Two people are running on opposite sides of a street towards each. Person X is running at a rate of 3m/s and Person Y is running at a rate of 4m/s. If the street is 10m wide, at what rate is the distance between the runners changing when they pass each other and then 5s after they pass?

Solution: The situation can be pictured with a right triangle where one leg is the vertical distance across the street (10m), the other leg is the horizontal distance along the street between the two runners (label it x), and the hypotenuse is the actual distance between the two runners (label it z). By the Pythagorean Theorem, $z^2 = x^2 + 10^2$. If we let t denote the time variable, then differentiating with respect to t yields

$$2z \frac{dz}{dt} = 2x \frac{dx}{dt} + 0.$$

When the two runners pass each other, their horizontal distance apart is zero, hence $x = 0$. So we see that at this point, $\frac{dz}{dt} = 0$ m/s. After they pass each other, the horizontal distance apart is changing at a rate of $3 + 4 = 7$ m/s since the two runners are going in opposite directions at constant rates. This means that after the runners pass each other $\frac{dz}{dt} = \frac{7x}{z}$. Now five seconds after they pass, Person X has traveled $(3)(5) = 15$ m, and Person Y has traveled $(4)(5) = 20$ m. Hence $x = 15 + 20 = 35$ m. Then $z = \sqrt{35^2 + 10^2} = 5\sqrt{53}$ m. So altogether, we see that 5s after the runners pass each other, their distance apart is changing at a rate of

$$\frac{dz}{dt} = \frac{7(35)}{5\sqrt{53}} = 49 \frac{1}{\sqrt{53}} \approx 6.73$$ m/s.