principle is also known to hold for homogeneous cubic polyno-
mials of degree at least 9 (under a non-singularity assumption, Hooley 1988) or 10
(under no assumption, Heath-Brown 1983). It is further known that, for every odd
positive integer d, there exists a positive integer Cd, such that the Hasse princi-
ple holds for homogeneous polynomials, of degree d, in Cd variables (Birch, 1957).
Perhaps one may take Cd = d2 + 1? I believe that this problem is open.


