Two-year-olds process negation online: Evidence from eye-tracking

Vishal Arvindam (UC Santa Cruz), Maxime Tulling and Ailís Cournane (New York University)
An apparent paradox:

Two-year-olds seem to grasp the meaning of “not”

- 2-year-olds spontaneously use negation as denial

 e.g. ‘Not a teddybear’

 (Pea 1978, Bellugi 1967)

- **18-27-month-olds** grasp the truth functional meaning of “not” in offline search tasks

 (Austin et al. 2014, de Carvalho et al. 2019)

BUT online preferential looking tasks don’t confirm

- **2-3-year olds** struggle to understand negative utterances without supportive discourse context and salient QUD

 (Nordmeyer & Frank 2014)

- **30-month-olds** only succeed with contrastive block of affirmatives preceding negation

 (Reuter et al. 2018)

But **object relatives** might be too complex?

→ acquired between age 4-6

 (Friedmann & Novogrodsky, 2004)
Introduction

Acquisition of Negation

But **object relatives** might be too complex?

→ acquired between age 4-6 (Friedmann & Novogrobsky, 2004)
Research Questions

This study: probing negation using *simple* declaratives

- **RQ1.** Do **2-year-olds** understand the truth-functional contribution of “not”?

- **RQ2.** What is the time course of this processing?
 - Is negative meaning derived from affirmative?
 - **two-step model**
 - “the door is not closed”
 - Or is negation immediately processed?
 - **one-step model**
 - (Tian et al. 2010 *inter alia*, Burnsky et al. 2017)

Question Under Discussion (QUD):

“Is the door closed?”

“The door is not closed”
Methods

Procedure: Visual World Paradigm
✓ adapted preferential looking paradigm in the form of a guessing game
✓ Test sentence: simple declarative
 e.g., It’s not a bee
✓ Context: salient Question under Discussion (QUD)
 e.g., who’s hiding?
✓ Scene: closed set of alternatives

Participants
N = 15 (M = 2;04; SD = 0;04)
✓ NYC area
✓ 5 excluded due to track loss (original N = 20)
✓ Projected N = 25 (testing stopped due to COVID)

Credit to Sarah Phillips
Methods: Sample trial

1. Trial setup
 Look, this is a bee!
 Look, this is an ant!

2. Probe
 Who’s hiding?

3. Test sentence
 a. **POSITIVE**: It’s also a bee (N=4)
 b. **NEGATIVE**: It’s not a bee (N=4)
 c. **MODAL**: It’s maybe a bee (*not discussed*)

4. Probe 2
 Who is it?

5. Reveal
 Look!
Methods: Experimental trial
Greater proportion of looks to the unmentioned animal **0-1500ms** (Kaup et al. 2006) in **NEGATIVE vs POSITIVE** condition if negation is computed in a one step (vs 2-step) manner.

Predictions

<table>
<thead>
<tr>
<th></th>
<th>One step</th>
<th>Two step</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td> Proportion of looks to the UNMENTIONED animal</td>
<td> Proportion of looks to the MENTIONED animal</td>
</tr>
<tr>
<td>Negative</td>
<td> 'It’s not a bee'</td>
<td> 'It’s also a bee'</td>
</tr>
<tr>
<td>Positive</td>
<td> 'It’s also a bee'</td>
<td> 'It’s also a bee'</td>
</tr>
</tbody>
</table>
Analysis

- Analysis window: 1500 ms from *noun onset*
- Trials with >25% trackloss 2500 ms before *noun onset* and 5000 ms after were removed (+-10%)
- Cluster based permutation with 10,000 permutations and threshold of $p < 0.05$ (Maris & Oostenveld, 2007)
- Analyses were conducted in using the eyetrackingR package (Dink & Fergusen, 2015)
Results: Unmentioned

It’s not/also a bee

Proportion looking to the unmentioned animal

Time in milliseconds (ms)

Analysis window (0-1500 ms)

Question: “Who is it?”

Reveal: “Look!”

Significant effect for negative > positive in analysis window of 0-1500ms with cluster at 300-800 ms

bin size = 100ms
Results: Mentioned

- No significant difference between conditions in analysis window of 0-1500ms
- POSITIVE not behaving as expected

bin size = 100ms
We found evidence 2-year-olds:
- Understand the truth-functional meaning of “not”
- Immediately engage in this computation within 1500ms of its occurrence
 → in line with a one-step model of comprehension
These results are in contrast with some prior work

- 4-year-olds spend more time looking at the positive counterpart (Nordmeyer & Frank 2014)
- “identifying the referent of negation requires ruling out the named object” p.36

- both adults and 4-5 year-olds activate positive counterpart in the processing of negation (Doyle et al. 2019)

But in line with others,

- no differences in processing time and accuracy between affirmative and negation sentences in 3-year-olds (Reuter et al. 2018)

- “looks to the affirmative referent in prior studies are a consequence of pragmatic accommodation of the negative and not a necessary step in the semantic processing of negation” p.379
Evidence against two-step model?

- Our results are compatible with two possibilities

1. Evidence for two-step processing (i.e. initial activation affirmative counterpart) is artefact of task design (Tian et al. 2010)

 - without salient QUD or context for negation

 participants accommodate and assertive QUD

 “the door is not closed”

Why would you talk about what’s not the case??
Evidence against two-step model?

- Our results are compatible with two possibilities
 1. Evidence for two-step processing (i.e. initial activation affirmative counterpart) is artefact of task design (Tian et al. 2010)

 - without salient QUD or context for negation participants accommodate and assertive QUD

 “the door is not closed”

Maybe it’s because the QUD is: “Is the door closed?”
Evidence against two-step model?

- Our results are compatible with two possibilities

1. Evidence for two-step processing (i.e. initial activation affirmative counterpart) is artefact of task design (Tian et al. 2010)

- without salient QUD or context for negation participants accommodate and assertive QUD

“the door is not closed”
Discussion
One or Two Steps?

Evidence against two-step model?

✔ Our results are compatible with two possibilities

2. Two-step processing is **skipped** when there is salient QUD and pragmatic context

→ e.g. because of pre-activation of alternatives?

→ semantics of question thought to be set of its possible answers (e.g. Hamblin 1973, Karttunen 1977)

“Who’s hiding?”
Evidence against two-step model?

- Our results are compatible with two possibilities:
 2. Two-step processing is **skipped** when there is salient QUD and pragmatic context
 - e.g. because of pre-activation of alternatives?
 - semantics of question thought to be set of its possible answers (e.g. Hamblin 1973, Karttunen 1977)

“It’s not a bee”
Notably,

- Our paradigm does not follow classic linking hypothesis where looking = searching for referent (the referent is the *hidden* character)
- Looking behavior seems guided by predictions
- Expands our methodological repertoire for online processing of proposition level operators
Conclusion

2-year-olds compute negation immediately within 1500 ms of its occurrence

- in preferential looking paradigm with eye-tracking

when provided with:

- simple declarative sentences
- salient Question under Discussion (QUD)
- closed set of alternatives

Compatible with one-step model of negation processing (e.g. Tian et al. 2010, Reuter et al. 2018)
Acknowledgements

We extend warm thanks to our RAs: Jenna Polan, Kathryn Rafailov, Melissa Rojas, Michael Marinaccio and Rachel Arbacher.

We also thank Sarah Phillips, Alicia Parrish, and rest of the members of the Child Language Lab and Learn Lab @ NYU, The ModSquad @ UMD, and S/Lab at UCSC for comments and suggestions.

And all our gratitude to all families that participated!

This work has been generously supported by NSF grant BCS-1551628.
References

Appendix: Looks to Hidden

[Graph showing the proportion looking to the hidden animal over time in milliseconds (ms)]

Proportion looking to the hidden animal

Time in milliseconds (ms)
Appendix: Modal mentioned
Appendix: Modal

Proportion looking to the unmentioned animal

Time in milliseconds (ms)
Appendix: Modal hidden
Appendix: Individual variation

- Cluster of outliers skew very young (<28 months)
- Less variation in the NEGATIVE condition compared to the POSITIVE condition.
- Effect of negation fairly robust across age range.
Appendix: Individual variation mentioned

Some outliers in both conditions are younger than 30 months.

Still, lots of variation in the ALSO condition.

Effect possibly driven by alternatives generated by also.