Do 2-year-olds understand epistemic maybe?

Maybe!

Vishal Arvindam, Maxime Tulling & Ailis Cournane

1. University of California, Santa Cruz, 2. New York University

Introduction

- Epistemic language is often argued to be absent until age 3 [1,2]
- Studies rely on syntactically complex forms (e.g., modal or belief verbs: must, know) & taxing behavioral tasks

But, by age 2:

- Children exhibit possibility and belief reasoning
- Precursors to epistemic reasoning [3,4,5]
- Children productively use epistemic adverbs like maybe [6]
- Syntactically less complex than modal or belief verbs [7]
- So epistemic adverb ‘maybe’ & an implicit online comprehension task reduce complexity & allow us to probe children’s understanding of epistemic possibility.

Research Q: Do 2-year-olds understand that maybe expresses epistemic possibility?

Methods

Figure 1. Example Trial with ROIs

- **Stimuli:** To test 2-year-old comprehension we rely on partially-observed animals, where epistemic uncertainty is linked to category membership [3].
- Videos of 10 animal pairs sharing one common feature (Figure 1).
- **Conditions:** Positive, Negative, & Modal.
- Prompt: “Who’s hiding?”
- Probed again (after 2500 ms) with: “Who is it?”

Participants: 13 2-year-olds, M = 2.04; SD = 0.04 (5 excluded, projected N=25)

Procedure: Visual world eye-tracking

- Adapted preferential looking paradigm [8]
- Guessing game
- Reveal hidden in negative and positive condition
- Animal pairs pseudo-randomized across participants (max 2 same pair)
- Balanced screen and introduction order

Hypotheses:

1. Proportion of looks to mentioned animal highest in positive condition (mentioned lowest)
2. Proportion of looks to unmentioned animal lowest in negative condition (unmentioned highest)
3. Modal condition split — both animals open possibilities, given the available cues
4. Secondary, expect more looks to hidden in modal — search for disambiguating cues

Table 1. Sample Auditory Stimuli

<table>
<thead>
<tr>
<th>Sample Trial (Beet and Ant)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trial set-up: Look, this is a beet! (bee bounces) Look, this is an ant! (ant bounces) Who’s hiding?</td>
</tr>
<tr>
<td>Conditions: Positive</td>
</tr>
<tr>
<td>Negative</td>
</tr>
<tr>
<td>Modal</td>
</tr>
</tbody>
</table>

Figure 2. Proportion of Looks to Regions of Interest per Condition

1. **Descriptive preliminary results:**
 - Greater proportion of looks to unmentioned in negative condition (expected)
 - Greater proportion of looks to mentioned in positive (expected) and modal condition (unexpected)
 - Trend clearer for modal condition

Results

1. **Main finding:** Looking behavior does not suggest consideration of multiple possibilities for maybe!
2. **Increased looking to unmentioned animal and no expected back-and-forth looking behavior**
3. **But more looks to hidden animal suggests consideration of evidence or anticipation of (unknown) reveal
4. **Reverse asymmetry between production and comprehension of epistemic verbal component**
5. **Why:** Still an open question. Some possibilities:
 - They don’t understand that maybe expresses epistemic possibility.
 - They understand maybe as an item that prompts guessing [Leahey & Carey 2019]
 - They understand maybe but prematurely close.
 - Avoid the cognitive load and endorse one possibility [14,16,17]; if so, the time-course suggests this happens rapidly (c.f.17)
6. **Clearer results emerging for negative condition:
 - More looks to unmentioned vs mentioned animal
 - Corroborates previous findings that 2-year-olds understand negation (e.g., Carvalho et al. 2019)
7. **Trending results emerging for positive condition:
 - Slight increase in looks to mentioned vs unmentioned

Limitations and Future directions

- Complete data-collection (N = projected >25)
- Our sample of 2-year-olds skewed young (mean 2.4)
- Skewed trial loss for also condition (and less trials POS/NEG than MOD)

Acknowledgements: We extend warm thanks to our RAs: Jenna Polan, Kathryn Rafailov, Melissa Rojas, Michael Marinaccio and Rachel Arbacher. We also thank Sarah Phillips, Alicia Parrish, and rest of the members of the Child Language Lab and Learn Lab @ NYU and The ModSquad @ UMD for comments and suggestions. This work has been generously supported by NSF grant BCS-1551628.