Proposition 1 ([DF], p342). Let R be a ring and let M be an R-module. A subset N of M is an R-submodule of M if and only if

1. N is nonempty and
2. $x + ry \in N$ for all $r \in R$ and all $x,y \in N$.

Exercise 10.1.4. Let R be a ring with identity, let M be the R-module R^n with component-wise addition and multiplication, and let I_1, I_2, \ldots, I_n be left ideals of R for some $n \in \mathbb{N}$. The following are submodules of R^n:

a. $N_1 = \{(i_1, i_2, \ldots, i_n) : i_k \in I_k$ for all $k \in \{1, 2, \ldots, n\}\}$

b. $N_2 = \{(x_1, x_2, \ldots, x_n) : \sum_{k=1}^{n} x_k = 0\}$.

Proof. To prove (a), it suffices to show, by Proposition 1, that N_1 is nonempty and $x + ry \in N_1$ for all $r \in R$ and all $x,y \in N_1$. For the first condition, $(0,0,\ldots,0) \in N_1$ since I_k is a subgroup of R containing the additive identity 0 for all $k \in \{1, 2, \ldots, n\}$. That is, N_1 is nonempty.

For the second condition, let $x = (i_k)_{k \in \mathbb{Z}^+}, y = (y_k)_{k \in \mathbb{Z}^+} \in N_1$ and let $r \in R$. Then, by definition of addition and scalar multiplication,

$$x + ry = (i_k)_{k \in \mathbb{Z}^+} + r(y_k)_{k \in \mathbb{Z}^+}$$

$$= (i_k)_{k \in \mathbb{Z}^+} + (ry_k)_{k \in \mathbb{Z}^+}$$

$$\in N_1$$

since $i_k + ry_k \in I_k$ for all $k \in \{1, 2, \ldots, n\}$ by the left ideal axioms. This gives us (a).

To establish (b), we apply a similar method as that used in (a). Since $\sum_{k=1}^{n} 0 = 0$, the element $(0,0,\ldots,0) \in N_2$. Thus N_2 is nonempty. Moreover if $x = (i_k)_{k \in \mathbb{Z}^+}, y = (y_k)_{k \in \mathbb{Z}^+} \in N_1$ and $r \in R$, then

$$x + ry = (i_k)_{k \in \mathbb{Z}^+} + r(y_k)_{k \in \mathbb{Z}^+} = (i_k + ry_k)_{k \in \mathbb{Z}^+}.$$

Therefore, because

$$\sum_{k=1}^{n} x_k + ry_k = \sum_{k=1}^{n} x_k + r \left(\sum_{k=1}^{n} y_k \right)$$

$$= 0 + r0$$

$$= 0,$$

we have that $x + ry \in N_2$ by definition. \qed

Exercise 10.1.5. Let R be a ring with identity, let I be a left ideal of R and let M be a left R-module. Define

$$IM := \left\{ \sum_{finite} a_i m_i : a_i \in I \text{ and } m_i \in M \text{ for all } i \right\}.$$

IM is an R-submodule of M.
Proof. It suffices to show, by Proposition[1] that \(IM \) is nonempty and \(x + ry \in IM \) for all \(r \in R \) and all \(x, y \in IM \). For the former condition, observe that \(0_R \in I \) since \(I \) is an additive subgroup of \(R \) and \(0_M \in M \) because \(M \) is a group. Hence the finite sum \(0_R \cdot 0_M = 0_M \) satisfies the membership condition of \(IM \). Therefore \(IM \) is nonempty.

For the latter condition, let \(r \in R \) and let \(x = \sum_{i=1}^{n} a_i m_i, y = \sum_{i=1}^{m} a'_i m'_i \in IM \) such that \(n, m \in \mathbb{N} \), \(a_i, a'_i \in I \) and \(m_i, m'_i \in M \). Then

\[
x + ry = \sum_{i=1}^{n} a_i m_i + r \cdot \left(\sum_{i=1}^{m} a'_i m'_i \right) \\
= \sum_{i=1}^{n} a_i m_i + \sum_{i=1}^{m} (ra'_i)m'_i \\
= \sum_{i=1}^{n} a_i m_i + \sum_{i=1}^{m} a''_i m'_i
\]

for \(a''_i = ra'_i \in I \). That is, \(x + ry \) is a finite sum of elements of the form \(am \) such that \(a \in I \) and \(m \in M \). Thus \(x + ry \in IM \). \(\Box \)

Exercise 10.1.6. Let \(R \) be a ring with identity and let \(M \) be a left \(R \)-module. For any nonempty collection \(\{N_i\}_{i \in I} \) of \(R \)-submodules of \(M \), the intersection

\[
N = \bigcap_{i \in I} N_i
\]

is an \(R \)-submodule of \(M \).

Proof. Observe that \(N \) is a subset of \(M \) since, for all \(n \in N \), \(n \) is an element of some \(N_i \) with \(i \in I \). Hence \(n \in M \). So it suffices to show, by Proposition[1] that \(N \) is nonempty and \(x + ry \in N \) for all \(r \in R \) and all \(x, y \in N \). For the first property, \(0_M \in N_i \) for all \(i \in I \) because each \(N_i \) is an additive subgroup of \(M \). Therefore \(0_M \in N = \cap_{i \in I} N_i \) and, so, \(N \) is nonempty.

For the second property, let \(r \in R \) and let \(x, y \in N \). Then \(x \) and \(y \) are elements of \(N_i \) for all \(i \in I \) by definition. Thus, by the submodule axioms, \(x + ry \in N_i \) for each \(i \in I \). That is, \(x + ry \in N = \cap_{i \in I} N_i \). \(\Box \)

Exercise 10.1.7. Let \(R \) be a ring with identity and let \(M \) be a left \(R \)-module. If \(N_1 \subseteq N_2 \subseteq \ldots \) is an ascending chain of \(R \)-submodules of \(M \), then

\[
N = \bigcup_{i=1}^{\infty} N_i
\]

is an \(R \)-submodule of \(M \) as well.

Proof. Suppose that \(N_1 \subseteq N_2 \subseteq \ldots \) is an ascending chain of \(R \)-submodules of \(M \). To prove that \(N \) is also an \(R \)-submodule of \(M \), it suffices to show, by Proposition[1] that \(N \) is nonempty and that \(x + ry \in N \) for all \(r \in R \) and all \(x, y \in N \).

Since \(0 \in N_1 \), \(0 \) is an element of the union \(N \). Hence \(N \) is nonempty. For the remaining property, let \(r \in R \) and let \(x, y \in N \). Because \(x \) and \(y \) are elements of \(N \), each must be an element of a submodule. That is, \(x \in N_j \) and \(y \in N_k \) for some \(j, k \in \mathbb{N} \). By the ascending chain hypothesis, \(N_{min(j,k)} \subseteq N_{max(j,k)} \). Therefore both \(x \) and \(y \) are members of \(N_{max(j,k)} \). Moreover, by the submodule axioms, \(x + ry \in N_{max(j,k)} \). Hence, since \(N_{max(j,k)} \subseteq N \), we have that \(x + ry \in N \). \(\Box \)

Definition. Let \(R \) be a ring and let \(M \) be a left \(R \)-module. A **torsion element** is an element \(m \in M \) such that \(rm = 0 \) for some nonzero \(r \in R \).
Definition. Let R be an integral domain and let M be a left R-module. The set

$$\text{Tor}(M) = \{m \in M : m \text{ is a torsion element}\}$$

is the torsion submodule of M.

Exercise 10.1.8. Let R be a ring with identity and let M be a left R-module.

a. If R is an integral domain, then $\text{Tor}(M)$ is an R-submodule of M.

b. there exists a ring R with identity and a left R-module M such that $\text{Tor}(M)$ is not a submodule of M.

c. if R has zero divisors, then every nonzero left R-module contains nonzero torsion elements.

Proof. To prove (a), we suppose that R is an integral domain. It suffices to show, by Proposition 1, that $\text{Tor}(M)$ is nonempty and $x + ry \in \text{Tor}(M)$ for all $x, y \in \text{Tor}(M)$ and all $r \in R$.

For the former condition, $0 \in \text{Tor}(M)$ since $1 \cdot 0 = 0$. Hence $\text{Tor}(M)$ is nonempty. For the final condition, let $x, y \in \text{Tor}(M)$ and let $r \in R$. As torsion elements, there exist nonzero $s, t \in R$ such that $s \cdot x = 0$ and $t \cdot y = 0$. Thus

$$(st) \cdot (x + ry) = (st) \cdot x + [(st)r] \cdot y \quad \text{by the } R \text{-module axioms}$$

$$= (ts) \cdot x + [(sr)t] \cdot y \quad \text{by the commutativity of } R$$

$$= t \cdot (s \cdot x) + (sr) \cdot (t \cdot y) \quad \text{by the } R \text{-module axioms}$$

$$= t \cdot 0 + (sr) \cdot 0 \quad \text{since } s \cdot x = 0 \text{ and } t \cdot y = 0$$

$$= 0.$$

Because R is an integral domain and s, t are nonzero, the product st is nonzero. Therefore, we have shown that $(st) \cdot (x + ry) = 0$ for a nonzero $st \in R$. That is, $x + ry \in \text{Tor}(M)$ and (a) is immediate.

To see that (b) holds, consider the ring $R = M = \mathbb{Z}/6\mathbb{Z}$ and the elements $2, 3 \in R$. R is a left R-module with respect to addition and left ring multiplication. Moreover, since

$$\overline{2} \cdot \overline{3} = \overline{6} = 0$$

and

$$\overline{3} \cdot \overline{2} = \overline{6} = 0,$$

we find that $\overline{2}$ and $\overline{3}$ are elements of $\text{Tor}(M)$. However, since $\overline{2} + \overline{3} = \overline{5} \notin \text{Tor}(M)$, M is not closed under addition. That is, $\text{Tor}(M)$ is not a subgroup of M and, hence, it is not a submodule of M either. Thus there exists a ring R and R-module M with the desired properties.

For (c), suppose that R contains the zero divisors s and r such that $sr = 0$. Then, for any nonzero left R-module M with nonzero element m, either $r \cdot m = 0$ or $r \cdot m \neq 0$. In the first case of $r \cdot m = 0$, $m \in \text{Tor}(M)$ since r is nonzero by hypothesis. In the second case of $r \cdot m \neq 0$, we find that $r \cdot m \in \text{Tor}(M)$ because

$$s \cdot (r \cdot m) = (sr) \cdot m \quad \text{by the } R \text{-module axioms}$$

$$= 0 \cdot m \quad \text{by hypothesis}$$

$$= 0.$$

In either case, there exists a nonzero element contained in $\text{Tor}(M)$. This is the desired result.

Definition. Let R be a ring with identity and let M be a left R-module. The annihilator of a submodule N of M is the set

$$\text{Ann}(N) = \{r \in R : r \cdot n = 0 \text{ for all } n \in N\}.$$
Exercise 10.1.9. Let R be a ring with identity and let M be a left R-module. For any R-submodule N of M, the annihilator of N in R is a two-sided ideal of R.

Proof. Suppose that N is an R-submodule of M. It suffices to show that Ann(N) is nonempty and that $x + rys \in$ Ann(N) for all $x, y \in$ Ann(N) and all $r, s \in R$. For the former condition, consider the element 0_R. Since

$$0_R \cdot n = 0_N$$

for any $n \in N$, we see that $0_R \in$ Ann(N).

For the remaining condition, we let $x, y \in$ Ann(N) and let $r, s \in R$. For any $n \in N$, we have that

$$(x + rys) \cdot n = x \cdot n + r \cdot (y \cdot (s \cdot n))$$

by the R-module axioms

$$= 0 + r \cdot 0$$

since $x, y \in$ Ann(N) and $sn \in N$

$$= 0.$$

Hence $x + rys \in$ Ann(N).

Definition. Let R be a ring with identity and let M be a left R-module. The annihilator of an ideal I of R is the set

$$\text{Ann}(I) = \{ m \in M : i \cdot m = 0 \text{ for all } i \in I \}.$$

Exercise 10.1.10. Let R be a ring with identity and let M be a left R-module. For any ideal I of R, Ann(I) is an R-submodule of M.

Proof. Suppose that I is an ideal of R. To prove the desired result, it suffices to show, by Proposition 1, that Ann(I) is nonempty and $x + ry \in$ Ann(I) for all $x, y \in$ Ann(I) and all $r \in R$.

To see that Ann(I) is nonempty, observe that

$$i \cdot 0_N = 0_N$$

for all $i \in I$. Thus $0_N \in$ Ann(I).

For the remaining condition, let $x, y \in$ Ann(I) and let $r \in R$. If $i \in I$, then $ir \in I$ by the ideal axioms. Hence

$$i \cdot (x + ry) = i \cdot x + (ir) \cdot y$$

by the R-submodule axioms

$$= 0 + 0$$

since $x, y \in$ Ann(I) and $ir \in I$

$$= 0.$$

Therefore $x + ry \in$ Ann(I).

Exercise 10.1.11. Let M be the \mathbb{Z}-module $\mathbb{Z}/24\mathbb{Z} \times \mathbb{Z}/15\mathbb{Z} \times \mathbb{Z}/50\mathbb{Z}$.

a. Ann(M) = 600\mathbb{Z} and

b. Ann($2\mathbb{Z}$) $\cong G \times H$ such that $G = ((12 + 24\mathbb{Z}, 0 + 15\mathbb{Z}, 0 + 50\mathbb{Z}))$ and $H = ((0 + 24\mathbb{Z}, 0 + 15\mathbb{Z}, 25 + 50\mathbb{Z}))$.

Proof. For (a), we appeal to the definition of set equality. To see the first inclusion, let $a \in$ Ann(M). As it annihilates all elements of M, a must annihilate $(1 + 24\mathbb{Z}, 1 + 15\mathbb{Z}, 1 + 50\mathbb{Z}) \in M$. That is,

$$0 = a \cdot (1 + 24\mathbb{Z}, 1 + 15\mathbb{Z}, 1 + 50\mathbb{Z}) = (a + 24\mathbb{Z}, a + 15\mathbb{Z}, a + 50\mathbb{Z}).$$

Since $0 = (0 + 24\mathbb{Z}, 0 + 15\mathbb{Z}, 0 + 50\mathbb{Z})$, the previous equation implies that

$$\begin{cases}
a + 24\mathbb{Z} = 0 + 24\mathbb{Z}, \\
a + 15\mathbb{Z} = 0 + 15\mathbb{Z} \text{ and} \\
a + 50\mathbb{Z} = 0 + 50\mathbb{Z}.
\end{cases}$$
Hence $a \in 24\mathbb{Z} \cap 15\mathbb{Z} \cap 50\mathbb{Z} = 600\mathbb{Z}$.

For the opposite inclusion, let $a \in 600\mathbb{Z}$. Because 24, 15 and 50 are divisors of 600, observe that ab is an element of each of $24\mathbb{Z}$, $15\mathbb{Z}$ and $50\mathbb{Z}$ for any $b \in \mathbb{Z}$. Therefore, for all $(x+24\mathbb{Z}, y+15\mathbb{Z}, z+50\mathbb{Z}) \in M$,

$$a \cdot (x + 24\mathbb{Z}, y + 15\mathbb{Z}, z + 50\mathbb{Z}) = (ax + 24\mathbb{Z}, ay + 15\mathbb{Z}, az + 50\mathbb{Z}) = (0 + 24\mathbb{Z}, 0 + 15\mathbb{Z}, 0 + 50\mathbb{Z}) = 0.$$

Thus a annihilates all elements of M and, consequently, $a \in \text{Ann}(M)$ and we have now shown that $\text{Ann}(M) = 600\mathbb{Z}$. This is (a).

For (b), we proceed similarly to the argument given in (a). To demonstrate the first inclusion, let $a = (x + 24\mathbb{Z}, y + 15\mathbb{Z}, z + 50\mathbb{Z}) \in \text{Ann}(2\mathbb{Z})$.

That is, we have the system of linear congruences

$$\begin{cases}
2x \equiv 0 \pmod{24}, \\
2y \equiv 0 \pmod{15} \\
2z \equiv 0 \pmod{50}.
\end{cases}$$

By elementary number theoretic results, this system is equivalent to

$$\begin{cases}
x \equiv 0 \pmod{12}, \\
y \equiv 0 \pmod{15} \\
z \equiv 0 \pmod{25}.
\end{cases}$$

Therefore $x = 12x'$, $y = 15y'$ and $z = 25z'$ for some $x', y', z' \in \mathbb{Z}$. Moreover,

$$\begin{align*}
(x + 24\mathbb{Z}, y + 15\mathbb{Z}, z + 50\mathbb{Z}) &= (12x' + 24\mathbb{Z}, 15y' + 15\mathbb{Z}, 25z' + 50\mathbb{Z}) \\
&= (12x' + 24\mathbb{Z}, 0 + 15\mathbb{Z}, 25z' + 50\mathbb{Z}) \\
&= (12x' + 24\mathbb{Z}, 0 + 15\mathbb{Z}, 0 + 50\mathbb{Z}) + (0 + 24\mathbb{Z}, 0 + 15\mathbb{Z}, 25z' + 50\mathbb{Z}) \\
&\in G + H.
\end{align*}$$

Hence $\text{Ann}(2\mathbb{Z}) \subseteq G + H$.

For the opposite inclusion, let $a \in G + H$. Then

$$a = n \cdot (12 + 24\mathbb{Z}, 0 + 15\mathbb{Z}, 0 + 50\mathbb{Z}) + m \cdot (0 + 24\mathbb{Z}, 0 + 15\mathbb{Z}, 25 + 50\mathbb{Z})$$

for some $n, m \in \mathbb{Z}$. For any element i in the ideal $2\mathbb{Z}$, it follows that $i = 2j$ for some $j \in \mathbb{Z}$. Thus

$$i \cdot a = (2j) \cdot [(12n + 24\mathbb{Z}, 0 + 15\mathbb{Z}, 0 + 50\mathbb{Z}) + (0 + 24\mathbb{Z}, 0 + 15\mathbb{Z}, 25m + 50\mathbb{Z})]$$

$$= (2j) \cdot (12n + 24\mathbb{Z}, 0 + 15\mathbb{Z}, 0 + 50\mathbb{Z}) + (2j) \cdot (0 + 24\mathbb{Z}, 0 + 15\mathbb{Z}, 25m + 50\mathbb{Z})$$

$$= (24jn + 24\mathbb{Z}, 0 + 15\mathbb{Z}, 0 + 50\mathbb{Z}) + (0 + 24\mathbb{Z}, 0 + 15\mathbb{Z}, 50jm + 50\mathbb{Z})$$

$$= (0 + 24\mathbb{Z}, 0 + 15\mathbb{Z}, 0 + 50\mathbb{Z}) + (0 + 24\mathbb{Z}, 0 + 15\mathbb{Z}, 0 + 50\mathbb{Z})$$

$$= 0.$$

Hence a annihilates all elements of $2\mathbb{Z}$ and, therefore, $a \in \text{Ann}(2\mathbb{Z})$. This establishes the opposite inclusion of $G + H \subseteq \text{Ann}(2\mathbb{Z})$ and, so, $\text{Ann}(2\mathbb{Z}) = G + H$. Furthermore, since $G \cap H = \{0\}$, it follows that $G + H \cong G \times H$ and, so, $\text{Ann}(2\mathbb{Z}) \cong G \times H$.

\[\square \]
Exercise 10.1.14. Let R be a ring with identity and let M be a left R-module. For any element z of the center of R,

$zM = \{ zm : m \in M \}$

is an R-submodule of M.

Proof. Let z be an element of the center of R. It suffices to show, by Proposition 1, that zM is nonempty and $x + ry \in zM$ for all $x, y \in zM$ and all $r \in R$. Since $0M \in M$,

$z \cdot 0M = 0M \in zM.$

That is, zM is nonempty.

For the remaining submodule criterion, let $x = zm, y = zm' \in zM$ and let $r \in R$. Then

$x + ry = z \cdot m + r \cdot (z \cdot m')$

$= z \cdot m + (rz) \cdot m'$ by the R-submodule axioms

$= z \cdot m + (zr) \cdot m'$ since z is in the center of R

$= z \cdot (m + r \cdot m')$ by the R-submodule axioms.

Therefore, because $m + r \cdot m' \in M$, we have that $x + ry \in zM$.

Corollary. Let $R = M_2(F)$ for a field F and let

$e = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \in M_2(F).$

Then e is not in the center of R.

Proof. Consider R as a left R-module in the natural way. The element $e = e \cdot 1_R$ is a member of R and, also,

$r = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \in R.$

Since

$re = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} = r$

and $r \notin eR$, we find that eR is not closed under scalar multiplication. Therefore eR is not a submodule of R. This implies, by the contrapositive to Exercise 10.1.14, that e is not in the center of R.

Exercise 10.1.16. Let $V = F^n$ for a field F and let $T : V \to V$ be the shift operator defined by

$T(v_1, v_2, \ldots, v_n) = (v_2, \ldots, v_n, 0).$

If we view V as an $F[x]$-module with x acting by the operator T and if U is an $F[x]$-submodule of V, then $U = U_k$ for some $U_k = \text{Span}(\{ e_i : 1 \leq i \leq k \})$ such that $k \in \{ 0, 1, \ldots, n \}$.

Proof. The abelian group $V = F^n$ is a left $F[x]$-module when endowed with a scalar multiplication $\cdot : F[x] \times V \to V$ defined by

$\left(\sum_{i=0}^{m} a_i x^i \right) \cdot v = \sum_{i=0}^{m} a_i T^i(v)$

for all $\sum_{i=0}^{m} a_i x^i \in F[x]$ and all $v \in V$.

With this definition in mind, suppose that U is an $F[x]$-submodule of V. There exists a maximal element in the set of integers

$S = \{ m \in \mathbb{Z} : \text{ there exists an element } u \in U \text{ such that } u \text{ has nonzero } m\text{th coordinate} \}$
because there are only \(n \) coordinates in any element of \(V \). Let \(k \) be this maximal integer of \(S \). That is, for all \(u \in U \) and all \(l > k \), the \(l \)th coordinate of \(u \) is equal to 0.

We claim that \(U = U_k \) for this maximal \(k \). To see this, observe that \(U \) is closed under scalar multiplication by \(F[x] \) since it is a submodule. Hence, if \(f \) is a nonzero element in the \(k \)th coordinate of an element \(u = (u_1, \ldots, u_{k-1}, f, 0, \ldots, 0) \in U \), then

\[
(f^{-1}x^{k-1}) \cdot u &= f^{-1}T^{k-1}(u) \\
&= f^{-1} \cdot (f, 0, \ldots, 0) \\
&= (1, 0, \ldots, 0) \\
&= e_1.
\]

Thus \(e_1 \in U \).

Furthermore, since \(U \) is also closed under addition,

\[
(f^{-1}x^{k-2}) \cdot u - (f^{-1}u_{k-1}) \cdot e_1 &= f^{-1}T^{k-2}(u) - (f^{-1}u_{k-1}, 0, \ldots, 0) \\
&= f^{-1}(u_{k-1}, f, 0, \ldots, 0) - (f^{-1}u_{k-1}, 0, \ldots, 0) \\
&= (0, 1, 0, \ldots, 0) \\
&= e_2.
\]

So \(e_2 \in U \).

Continuing in this way, we find that \(e_i \in U \) for all \(i \in \{1, 2, \ldots, k\} \). Therefore \(\text{Span} \{ \{e_i : 1 \leq i \leq k\} \} = U_k \) is contained in \(U \) by the \(F[x] \)-submodule properties. That is, \(U_k \subseteq U \). Moreover, since \(k \) is the maximal coordinate for which there is an element with nonzero entry, it follows that \(U \subseteq U_k \).

Hence \(U = U_k \), as desired. \(\square \)

Exercise 10.1.18. Let \(F = \mathbb{R} \), let \(V = \mathbb{R}^2 \) and let \(T \in \text{End}_{\mathbb{R}}(V) \) be the map such that

\[
T(v) = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \cdot v
\]

for all \(v \in V \). Then \(V \) and \(0 \) are the only \(F[x] \)-submodules of \(V \) with respect to \(T \).

Proof. Let \(U \) be an \(F[x] \)-submodule of \(V \). Since \(F \) embeds into \(F[x] \), we may view \(V \) as an \(F \)-vector space and \(U \) as an \(F \)-subspace of \(V \). Either \(U = 0 \), \(U = V \) or the dimension of \(U \) as an \(F \)-subspace is equal to 1. If \(\text{dim}_F(U) = 1 \), then there exists a nonzero element \(u \in U \) such that \(U = \text{span}_F(u) \). For \(U \) to be an \(F[x] \)-submodule of \(V \), we must have that \(T(U) \subseteq U \) by the discussion in §10.1 of [DF]. In particular, \(T(u) = \lambda u \) for some \(\lambda \in \mathbb{R} \). Therefore, by definition, \(u \) is an eigenvector of \(T \) with a real eigenvalue. However, the eigenvalues of \(T \) are \(\pm i \) and, so, \(T \) has no real eigenvalues. This contradiction implies that such a \(U \) cannot occur. That is, \(U = \{0\} \) or \(U = V \). \(\square \)

Exercise 10.1.19. Let \(F = \mathbb{R} \), let \(V = \mathbb{R}^2 \) and let \(T \in \text{End}_{\mathbb{R}}(V) \) be the map defined by \(T(a, b) = (0, b) \). Then the set

\[
S = \{ W \subseteq V : W \text{ is an } F[x] \text{-submodule of } V \}
\]

satisfies \(S = \{ 0, W_x, W_y, V \} \) such that \(W_x = \{ (a, 0) \in V : a \in \mathbb{R} \} \) and \(W_y = \{ (0, b) \in V : b \in \mathbb{R} \} \).

Proof. The set of \(F[x] \)-submodules is equal to the set

\[
S = \{ W \subseteq V : W \text{ is a subspace of } V \text{ and } W \text{ is } T \text{-stable} \}
\]

by an argument given in §10.1 of [DF].

For the subspace \(W_x \) of \(V \),

\[
T(a, 0) = (0, 0) \in W_x
\]

for all \((a, 0) \in W_x \). Hence \(W_x \) is \(T \)-stable and, moreover, \(W_x \subseteq S \).
Similarly, for the subspace \(W_y \),
\[
T(0, b) = (0, b) \in W_y
\]
for all \((0, b) \in W_y\) and, consequently, \(W_y \in S \). It follows that, since 0 and \(V \) are trivially contained in \(S \), \(\{0, W_x, W_y, V\} \subseteq S \).

To demonstrate the opposite inclusion, we let \(W \in S \). There are two cases of \(W \): either \(W \) contains an element \((a, b)\) such that both \(a \) and \(b \) are nonzero or it does not. In the first case of the existence of such an element \((a, b)\), we find that, by the \(T \)-stability of \(W \),
\[
T(u) = T(a, b) = (0, b) \in W.
\]
But \((a, b)\) and \((0, b)\) are \(\mathbb{R} \)-linearly independent since
\[
\det \begin{pmatrix} a & b \\ 0 & b \end{pmatrix} = ab
\]
and \(a \) and \(b \) are nonzero by hypothesis. Since it is a subspace of the two-dimensional \(\mathbb{R} \)-vector space \(V \) containing two linearly independent elements, \(W \) must equal \(V \).

In the second case where no elements exist in \(W \) of the form \((a, b)\) such that both \(a \) and \(b \) are nonzero, it follows that \(W \) is either equal to 0, \(W_x \) or \(W_y \). Thus \(W \in \{0, W_x, W_y, V\} \), as desired.

Lemma 1. Let \(A \) be a \(\mathbb{Z} \)-module, let \(a \in A \) and let \(n \) be a positive integer. The map \(\phi_a : \mathbb{Z}/n\mathbb{Z} \to A \) defined by \(\phi_a(\bar{k}) = ka \) is a well-defined \(\mathbb{Z} \)-module homomorphism if and only if \(na = 0 \).

Proof. Suppose that \(\phi_a \) is a well-defined \(\mathbb{Z} \)-module homomorphism. In the \(\mathbb{Z} \)-module \(\mathbb{Z}/n\mathbb{Z} \), \(n = 0 \). Hence, because \(\phi_a \) is well-defined,
\[
na = \phi_a(\bar{n}) = \phi_a(\bar{0}) = 0a = 0.
\]
That is, \(na = 0 \).

For the converse statement, suppose that \(na = 0 \) and consider the map \(\psi : \mathbb{Z} \to A \) defined by \(\psi(k) = ka \) for all \(k \in \mathbb{Z} \). This map is a group homomorphism since
\[
\psi(k_1 + k_2) = (k_1 + k_2)a \\
= k_1a + k_2a \\
= \psi(k_1) + \psi(k_2)
\]
for all \(k_1, k_2 \in \mathbb{Z} \). Furthermore, because
\[
\psi(nk) = \psi(kn) \\
= (kn)a \\
= k(na) \\
= k0 \quad \text{by the } \mathbb{Z} \text{-module axioms} \\
= 0 \quad \text{since } na = 0 \text{ by hypothesis}
\]
for all \(nk \in n\mathbb{Z} \), we find that the subgroup \(n\mathbb{Z} \) is contained in the kernel of \(\psi \). Therefore \(\psi \) descends to the quotient \(\mathbb{Z}/n\mathbb{Z} \). That is, there exists a unique group homomorphism \(\phi_a : \mathbb{Z}/n\mathbb{Z} \to A \) such that \(\phi_a(\bar{k}) = \psi(k) = ka \). Moreover, since
\[
\phi_a(k_1\bar{k_2}) = \phi_a(\bar{k_1k_2}) \\
= (k_1k_2)a \\
= k_1(k_2a) \quad \text{by the } \mathbb{Z} \text{-module axioms} \\
= k_1\phi_a(\bar{k_2})
\]
for all \(k_1 \in \mathbb{Z} \) and all \(\bar{k_2} \in \mathbb{Z}/n\mathbb{Z} \), it follows that \(\phi_a \) is a \(\mathbb{Z} \)-module homomorphism. \(\square \)
Exercise 10.2.4. Let A be a \mathbb{Z}-module and let n be a positive integer. Then $\text{Hom}_\mathbb{Z}(\mathbb{Z}/n\mathbb{Z}, A) \cong A_n$ where $A_n = \{a \in A : an = 0\}$.

Proof. Let $\phi \in \text{Hom}_\mathbb{Z}(\mathbb{Z}/n\mathbb{Z}, A)$ and let $a = \phi(\overline{1})$. For any $k \in \mathbb{Z}^+$, that ϕ is a \mathbb{Z}-module homomorphism implies

$$
\phi(k \overline{1}) = \phi \left(\sum_{i=1}^{k} \overline{1} \right) = \sum_{i=1}^{k} \phi(\overline{1}) = \sum_{i=1}^{k} a = \left(\sum_{i=1}^{k} 1 \right) a = ka.
$$

Thus $\phi = \phi_a$, with ϕ_a defined as in Lemma [1].

By Lemma [1], $\phi = \phi_a$ is a \mathbb{Z}-module homomorphism if and only if $na = 0$. Therefore the function $\psi : \text{Hom}_\mathbb{Z}(\mathbb{Z}/n\mathbb{Z}, A) \to A_n$ defined by $\psi(\phi_a) = a$ is a bijection. Furthermore ψ is a \mathbb{Z}-module homomorphism since

$$
\psi(\phi_a + \phi_{a'}) = \psi(\phi_{a+a'}) = a + a' = \psi(\phi_a) + \psi(\phi_{a'})
$$

and

$$
\psi(k \psi_a) = \psi(\phi_{ka}) = ka = k \psi(\phi_a)
$$

for all $k \in \mathbb{Z}$ and all $\phi_a, \phi_{a'} \in \text{Hom}_\mathbb{Z}(\mathbb{Z}/n\mathbb{Z}, A)$. That is, ψ is an isomorphism and we have that $\text{Hom}_\mathbb{Z}(\mathbb{Z}/n\mathbb{Z}, A) \cong A_n$. \hfill \Box

Exercise 10.2.5. Let $a \in \mathbb{Z}/21\mathbb{Z}$ and let $\phi_a : \mathbb{Z}/30\mathbb{Z} \to \mathbb{Z}/21\mathbb{Z}$ denote the map defined by $\phi_a(\overline{k}) = ka$. Then

$$
\text{Hom}_\mathbb{Z}(\mathbb{Z}/30\mathbb{Z}, \mathbb{Z}/21\mathbb{Z}) = \{ \phi_{\overline{7}}, \phi_{\overline{14}}, \phi_{\overline{21}} \}.
$$

Proof. By Exercise 10.2.4, the map $\psi : A_n \to \text{Hom}_\mathbb{Z}(\mathbb{Z}/30\mathbb{Z}, \mathbb{Z}/21\mathbb{Z})$ defined by $\psi(\overline{a}) = \phi_{\overline{a}}$ is an isomorphism for $A_n = \{ \overline{a} \in \mathbb{Z}/n\mathbb{Z} : 30 \overline{a} = 0 \}$. So it suffices to show that $A_n = \{ \overline{0}, \overline{7}, \overline{14} \}$.

For the set relation $A_n \subseteq \{ \overline{0}, \overline{7}, \overline{14} \}$, we let $\overline{a} \in A_n$. Then

$$
30\overline{a} = 30\overline{a} = 0 = \overline{0}
$$

(1)

since \overline{a} annihilates 30 by the membership condition of A_n. Thus, because $30\overline{a}$ and $\overline{0}$ are elements of $\mathbb{Z}/21\mathbb{Z}$, [1] implies that

$$
30a \equiv 0 \pmod{21}.
$$

So, by definition, 21 divides 30a and there exists $b \in \mathbb{Z}$ such that $21b = 30a$. Dividing this equation by 3 yields that $7b = 10a$ and, because 7 is coprime to 10, we find that 7 must divide a. That is, $\overline{a} \in \{ \overline{0}, \overline{7}, \overline{14} \}$.

For the opposite inclusion, we let $\overline{a} \in \{ \overline{0}, \overline{7}, \overline{14} \}$. Then 7 divides a and it is clear that, for some $b \in \mathbb{Z}$,

$$
30\overline{a} = 30\overline{7b} = 30 \cdot 7b = 21 \cdot 10b = \overline{0} = 0.
$$

Hence $\overline{a} \in A_n$. Therefore $A_n = \{ \overline{0}, \overline{7}, \overline{14} \}$, as required. \hfill \Box

Exercise 10.2.6. For all positive integers m and n,

$$
\text{Hom}_\mathbb{Z}(\mathbb{Z}/n\mathbb{Z}, \mathbb{Z}/m\mathbb{Z}) \cong \mathbb{Z}/(n,m)\mathbb{Z}.
$$
Proof. Let \(m \) and \(n \) be positive integers. By Exercise 10.2.4,
\[
\text{Hom}_\mathbb{Z}(\mathbb{Z}/n\mathbb{Z}, \mathbb{Z}/m\mathbb{Z}) \cong A_n
\]
where \(A_n = \{ \overline{\alpha} \in \mathbb{Z}/m\mathbb{Z} : n\overline{\alpha} = 0 \} \). So it suffices to show that \(A_n \cong \mathbb{Z}/(n, m)\mathbb{Z} \).

To see that this is the case, consider an arbitrary element \(\overline{\alpha} \in A_n \). As an element of \(A_n \), \(\overline{\alpha} \) annihilates \(n \) and, therefore,
\[
\overline{m\alpha} = n\overline{\alpha} = 0 = \overline{0}.
\]
That is, \(\overline{m\alpha} = \overline{0} \) in the group \(\mathbb{Z}/m\mathbb{Z} \). Thus
\[
na \equiv 0 \pmod{m}
\]
to imply that there exists an integer \(k \) such that \(km = na \). Furthermore, we find by dividing by the greatest common divisor \((n, m) \) that
\[
k \frac{m}{(n, m)} = \frac{n}{(n, m)}.
\]
So \(\frac{m}{(n, m)} \) divides the product \(\frac{n}{(n, m)} a \). It follows, by elementary number theoretic results, that \(\frac{m}{(n, m)} \) and \(\frac{n}{(n, m)} \) are coprime and, hence, \(\frac{n}{(n, m)} \) must divide \(a \). Since \(a \) is divisible by \(\frac{m}{(n, m)} \), \(\overline{\alpha} \in \left\{ \frac{km}{(n, m)} : 1 \leq k \leq (n, m) - 1 \right\} \).

Therefore, we have shown that
\[
A_n \subseteq \left\{ \frac{km}{(n, m)} : 1 \leq k \leq (n, m) - 1 \right\}.
\]

The opposite inclusion follows from the observation that each of the implications in the derivation of the previous set relation are, in fact, equivalences. Or, more pedantically, let \(\overline{\alpha} \in \left\{ \frac{km}{(n, m)} : 1 \leq k \leq (n, m) - 1 \right\} \).

Then \(\frac{m}{(n, m)} \) divides \(a \) and, so, \(a = \frac{k'm}{(n, m)} \) for an integer \(k' \). Hence
\[
(n, m)a = (n, m)\frac{k'm}{(n, m)} = k'm = 0 \pmod{m}.
\]
Consequently \((n, m)\overline{\alpha} = \overline{0} \) and we find that \(\overline{\alpha} \in A_n \). This gives us that
\[
\left\{ \frac{km}{(n, m)} : 1 \leq k \leq (n, m) - 1 \right\} \subseteq A_n.
\]

Each set inclusion holds and we conclude that
\[
A_n = \left\{ \frac{km}{(n, m)} : 1 \leq k \leq (n, m) - 1 \right\}.
\]

Moreover \(A_n \) is isomorphic to \(\mathbb{Z}/(n, m)\mathbb{Z} \) by the map \(\phi : A_n \to \mathbb{Z}/(n, m)\mathbb{Z} \) defined by \(\phi \left(\frac{km}{(n, m)} \right) = k \).

That is, \(A_n \cong \mathbb{Z}/(n, m)\mathbb{Z} \) and the proof is complete. \(\square \)

Exercise 10.2.9. Let \(R \) be a commutative ring. Prove that \(\text{Hom}_R(R, M) \) and \(M \) are isomorphic as left \(R \)-modules.

Proof. Throughout this problem let \(a, r, r' \in R \) and \(m, m' \in M \). We follow the hint. Let \(\varphi, \psi \in \text{Hom}_R(R, M) \). Suppose \(\varphi(1) = \psi(1) = m \). We must have
\[
\varphi(a \cdot 1) = a\varphi(1) = am
\]
and

$$\psi(a \cdot 1) = a\psi(1) = am.$$

Since a was arbitrary, $\varphi = \psi$. This shows that any $\varphi \in \text{Hom}_R(R, M)$ is equal to φ_m for some m.

Define $f : \text{Hom}_R(R, M) \to M; \varphi_m \mapsto m$. The map is obviously well-defined. To see that f is an R-module homomorphism, first observe

$$(\varphi_m + r\varphi_m')(1) = \varphi_m(1) + r\varphi_m'(1) = m + rm' = \varphi_{m+rm'}(1).$$

Hence

$$f(\varphi_m + r\varphi_m') = f(\varphi_{m+rm'}) = m + rm' = f(\varphi_m) + rf(\varphi_m').$$

To see that f is injective, suppose $f(\varphi_m) = 0$. This implies $m = 0$. It follows that $\varphi_m(r) = 0$ for all r. This shows $\varphi_m = 0 \in \text{Hom}_R(R, M)$, i.e., the kernel is trivial. Finally, f is surjective as well. To this end we will first show that the map $\varphi_m : R \to M$ given by $1 \mapsto m$ and $r \mapsto rm$ is an R-module homomorphism:

$$\varphi_m(r + ar') = (r + ar')m = rm + ar'm = \varphi_m(r) + a\varphi_m(r').$$

Therefore given $m \in M$, there exists $\varphi_m \in \text{Hom}_R(R, M)$ such that $f(\varphi_m) = m$, and the proof is complete.

Exercise 10.2.13. Let I be a nilpotent ideal in a commutative ring R, let M and N be R-modules and let $\varphi : M \to N$ be an R-module homomorphism. Show that if the induced map $\overline{\varphi} : M/IM \to N/IN$ is surjective, then φ is surjective.

Proof. Since $\overline{\varphi}$ is surjective, $N/IN = \overline{\varphi}(M/IM) = (\varphi(M) + IN)/IN$. By the lattice isomorphism theorem for modules, $N = \varphi(M) + IN$.

We will show $N = \varphi(M) + I^tN$ for $t \geq 1$ by induction. The base case is already shown. Suppose the equation holds for some $t \geq 1$. Then

$$N = \varphi(M) + I^tN = \varphi(M) + I^t(\varphi(M) + IN) = \varphi(M) + I^t\varphi(M) + I^{t+1}N$$

$$= \varphi(M) + I^tN.$$

Since $I^k = 0$ for appropriate k, the conclusion follows.

References