1. Complete the sentence: a linear transformation is invertible if it is _____ and _____.
 Given a linear transformation T that is invertible, explain how to define its inverse.

2. Is the matrix
 \[
 \begin{bmatrix}
 5 & 3 & -1 \\ 3 & -2 & 4 \\ 7 & 8 & -5
 \end{bmatrix}
 \]
 invertible? If so, find the inverse.

3. • Is the following a subspace of \mathbb{R}^3? Prove or disprove:
 \[
 H = \left\{ \begin{bmatrix}
 2x \\ 3y \\ x - y
 \end{bmatrix} : x, y \in \mathbb{R} \right\}
 \]

 • Is the following a subspace of \mathbb{R}^3? Prove or disprove:
 \[
 H = \left\{ \begin{bmatrix}
 2x \\ 3y^2 \\ x^2 - y
 \end{bmatrix} : x, y \in \mathbb{R} \right\}
 \]

4. Define the rank and nullity of a matrix A. What is the relationship between these quantities? Consider the matrix
 \[
 A = \begin{bmatrix}
 5 & 3 & -1 & 2 \\ 3 & -2 & 4 & -1 \\ 7 & 8 & -6 & 5
 \end{bmatrix}
 \]. Calculate the rank and nullity of A.

5. Use determinants to calculate the value of a such that the following vectors are linearly dependent.
 \[
 v_1 = \begin{bmatrix}
 2 \\ -4 \\ 1
 \end{bmatrix}, \quad v_2 = \begin{bmatrix}
 -5 \\ 7 \\ -3
 \end{bmatrix}, \quad v_3 = \begin{bmatrix}
 8 \\ a \\ 4
 \end{bmatrix}.
 \]

6. Find a basis for the eigenspace corresponding to the eigenvalue $\lambda = 13$ for the matrix
 \[
 A = \begin{bmatrix}
 \end{bmatrix}.
 \]