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Geometric Phases for the Free Rigid Body
with Variable Inertia Tensor

Patrick Tantalo

ABSTRACT

The Hannay-Berry connection was introduced by Montgomery to provide a geometric
framework for the classical Hannay angles associated to an integrable Hamiltonian which
depends on a slowly varying parameter. The main goal of this paper is to compute the
parallel transport, curvature, and holonomy of this connection for a free rigid body whose
inertia tensor varies with time. We consider a symplectic fiber bundle whose base is the
space of possible inertia tensors and whose fiber is the union of the regions in phase space
which admit local action angle charts. Each element in the base induces dynamics in
the corresponding fiber which are completely integrable. The Hannay-Berry connection
is defined by averaging the trivial connection over the T2 action induced by this local set
of parameter dependent action-angle variables. One result which is proved states that for
any loop in the base along which the moments of inertia vary, while the principal axes of
inertia are fixed, the holonomy is trivial, and hence the Hannay angles are zero. Another
result identifies certain loops for which the moments of inertia are constant, while the
principal axes undergo a rotation, and whose holonomy is non-trivial. The curvature form
is found to have fifteen terms, all but three of which are computed explicitly. In addition,
an action integral is found which does not seem to appear in the standard literature on
the rigid body. For general multifrequency systems the actions are known to be almost
adiabatic invariants. However this new action is seen to be a true adiabatic invariant of

the system.
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1. Introduction

Counsider a family of classically integrable Hamiltonians H,,, depending on a parameter
m € M, where M is a smooth manifold. When such a system undergoes an adiabatic
circuit t — m(et), 0 <t < c/e, in M, the shift in the angle variables splits naturally into

an obvious dynamical part

c/e
AByy, = / w(I(t), et)dt,
0

which depends on the duration of the excursion; and a geometric part

ABgeom = / (du6),
Y

depending only on the image «y, of the circuit. Here (I,80) denote parameter dependent
action-angle variables, w = 0H,, /01 the frequency vector, dj; the exterior derivative with
respect to the parameters, and (-) the operation of averaging over invariant phase space
tori. We call A@g4y, the dynamic phase while AB@geon is called the geometric phase or the
classical Hannay angles. Hannay[14] and Berry[5] explain the extra term by noting that
the generating function which gives the canonical transformation to action-angle variables
depends on the parameter. When one writes Hamilton’s equations in parameter dependent
action-angle coordinates, there is an extra term in the equation giving the angle rate of
change. Hannay averages this equation to get, in the adiabatic limit of slow parameter

variation, the total angle shift:
Al = Abgyn + ABgeom-

Berry showed that A@geonm is the classical analog of a phase occurring in quantum me-
chanics.

In the quantum case, Berry[4] considers a parameter dependent family of self adjoint
operators and calculates the phase factor acquired by an eigenstate which undergoes

an adiabatic cycle. Simon[27] gave a geometric framework for Berry’s phase factor,



interpreting it as the holonomy of a natural connection on a Hermitian line bundle.
Montgomery[24], Golin, Knauf, and Marmi[l11], and later Marsden, Montgomery, and
Ratiu[21] have given an analogous geometric account for the classical Hannay angles, which
extends to non- integrable Hamiltonians that are invariant under parameter dependent
phase space symmetries. The connection in this case is called the Hannay-Berry (HB)
connection. For integrable Hamiltonians, it is defined by averaging the trivial connection
on M x P (where P is the phase space) over the T™ action induced by the local action
angle coordinates.

The Hannay angles (or equivalently the holonomy of the HB connection) have been
computed in many simple examples such as: families of harmonic oscillators [24,4], the
Foucault pendulum [24,16,14], and the ball in the rotating hoop [21,16]. The main goal
of the present work is to compute the parallel transport, curvature, and holonomy of the
HB connection in an example which exhibits more complexity: the free rigid body. In
this case the parameter is the inertia tensor, a positive definite, symmetric matrix whose
eigenvalues satisfy certain inequalities. Each such matrix induces a completely integrable
system on the phase space T*SO(3) = SO(3) x R3, via the corresponding kinetic energy
function. By allowing the inertia matrix to vary with time, we obtain a non-autonomous
Hamiltonian system called the rigid body with variable inertia tensor. A related system is
that of a deformable body, which models the motion of a free space structure with flexible
attachments under robotic control. Interestingly, these two systems are not identical, as
one might at first expect. Their relationship is discussed in §2.5.

Two natural types of parameter variations suggest themselves: (I) those in which the
principal moments of inertia remain fixed, while the principal axes undergo a rotation;
and (IT) those in which the principal axes are fixed and the moments of inertia vary. Let
M denote the inertia tensors for the rigid body with distinct eigenvalues. We find in §4.1
that M has the structure of a trivial fiber bundle whose base B is a contractible open
set in R® and whose fiber F is the quotient of SO(3) by a discrete subgroup. Paths in

M = B x F of type (I) are those which remain in a single fiber, while those of type (II)



lie in the base. The complexity of the parameter space is one feature which gives this
example its added interest.

The HB connection in this example is an Ehresman connection defined on a bundle
whose base is M, and whose fiber is a certain submanifold of the rigid body phase space,
namely the union of those regions where action-angle coordinates exist.

Among our results is the fact that the holonomy of any loop of type (II) is trivial.
This result follows from an expression derived in §2.3 for an action integral which does not
seem to appear in the standard literature on the rigid body (e.g. Landau and Lifshitz[17],
Lawden[18].) This expression shows that the parallel transport along curves of type (II)
depends on a single real parameter, so even though dim(B) = 3, the connection behaves
as if B were one dimensional.

For curves of type (I) we compute parallel transport and holonomy only in special
cases. Among these are four loops whose holonomy is non-trivial. Since dim(M) = 6,
there are fifteen terms in the curvature form. Of these, we compute twelve and three
remain unknown. Among the twelve known terms ten are zero, indicating the presence of
many loops with trivial holonomy.

The contents of this work is summarized as follows. Chapter two deals with the rigid
body and related systems. In §2.1 we review basic facts regarding integrable systems. In
§2.2 we introduce the body coordinate system on 7*SO(3) and give the explicit solution
to the Euler equations. In §2.3 and §2.4 we discuss a complete system of action integrals
for the rigid body including one which was previously unknown. We also calculate the
frequencies of the motion. In §2.5 we consider the deformable body and discuss its
relationship to the rigid body with variable inertia tensor.

Chapter three summarizes the work of Montgomery[24] and Marsden, Montgomery,
and Ratiu[21]. In §3.1 and §3.2 we give the basic notation and definitions concerning the
HB connection. In §3.3 we show that the holonomy of the HB connection in the case
of integrable systems is the classical Hannay angles. In §3.4 we give a formula, due to

Montgomery, for the curvature.



Chapter four deals with the HB connection as it applies to the rigid body. In §4.1 we
study the parameter space in detail. In §4.2 we compute functions whose Hamiltonian
vector fields give the horizontal lift. In §4.3 we compute the curvature form, and in §4.4
we compute the holonomy of various curves in M. In §4.5 we draw conclusions on the

adiabatic invariance of the actions, and discuss averaging over a natural T? action.



2. Dynamics of Rigid and Deformable Bodies

The free rigid body is a well studied classical system which, nevertheless, possesses
some new and interesting features. Recently Marsden and Holm[15] showed that the
body angular momentum space of this system (which is identified with R?) is foliated into
invariant elliptical cylinders, and the dynamic trajectories on these cylinders are those of
a simple pendulum. Montgomery[23] has given a formula for the angle A®, by which the
rigid body rotates in space as the body angular momentum vector executes one period of

its motion. In this chapter, we find a previously unknown action integral for this system.

We show that

A
L= —
27||J

(2.1)
has Hamiltonian flow which is 27-periodic, where A is the oriented surface area on the
momentum sphere enclosed by the trajectory of the body angular momentum vector, and
J is the angular momentum vector in space. Putting I := ||J|| and I; := (J,e;), where
{e1, ez, e3} denotes an inertial frame in R?, and (, ) the standard inner product, we obtain
a complete set of independent action integrals: I = (I, I, I3). That is, their differentials
dlI; are linearly independent at almost every point of phase space, their Poisson brackets
{I;,I;} are pairwise zero, and their Hamiltonian flows are 2m-periodic. Note the definition
of I is arbitrary in that we could have taken I; = (J,u) with u any unit vector in R®. We
choose u = e; merely for definiteness. This ambiguity implies that a typical trajectory
lies on many different invariant 3-tori in the phase space SO(3) x R?, and hence on their
intersection, an invariant 2-torus. Therefore the system has a proper resonance (i.e. a
resonance independent of initial conditions.) This fact will be verified directly in §2.4.

In §2.1 we review the basic facts concerning integrable systems. In §2.2 we introduce
body coordinates on SO(3) x R® and summarize the explicit solutions to the Euler equa-
tions. In §2.3 we identify those regions in SO(3) x R® which support action-angle variables

for the rigid body, and prove that I3 defined above is an action. In Appendix A we compute



the area A, in terms of complete elliptic integrals whose modulus is a function of ||J||, the
energy H, and the principal moments of inertia. Using this expression and Montgomery’s
formula for the angle A©®, we compute in §2.4, the frequencies of the system with respect
to the above actions. This allows us to write the rigid body equations in action-angle
coordinates. Written in this way the equations are linear, and their solution is trivial.
Also, we see directly that the motion has an extra resonance (i.e. is periodic) precisely
when AO is a rational multiple of 27. Finally in §2.5 we derive the Euler equations for
a deformable body, and discuss the relationship between deformable bodies and the rigid

body with variable inertia tensor.

2.1 Integrable Systems

In this section we review basic facts concerning completely integrable systems. We
state the Arnold-Liouville theorem and a method, due to Arnold, for computing the local
action coordinates. We also give a criterion of Duistermaat for the existence of global
action-angle variables, and a corollary which we later apply to the rigid body.

Let (P,w) be a symplectic manifold with dim(P) = 2n, and H € C*°(P). The Hamil-
tonian system on P with energy H is called completely integrable if there exist n functions
fiy--y fn = H € C*(P) in involution which are independent almost everywhere (with re-
spect to Liouville volume) on P. This means that the Poisson brackets vanish: {f;, f;} =0
for 1 <4,57 <mn, and for almost every = € P, the differentials {df1(z),...,df,(z)} are lin-
early independent (equivalently dfi(z) A ... Adf,(x) #0.)

Theorem 2.1.1 (Arnold-Liouville): Let fi,...,f, = H be an integrable system on
(P,w), and ¢ € R* a regular value of f = (f1,...,fn) + P — R". Then for each
compact connected component, F,, of f~1(c), there is an open neighborhood U C P about

F. invariant under the flow of Xy, (1 <14 <n), a diffeomorphism

(1,0): U -V xT"



with V. C R™ open, and a diffeomorphism x : f(U) — V such that I = xo f. Furthermore,

we have on U the expression

W= ZdIZ A db;.

=1

The canonical coordinate system Iy,...,1,,01,...,0, is called a set of action-angle
variables. The proof can be found in Arnold[2], Duistermaat[9], or Markus and Meyer|[19].

Using the diffeomorphism x, H can be expressed in the coordinates (I, #) as a function of

(I1,...,I,) alone. Thus the Hamiltonian system with energy H becomes:
0 = wi(I)= %L
" i (2.2)
I, = 0,

which is linear and easily solved. The generic motion of an integrable system is therefore
a quasiperiodic trajectory on the invariant n-torus F, C P. If the frequencies w;(I) satisfy
some integer relations (w, k) = 0, where w = (w1,...,wy) and k = (k1,...,k,) € Z",
then this motion takes place on a torus of smaller dimension. (See Arnold[ ].) To be
precise, if k!, ..., k! € Z" are Z-linearly independent, and (w,k’) = 0 for 1 < j <[, then
the trajectory (2.2) is dense on a torus of dimension (n —[) contained in F, = T".

The actions I; can be obtained by the following construction due to Arnold[2]. A proof
can also be found in Duistermaat[9].
Theorem 2.1.2 (Arnold): Let v;(c), (1 <i < n) be closed curves in F,, which depend
smoothly on ¢ € f(U), and whose homology classes form a basis for Hy(F,.,Z). Suppose w

is exact on U, say w = —dB. Then

1
Lie) = o /w(f(w)) b (=),

forms a set of action coordinates.



For systems with one degree of freedom (i.e. n = 1) it follows from Stokes Theorem
that the action integral is (27)~! times the phase plane area enclosed by a level contour of
the energy H. Once the actions are obtained, the conjugate angle variables are constructed
by finding a Lagrangian submanifold of U which is transversal to the tori Fi, ¢ € f(U),
and transporting it by the flow of X7,. The angle 6; is then the time taken to reach a
given point. Not all action coordinates are of the form given by Theorem 2.1.2. Those
which are of this form are called standard actions.

Suppose for convenience that f : P — R” is everywhere regular, and that the fibers
f~(c), ¢ € R*, are compact and connected. (If not, just remove the points at which f
is singular, and for which f~!(c) is not compact. By Theorem 2.1.1 what remains is an
open submanifold of P, to which we can restrict f. We can further restrict f so that the
fibers are connected.) Let B = f(P) C R", which is open. By Theorem 2.1.1 f: P — B
is a locally trivial fiber bundle whose fibers are Lagrangian tori. The bundle charts are
given by the local action-angle variables. If these coordinates are defined globally on P,
then the bundle f is globally trivial. With an additional assumption, the converse is also
true. The following is a paraphrase of Theorem 2.2 in Duistermaat|9].

Theorem 2.1.3: Suppose the symplectic form w on P is exact. Then f: P — B is trivial

if and only if P admits global action-angle variables.

Corollary 2.1.1: Let (P,w) be a symplectic manifold, and f = (f1,...,fn) : P > R" a
completely integrable system. Suppose P C P is an open set satisfying:
1. w is exact on Py.
2. flp, is submersive and f~'(c) N P, is compact and connected for c € f(Py).
3. f(Py) CR" is contractible.
Then Py admits a set of action angle variables.
Proof: By (3), the bundle f : P| — f(P)) is trivial. The result follows immediately from

Theorem 2.1.3, and the preceding discussion. [ |



In this case the so called monodromy, described in Duistermaat[9], is not present. As

we shall see, this situation arises in the case of the rigid body.

2.2 Left Trivialization of SO(3)

The configuration space of the rigid body is the Lie group SO(3) consisting of 3 x 3
orientation preserving orthogonal matrices. Each such matrix represents a rigid rotation of
the body in space from some fixed reference configuration. To be precise, let {E1, Eg, E3}
denote a coordinate frame in R® attached to the body, and let {e;,e2,e3} be an inertial
frame. We require that the origin of both frames coincide with the center of mass of the
body. The relationship is given by g - E; = e;, (1 <4 < 3) for some g € SO(3). The
phase space is then the cotangent bundle 7*SO(3) of SO(3). Since SO(3) is a Lie group,
T*SO(3) is naturally diffeomorphic to SO(3) x so(3)*, where so(3) is the Lie algebra of

*

SO(3) consisting of 3 x 3 skew symmetric matrices and so(3)* is its dual. Specifically, the

left action of SO(3) on itself given by left translation:
Lgh := gh (9,h € SO(3)),
lifts to a left SO(3) action on T*SO(3):
g ap:=T"Le1-ap € T,S50(3) (ap € TR SO(3)), (2.3)
so that g71 - oy € T5SO(3) = s50(3)*. The required diffeomorphism is then
ag € T;SO(3) — (9,9 ' - ay) € SO(3) x s0(3)*. (2.4)

Further, we can identify R® with so(3) via the map

a€ER 4= a3 0 —a; | €s0(3).
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One checks the formulas -b=a x b, and g-a = gag ' for a,b € R®, and g € SO(3).
The fact that™: (R3, x) — (s0(3),[, ]) is a Lie algebra isomorphism is also readily verified.
We denote the inverse of this map by~ : so(3) — R3. Also so(3)* is identified with so(3) via
the inner product ((¢,7)) = Strace(én’) on so(3). Note that for a,b € R?, (a,b) = ((a, b)).
Therefore we may identify 7*SO(3) with SO(3) x R?. Equation (2.4), combined with
the above identifications, is called the body coordinate system, or left trivialization of
T*SO(3). It should be noted that this is not a coordinate system in the ordinary sense,
since SO(3) is topologically non-trivial. In many texts it is customary to coordinatize
T*SO(3) by Euler angles and their conjugate momenta, forming a canonical coordinate
system. In this paper we use body coordinates exclusively. We now write a few relevant
expressions in left trivialization.

(i) Lifted left action:
g+ (h,@) = (gh,a) (9,7 € SO(3), a € ®).

This is (2.3) written in left trivialization.

(ii) Poisson bracket:

{flan}(ga a) = ((g_l 'dgfl)vavaf2> - ((g_l 'dgf2)vavaf1> — (o, Vo f1 X Vafa).

Here g~! - d,f denotes the left translate of d,f € T,;50(3) to so(3)". This expression
can be computed from the formula, due to Cushman, for the canonical symplectic form
on T*G (G a Lie group) given in Proposition 4.4.1 of Abraham and Marsden|[1]. If f1, fo

happen to be invariant under (i), i.e. functions of « only, then this reduces to

{flafZ}(a) = —<Of, vozfl X VafZ)a

which is the standard left Lie Poisson structure on R®.

(iii) Hamiltonian vector fields:
X5(9:0) = (9- Vafsax Vaf = (¢7" - dyf)).
This expression follows directly from (ii). For left invariant functions we have

Xi(g,@) = (9 Vaf,a X Vaf).
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We denote by q){(g, a) the flow of X; with initial point (g, ).
(iv) Kinetic energy:

1
H,(a) = i(a,m_la).
Here m denotes the inertia tensor, a positive definite symmetric matrix (see §2.5.) If m is
diagonal with respect to {E1, Eq, E3}, say m = diag(\1, A2, A3), then

1({a? o3 o

Note that H,, is independent of g, hence invariant under the action (i).
(v) Momentum Map:
J(g,0) =g .
J : P — R3? is an equivariant momentum map for the action (i), as one verifies. Its value is
the angular momentum of the system in the inertial frame. By definition of a momentum

map we have, for ¢ € R?,

Xaglo.0) = trlg.0)= 5| ewté:(g.0)
d -
= 4, (ewtdga)
= (§9,0).

This can be checked directly using (iii). The flow of (J,&) is given by @ﬁ‘]’f)(g, a) =

(expt€ - g, ).

—

Using (iii) and (iv) one finds that Xg,_(g,a) = (g-m~la,a x m™a). Put

1 1 1 1 1 1
by =+ -+ by =+ — 1, by =1 — 1
Ag )\2 )\1 )\3 /\2 )\1
then axm™la = (biagas, byayas, byaias). Thus the flow, @f{m (g0, ) of Xp,, is obtained
by solving:
étl = blagag
a=axm ta ie. s = byojas (2.5)

a3 = byajag,
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and

—la, (2.6)

with initial conditions g(0) = go and a(0) = ag. ®7™(go,a0) = (g(t), a(t)) then gives
the dynamic evolution of the rigid body in left trivialization. Equations (2.5) are the
Euler equations for a rigid body, and their solution, a(t), is called a reduced trajectory.
The solution g(t), of (2.6), is called the reconstructed trajectory, and gives the attitude
of the body with respect to the inertial coordinate frame. See [1,20,22] for a discussion of
Marsden-Weinstein reduction and reconstruction.

For later reference we give the explicit solution to the Euler equations (2.5). Assume,
for definiteness, that Ay > Ay > A3, so that by > 0, by < 0, b3 > 0. The functions H,, and

J are conserved quantities for this system, so we have that

r* =of + a5+ a3 = |I(g, )|

and

are constant along the solution a(t), of (2.5). Put S? = {a € R? | ||| = r} and let h > 0.
Then «(t) € S2N H,'(h) for all t. One checks that the condition S2N H,.!(h) # 0 implies
A1 > 712/2h > As.

Case 1. Let Ay = Ao = A3 =: A. Then by = by = b3 = 0 and (2.5) becomes & = 0,
whence a(t) = a(0). In this case (2.6) isg=g- /\—107(5), so that g(t) = g(0) - exp t€ where
& = A 1a(0) € R®. Thus the absolute motion of the body in space is steady rotation about

the vector &, with period 2x/||€]|.

Case 2. Let \{ = A9 > A3. Then b3 = 0 and by = —by > 0. We have a3 = 0, so

a3(t) = as(0) and (2.5) becomes

a1 = cam
Gy = —CQy,
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where ¢ = b1a3(0). The solution is

a1(t) = «1(0)cos(ct) + az(0) sin(ct)
as(t) = —a1(0)sin(ct) + ao(0) cos(ct).

Case 3. A\ > Ay = A3 is similar to case 2 above. Interchange the subscripts 1 and

3 to obtain the solution in this case.

Case 4. Let A1 > Ay > \3. . We have five subcases.
Case 4a: r2/2h = ;. Then 72 = 2)\;h implies

A A
a%+a%+a§ :a%+—1a§+—1a§,
A2 A3

A= A2\ o <>\1—>\3> 2
( AZ )OAZ+ A3 03—0.

Since \; — Ay > 0 and Ay — A3 > 0, ag = ag = 0. Equation (2.5) becomes a; = 0, so

so that

a1(t) = a1(0). The solution is a(t) = («1(0),0,0). In this case (2.6) is ¢ = g - )\l_la/(a)
and the absolute motion is

9(t) = 9(0) - exp(ctEr),
where ¢ = A\[1ay(0).
Case 4b: 72/2h = \3. This case is similar to (4a) above. We get a; = as = 0, whence
a(t) = (0,0,a3(0)), and g(t) = g(0) - exp(ctE3) where ¢ = A3t (0).

Case 4c: 72/2h = Ao. We have r? = 2\yh implies
)\1 — )\2 )\2 - >\3
( A1 >a%—< A3 )a%zo,

a3 = :l:\/ﬁala

so that

where 17 = A3(A1 — A2) /A1 (A2 — A3). We see that «(t) lies in one of the planes a3 = \/n oy
or a3 = —y/na;. If a(0) lies in the intersection of these two planes (namely the ao-

axis) then &(0) = 0 by (2.5), and a(t) = (0,a2(0),0) is an equilibrium. In this case
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g(t) = g(0) - exp(ctEy), where ¢ = A\;lao(0). If a(0) does not lie on the ap-axis, the

solution is

a1(t) = =LPsech(s(t—tg))
as(t) = FQ tanh(s(t — tp))
as(t) = =+Rsech(s(t—tp)),
where P, Q, R, s are given by
P2 = 2hA1 (A2 — A3)
(A1 — A3)
Q> = 2h)
R? = 2hAs(A1 = Aa)
(A1 — A3)
2 2h(A1 — A2)(A2 — A3)
A1A2)3 )

The constants 7, h, 1y as well as the signs are chosen so as to agree with the initial point
a(0).
Case 4d: X2 > 72/2h > A3. The solution is given by

a1(t) = Pen(s(t—ty), k)
as(t) = —Qsn(s(t—tp), k)
az(t) = Rdn(s(t—to), k),

where P, Q, R, s, k are given by

A (‘1"2 - 2A3 )
pP? = —L—————
(A1 = As)
2 . )\2(7" — 2)\3}7,)
v = (A2 = A3)
A3(2A1h — 12)
R = 20T
(A1 = As)
52 _ ()\2 )\3)(2)\1}1 i & )
N A1 Ao Ag
k2 _ (Al — )\2)(’)“2 — 2)\3}7,)

(A2 = A3)(2Ah —12)’
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Here cn(-, k), sn(-, k), dn(-,k) denote the Jacobi elliptic functions of modulus k. Again
the constants 7, h,ty are chosen in accordance with initial conditions.

Case 4e: \; > 72/2h > Xo. We have solutions:

a1(t) = Pdn(s(t—ty),k)
as(t) = —Qsn(s(t—tp), k)
as3(t) = Ren(s(t—to), k),

where P, Q, R, s, k are given by

2 o )\1(T2—2A3 )
P T
9 X(2Mh - r?)
v = (A2 = A3)
A3(2A1h — 12)
R = —3
(A1 = A3)
32 . ()\1 )\2)(1" —2A3h)
N A1 23
k2 _ (AQ—Ag)(Q)\lh—T2)

(Al — )\2)(7‘2 - 2/\3h) '

Note we have given the solution to the group equations (2.6) in only a few special
cases. In fact (2.6) can be solved explicitly in all cases by transforming to Euler angles on
SO(3). The details can be found in Landau and Lifshitz[17] or Lawden[18].

If we take the limit of the solution in case (4d) as (A1 — A2) — 0 we get & — 0, so
that sn(-, k) — sin(-), cn(-, k) — cos(-), dn(-,k) — 1. The solution then approaches that
of case (2) (with Ay > 72/2h > )3), which can therefore be subsumed under case (4d).
Similar remarks hold for cases (4e) and (3) respectively. Cases (4a), (4b), and (4c) (with
a1(0) = a2(0) = 0) give the six relative equilibria for the Euler equations, two of which (4c)
are unstable. Case (4c)(with a1(0) # 0 # a3(0)) represents the four well known hetero-
clinic orbits, which connect the two unstable equilibria and are diffeomorphic to R. Cases

(4d) and (4e) describe four families of closed orbits separated by the planes a3 = £,/ 1.
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2.3 Action-Angle Coordinates for the Rigid Body

The goals of this section are first, to determine those regions in SO(3) x R® which
admit action angle coordinates, and second, to establish equation (2.1) giving the third
action. Throughout we will assume that the inertia tensor is diagonal with respect to
the body frame {Ei,Eq, E3}, say m = diag(A1, A2, A3) with A\; > Ao > A3. As in the
previous section {e;,ez,e3} denotes an inertial frame in R®. The first two actions, which
are well known, are given by I; = (J,e1) and I» = ||J||. (Recall we could just as well take
I; = (J,u), where u is any other unit vector in R?.) We show below that I, I, and H,,
are in involution and that their differentials are independent on an open dense subset of
SO(3) x R3, verifying that the rigid body is indeed completely integrable.

From §2.2(v) we have

X1(9, @) = (€19,0),
and
(g, 0) = ((expté1)g, ).

For a # 0, VoIy = af||a| so by §2.2(iii)

& « &
XI (Q,Ol): (g—,OtX—> = (9—70)7
’ [l [l [l

~ —~

a ga
¢7{2(gaa) = (gexptmaa) = ((exptm)gaa> .

whence

Here we have used ga = gag ! and exp(gég 1) = glexpé)g 1, for o, € € R3, g € SO(3).
Note that ®* and ®;? are 27-periodic. Now observe that
{I,} = dIy- Xy,
= <(ngZavaI2)a (élga()»
= 0,

since dgIy = 0. Since J is conserved along the flow of H,, we have {I1, Hy,} = {I2, Hp} =
0.
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In the following lemma we determine where I, I», H,, are independent.

Lemma 2.3.1: Define
W :={(g9,0) € SO3) xR® | ga x e; #0, and o x m~a # 0},

and
fi= (I, I, Hy): SOB3) x R* - R®.
Then flw is a submersion.
Proof: We must show that dIy, dl», dH,, are linearly independent on W, which is

equivalent to showing the same for X;,, X,, Xpu, . Let ¢; € R, 1 <14 < 3, and suppose
aXp +ceXp, +c3Xp, =0

at (g,a) € W. This is the same as

c1g ter + @ﬁ +esm e = 0
calaxm™a) = 0.

Now c¢3 = 0 since @ x m~'a # 0. If ¢; # 0 then the first equation becomes e; = cga where
¢ = —cg/ci||ef|, whence ga x e; = 0, contrary to our choice of (g, ). Thus ¢; = c2 =0 as

required. |

One also checks that dIy, dIs, dH,, are linearly dependent on (SO(3) x R®) \ W. Note
that W is obtained by removing two codimension one submanifolds from SO(3) x R, and
hence W is an open dense submanifold.

Next we remove those points (g, ) € W for which f1(f(g,a)) N W is non-compact.

Recall from §2.2 Case (4c) that the separatrix planes in R® are given by a3 = £/

where
y— A3(A1 = A2)
At(A2 — A3)’
Define
Uy = {a€R|ai<na? and o3+ aj # 0}

= {acR |\ >1r%/2h> N},
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where r = ||a|| and h = Hy,(«) as in §2.2. A short calculation, which we omit, verifies the

equality of the above sets. Similarly set

Us = {a€R|a3>na?, and o + o3 # 0}

= {a€R®| X\ >1%/2h > A3}

Note that U; C R® (respectively Us C R3) is open and contains the trajectories given by
Case (4e) (respectively (4d)) of §2.2, which are closed orbits about the a4 -axis (respectively

ag-axis). Put

Ur = {a €U; | a; >0}
U~ = {a€elU|a <0},

for i = 1,3. Each UY (i = 1,3; v = +,—) is open, connected, and U; = U;* UU; . Define

the projection 7 : SO(3) x R — R3, (g, ) — «, and put

P = m ' (U)nW

P’ = YU nwW,

1

for i =1,3 and v = +, —. Then P” C SO(3) x R? is open, connected, and P, = P;f U P;".
We shall see that each P} admits a single action angle chart.
Note that for (g,a) € W, we have |I1(g,a)| = [(ga,e1)| < ||lga| = I2(g,a). (The

inequality is strict since ga X e; # 0.) Now set

Vi = {(e,r,h) €R® | |c| <7, and \; > 72/2h > o}

Vi = {(c,m,h) €R® | |c| <7, and Xy > r%/2h > A3}
It follows from the preceding definitions that
R = f(P7) = f(P) =V,

fori=1,3.
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Lemma 2.3.2: Let (¢,r,h) € V; (i =1 or 2). Then
fHe,r,h) N W € SO(3) x R?

1§ compact.

Proof: We see that (g, ) € f~(c,r,h) N W if and only if

(i) (g,e1) = ¢
(i) e = r
(iii) Hp(a) = h (2.7)
(iv) gaxe # 0
(v axmla # 0

Let {(gn, @)}, be a sequence in SO(3) x R® whose points satisfy (2.7). We must find
a subsequence which converges to a point satisfying the same conditions. Since SO(3) is
compact we may, by passing to a subsequence, assume that g, — g € SO(3). Condition
(ii) says oy, lies in the sphere S? C R® which is also compact. Passing to a further
subsequence we have a;,, — o € S2. Note that conditions (i)-(iii) define closed sets, so the
limit point (g, a) automatically satisfies them.

Conditions (ii) and (iii) together say that o, € S2NH, ' (h). Since either \; > r?/2h >
A2 (for i = 1) or Ay > r2/2h > A3 (for i = 3), S2 N H,,'(h) is one of the closed orbits
described in Case (4e) or (4d) of §2.2. These orbits are compact so that o € S? N H,.' (h),
and therefore o does not lie on one of the coordinate axes. Thus « is not an eigenvector
of the inertia tensor, showing that a x m~la # 0, which is condition (iv).

Let 6,, 0 denote the acute angles that g,a, and ga make with the vector e,
respectively. Since ||ghan| = |lgef| = r and (gpon,e1) = (go,e1) = ¢, we have
cos 0, = c¢/r = cos 6, whence 0,, = 6. Thus ||gaxei| = rsinf = rsinb, = ||gra, xe1| # 0,
which proves (v). We’ve shown that (g, o) satisfies (2.7) so that (g,a) € f~'(c,m,h) NW.

Therefore f~'(c,r,h) N W is compact as required. [ ]

It now follows from the Arnold-Liouville Theorem 2.1.1 that for (c,m,h) € V; (i = 1,2),

f~Y(c,m,h) N P; is a disjoint union of Lagrangian tori, and in a neighborhood of such a
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torus we have action-angle variables. In fact f !(c,r, k) N P; consists of two copies of T3,
one in P;r, the other in P;".

Proposition 2.3.1: Each of the sets P, P, P, Py C SO(3) x R® admits a single
action-angle chart.

Proof: We verify that the sets V; C R® (i = 1,2) are contractible. The result then follows

directly from Corollary 2.1.1. For definiteness we assume ¢ = 1. Note that
Vi ={(e,m,h) | le| <r AL >r?/2h > Ao}

retracts onto its intersection with the r, h-plane via the map ¢t — ((1—t)c,7,h), 0 <t < 1.
This intersection {(r,h) | A\; > 72/2h > Xo}, is simply the region in the first quadrant
lying between the parabolas h = r2/2\2 and h = r2?/2)\{, which is obviously contractible.

Set U =U; UUs, P= P UP3, and V = V1 UV3, so that P = 7~ }(U) N W, and
f(P) = V. We've shown that U C R® and P C SO(3) x R® are open, dense, and that P
is the disjoint union of exactly four action-angle charts.

We now turn our attention to the proof of formula (2.1) for the third action I3. Fix py €
R3, a regular value of J : SO(3) x R? = R, (g, a) — ga. A straightforward check shows
that J=!(u) C SO(3) x R? is invariant under the action of the coadjoint isotropy subgroup
SO(3), = {g € SO(3)|gu = p} = S', and that this action is free and proper, whence
J!(u) is a principal S* bundle over the quotient. This quotient is naturally identified
with the sphere S2 C R® (where r = ||p||) via the map [g,a] € I 1()/S! — a € S?. With
this identification the bundle projection m, : J7'(u) — S? is (g9,@) — «, which is just

7 : SO(3) x R — R3 restricted to J~!(u). By the Marsden-Weinstein reduction theorem

*

[1,22], there is a symplectic form w,, on S? such that Wy = 1),

w, where w is the canonical
symplectic form on T*SO(3) = SO(3) x R® and i, : I (u) — SO(3) x R? is inclusion. In

this case the induced form w, is given by
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wy(u)(u X vi,u X v2) = —(u,v1 X v2),

where u € S2, and v; € R®, so u x v; € T,5? (i = 1,2.) This is a special case of Example
4.3.4(v) (p.302) in Abraham and Marsden[l]. The above form wy, is —r~! times the
standard oriented area form on S2, as is easily checked.

Consider a dynamic trajectory (g(t),a(t)) = ®(go, ), with J(go,0) = p, and
(go, ap) € P. Let T be the period of a(t) and D be the region on S? enclosed by «(t) for
0 <t < T. We consider the above S bundle restricted to D. Since D is diffeomorphic
to a disc, m, : 7,1 (D) = D is trivial, i.e. m;'(D) 2 D x 8. Let 0 : D — 7, '(D) be a
section of this bundle and set v3 = 9o (D). Note that m,(y3) = D in S2.

Lemma 2.3.3: Let 8 denote the canonical one form in phase space, and A the area of D

oriented by the direction of the trajectory a(t). Then

g=2
3 T
Proof:
w = —df is the canonical two form so by Stokes theorem, and the fact that c*w = w, we
have,

L9 = e
_ —//Da*w

- /[
-

Maintaining the above notation, let 1, and -2 denote the images of @fl (g0, ), and
<I>{2(g0,a0) respectively. Let (¢,r,h) = f(go,0), so that (¢,r,h) € V since (go, ) €

P. The Liouville torus passing through (go, o) is then the connected component C, of
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f~(c,m, h) containing (go, ). One readily verifies that m(C) = n(f~!(c,r,h)) = 0D =
S2n H(h).
Lemma 2.3.4: The homology classes of y1, v2, 3 form a basis for Hi(C,Z).

Proof: Note that for (g,a) € J~!(u) we have

i
%2 (g, 0) = (<exptm)g,a) ,

showing that <I>f2\ J-1(u) Parametrizes the action of the coadjoint isotropy subgroup

#)
SO(3), C SO(3). Thus the orbits of (I)?'J*l(u) are exactly the fibers of the reduction
map 7, : J~1 (1) — S2. One also checks that the orbits of ®; which intersect J~!(u), do
so only once, and furthermore the flow ®!* is nowhere tangent to J~*(y).

From these observations we see that 3 can be obtained from C by a two step reduction.
First, factor C by the flow of I; to obtain C N J~!(x). The resulting S' bundle is then
trivial. (We can obtain a global section by transporting C N J~!(u) along the flow of I;.)
Second, factor C N J~!(u) by the flow of I (which is just Marsden-Weinstein reduction)
to get dD. The section o|gp : D — 3 selects a representative from each equivalence

class in the quotient. The second S' bundle is also trivial since ¢ can be extended to D,

which is contractible. We now have a tower of trivial S bundles:
C—Cn J_l(u) — 3,

proving that C 22 y; X 9 X y3. Therefore the homology classes of 1, 2, v3 form a basis

for H,(C,Z) as required. [ |

Its not hard to show that -y;, 72, 3 can be chosen to vary smoothly with (gg, ) € P.
Using a local section of f : P — V, one can also show that 1, 2, 3 depend smoothly
on the value f(go,) = (¢,7,h) € V. Lemma 2.3.3, Lemma 2.3.4, Theorem 2.1.2, and

the above discussion together prove

Proposition 2.3.2: I3 = A/2x||J|| is a standard action integral for the rigid body.
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In fact one can also compute

1
I; (g0, ) = ﬂ/ B
Yi

for ¢ = 1,2, showing that I; and I, are also standard actions.
In retrospect the formula for I3 is not surprising. We saw in the proof of Lemma
2.3.3 that (—A/r) is the symplectic area in the reduced manifold S? (r = ||J||), enclosed

by a reduced trajectory. Therefore I3 is actually an action integral for the reduced system.

2.4 Frequencies

In this section we show by direct calculation that the Hamiltonian flow of I3 is 27-
periodic. We also compute the frequencies of the system with respect to the actions
I = (I1,15,I3). It is determined that H,, depends only on I and I3, showing that the
system has a “proper” resonance (i.e. a resonance independent of initial conditions.) An
additional resonance is seen to occur (making the system periodic) precisely when A® is
a rational multiple of 27.

Let (g(t), a(t)) = ™ (go, a0), (g0, o) € P, and = J(go, ) a regular value. Denote

the period of a(t) by T. Since J is preserved by the flow of Xp, we have

p = goao = g(T)e(T) = g(T) - cxo,

1

so that gy'p = g(T)~'u, and g(T)gy*p = p, showing that g(T)gy* is a rotation about

i € R3. We denote the angle of this rotation by A®. On this trajectory, let us put

h = Hp,, and r = ||J||. In [23], Montgomery proves

AQ = A 2T

72 r

7 (2.8)
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where A denotes the oriented area on the sphere S? = {« € R? | ||a|| = r} enclosed by the
loop «(t). In Landau and Lifshitz [ ], it is shown that T is given by a complete elliptic
integral whose modulus is a function of r, h, and the moments of inertia A;, 1 <7 < 3.
We demonstrate in Appendix A that the area is also given by a combination of complete
elliptic integrals, and hence so is AB®. Using these expressions for T' and A® one can show
that

0 0

Thus T'dh — AOdr is a closed one-form on phase space, and hence is locally exact. In

Appendix B we prove that I3 defined by

A
27!'[3 = —
r

satisfies d(27I3) = T dh — A®dr = T dH,,, — A© dIs, so that
Xorr, =T Xp,, — AO X7,.
Our aim is to show that the flow ®, of Xy, is 2n-periodic. We claim that
7™ = o2 oo @l

Since {I, H,,} = 0 the flows of X, and Xy commute, i.e. ;20 ®¥ = & 0 &!* for any

t,s € R. Put y(t) = QI_ztA@ o ®H.(go, ), then using this fact we get

%7@) =T Xu(v(t) — AO X1, (v(t)) = Xorr, (7(1)),

and v(0) = (go, ), showing that ®7"'3(gy, ) = 7(t) as claimed. Since g(T)gy' is a

rotation about y by A® radians we have

~

_ i
g(Tggt = exp (A@—)
(1o [l

— exp (A@M>
[Igocol|

= goexp (A®ﬂ> 9"
BN

whence

9(T) exp (—AG&) = go-
el
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Thus

(1) = ®25g 0 BE™(go, )
= (I)I_ZAQ(Q(T),QO)

= (g(T) exp (—A@ﬂ) ,040)

[l

= (go,Of())

= v(0).

We've shown that ®>7/3 = &3 is 1-periodic, whence ®!3 is 27-periodic as required.
t ont p ) t p q

Now from d(2nl3) = T dH,, — AOdI, (see Appendix B) we get

A® 27
= —dI, + —dIs.
dH,, T dly + T dls
The frequencies are therefore
0H,,
I) = =0
w1 (I) ol
0H,, AO©
@) = 5L =T
0H,, 2«
@l = B =T

In action-angle coordinates Hamilton’s equations become
Ii = 0 (1<i<3)
6 = 0
o =
b, - ¢

with solution
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If wo /w3 = A® /27 is irrational then we see immediately that the trajectory is a dense
winding on the 2-torus parametrized by 6o, 3. Otherwise the solution is a periodic orbit

lying on the same torus.

2.5 Deformable Bodies

Consider a closed system of particles (discrete or continuous) whose motion is known
with respect to some coordinate frame in R3>. We emphasize that this frame is not
necessarily an inertial one. To say that the system is closed means that the only forces
acting on the particles are those of interaction so that angular momentum is conserved.
Suppose that the center of mass remains at the origin of the given frame throughout the
motion. Then there exists an inertial frame whose origin coincides with that of the given
one. The purpose of this section is to show that this data (i.e. the motion of the system
with respect to the non-inertial or moving frame) is sufficient to determine the attitude of
the moving frame relative to the inertial frame, and to derive the equations which govern
that relationship. This attitude is specified by a matrix in SO(3), which is therefore
the configuration space of the system. The phase space is T*SO(3), which as before, is
identified with SO(3) x R3.

We have in mind a system such as a spacecraft with flexible attachments under robotic
control. Here the moving frame is affixed to the relatively massive spacecraft, and the
motion of the flexible structures is programmed by the designer. If the data consists of
knowing that the particles (e.g. flexible attachments) are fixed in the moving frame we
recover the rigid body, and indeed we find that the equations reduce to the Euler (2.5) and
group (2.6) equations in this case. Occasionally we will refer to the moving frame as the
body frame, even though there is no longer necessarily any body to which it is attached.

We denote points in the rotating frame by R and points in the inertial frame by r.

Let p; = p(-,t) : R* - R, 0 <t < c be the mass density of the system at time ¢, which
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we assume has compact support. Suppose that the motion of the system in the rotating
frame is governed by

R(t) = Y(R(¢),1) 0<t<c (2.9)

where Y is a time dependent vector field defined on supp(p;) and c is a fixed constant.
Let g(t) € SO(3) be the matrix which, at time ¢, gives the transformation from the

moving frame to the inertial one. Then the position of a typical particle with respect to

the inertial frame is 7(t) = g(t)R(t), and its velocity is 7 = gR + gR = gR + gY (R, 1).

Returning the velocity to the moving frame we get
g 't =g '"gR+ Y (R,1).

One may check that g='¢ € s0(3) so there is a vector 2 € R® such that Q = ¢g~1g, and

hence

g 'gR=QxR.

Thus

17> = llg™'7[I* =12 x R+ Y(R, 1)

= [|2x R|P +2(Q x R,Y (R, 1)) + [[Y (R, 1)|7,
and the total kinetic energy of the system is

1 1
5 [ pRDIHPER =5 [ p(R0I9x RIPER
2 R3 2 R3

+(Q, /Rsp(R, t)(R x Y(R,t))d*R) + % /Ra p(R,1)||Y (R,t)|*d®R.

Here d®R denotes Lebesgue measure on R? and (-,-) the standard inner product.
The third term above depends on t only, hence is the total time derivative of some
function, and therefore need not be included in the Lagrangian of the system. (See Landau

and Lifshitz[17].) We set

Ft) = /R PR XY (R, 1)dR, (2.10)
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and the second term becomes (€2, F(t)). Note that F' can be interpreted as the angular
momentum of the system calculated as if the rotating frame were inertial. For the first

term we define a time dependent, symmetric, bilinear form by
((a,b)) = /3p(R, #)(a x R,b x R)PR (2.11)
R

for a,b € R®. Equivalently this form can be given by a 3 x 3 symmetric matrix m(t):
({(a,b)) = (a,m(t)b). The first term is then (2, m(¢)Q), and we may take as our
Lagrangian
L(9,1) = 3 (0,m(1)0) + (2, F(1).
The matrix m(t) (as well as the form ((-,-))) is called the inertia tensor of the system.
Let our moving frame be given by the basis {E1, Eo, Es}. The entries of m with respect

to this frame are then

m; () = (Eim(t)E;) = (E;, Ej))

_ /Sp(R, #)(E; x R,E; x R)d°R
R

[ pRAOURE - RYPR ifi=j
R
- [ ARORR R iti ],
R
where we have written R; for the i"® component of R in this frame. Being symmetric, m(t)

is also diagonalizable. Let us suppose for the moment that m is diagonal with respect to

the above basis. Then m(t) = diag(A1(t), A2(t), A3(t)) where
M) = [ pROIRE-FDER  (1<i<3),
R
so for instance if 7 = 1:
M) = [ p(R0)(F + R)dR.
R

If A1 (t) = O for some ¢, then we see Ry = R3 = 0 for all R € supp(p:), so that all the mass
of the system is concentrated in a line. From now on we assume that this is not the case
and hence \;(t) > 0 for all ¢. With this stipulation, we have that m(¢) is invertible for all

t. Observe that
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MAd = / P(R,1)(R} + R} + 2R})&°R
R
_ )\3+2/3p(R,t)R§d3R
R

> ).

Similarly A1 + A3 > A9 and Ay + A3 > A;. Equality holds above if and only if R3 = 0 for
all R € supp(p:), whence all the mass of the system is concentrated in a plane.

The above discussion shows that the inertia matrix must lie among the 3 x 3, positive
definite, symmetric matrices whose eigenvalues satisfy A\; + A; > Ag (4,4, k cyclic.) The
set of possible inertia tensors is thus a subset of the six dimensional vector space of 3 x 3
symmetric matrices. If we further insist that the mass not be concentrated in a plane then
the above inequalities become strict, and the set of inertia tensors, which we denote by
M, forms an open subset of this vector space. Thus M; is a manifold and dim(M;) = 6.
We examine the structure of M; more closely in Chapter 4.

To obtain the equations of motion we perform the Legendre transform by setting

oL

= 25 (9,0) =m(1) - 2+ (1)

a
Since m(t) is invertible we have Q = m(¢t)"! - (a — F(t)). The Hamiltonian is then

(@, Q) — L(Q1) = %(a —F(t),m(t)™" - (a = F()))-

= Slevm®) ™ a) — (o, m(®) " F0) + o (F(2),m() " F(0).

The last term is a function of ¢ only, so dropping it will have no effect on the equations of

motion. We take our Hamiltonian to be
1
H(Oé,t) = §<a,m(t)’1a) - <aam(t)71F(t)>'
Therefore
VH(e,t) = m(t) o — F(t) = Q,

and by §2.2(iii) the equations are

{ (a) & = axm(t) Ha-F(t))

b  § = gm®) o= F®) (2.12)
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Note that for a rigid body F' = 0, and m is constant, so that these reduce to the usual
Euler (2.5), and group (2.6) equations.
In Koiller[16], these equations are derived using conservation of angular momentum
alone. To see this, we first show
m(t)Q = / PRA)(Rx (@ % R)) d°R. (2.13)
R
Let V € R®. Then by (2.11)
V,m(H)Q) = / PRV X R,Qx R) &R
R
~ [ pBOV.Ex (@ xR) £R
R
= (V. [ p(ROE X (@ x R)ER)
R

proving (2.13). Now the classical expression for angular momentum is

/R PR x#) PR = /R PRDGR X (GR+gY (R,1))] &°R

. /3p(R, DR x (') R+ R x Y(R,1)] d°R

_ [/3P(R,t)(R x (2 x R)) &R + /Sp(R,t)(R < Y(R,1)) &R
= g(m(t)Q+ F(t))

= gao.

As for a rigid body, the map J : SO(3) x R® — R®, (g,a) — ga gives the angular
momentum vector in the inertial frame. Thus o € R® is properly interpreted as the

angular momentum as seen from the moving frame. Since J is conserved we have

O—ia—'a—i- &
_dtg =g ga,

so that

O=g 'ga+a=Qxa+da,
which is the same as (2.12.a). Also ) = g~'§ gives ¢ = g2 which is identical to (2.12.b).
The motion of the rotating frame is thus obtained by substituting the solution to (2.12.a)

into (2.12.b) and solving. We remark that these equations are completely analogous to

(2.5) and (2.6) respectively.
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Thus far we have considered two systems: (A) the rigid body with Hamiltonian
1 ~1
Hin(0) = 5 (0,ma),

and equations

{éz = axmla

g = gm™ta);
and (B) the deformable body governed by (2.9), with time dependent Hamiltonian

M0, 1) = 5l mlt) ") — o, m(t)  F(2),

and equations

{ @ = « Xﬁ@_la— e Xﬁ@_lF(t)
g = glm(t)~te) —g(m(t)~'F(t)).

A third system related to both of these is (C) the rigid body with variable inertia tensor

with Hamiltonian

and equations

o

g = glm(t)~ta)
Here ¢ — m(t) is to be a path in the space of rigid body inertia tensors as in (B). We

{0'4 = axm(t)la

briefly examine the relationship between (B) and (C).
First observe that if the motion of the system in the moving frame is entirely radial,
which means R(t) = Y (R(t),t) := ¢(¢)R(t) for some scalar function ¢, then (B) and (C)
are identical. Indeed from (2.10) F(t) = 0, so the second terms in (B) vanish.
Consider the corresponding slow systems (B¢) and (C,) defined as follows. Replace
(2.10) by
R(t) = €Y (R(t), et) 0<t<

alo

where € > 0 is called the slowness parameter. Introduce the slow time 7 = et, then by

(2.10) F(t) is replaced by €F (7). System (Be) is

a = « Xﬁ(T\)’la —e(a XLnE)*lF(T))
= g(m(r)"'a) — eg(m(r) "1 F(1))
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and (C¢) is defined by

a = axz_(L)*la
9 = g(m(r) la)

A standard theorem of perturbation theory (e.g. Lemma 2.3.2 in Sanders, Verhulst[26])
says the solutions to (B¢) and (C¢) differ by O(e) on a time scale of order 1. (This means
the estimate is valid on a bounded interval which is independent of €.) We conjecture that
there exists a wide class of motions (i.e. vector fields Y (R, t)) for which such an estimate
can be made on a longer time scale (such as 1/e.) The above example (radial motion) in
which (B¢) and (C¢) are identical lends some credence to this. We proceed in Chapter 4

to study system (C) for its own sake.
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3. The Hannay-Berry Connection

In this chapter we summarize the work of Montgomery[24] in which the classical Han-
nay angles are generalized to non-integrable Hamiltonians. Even though our primary
interest is in the rigid body, which is completely integrable, the results here are indispens-
able for the geometric insight and computational ease which they provide. Our setting
is somewhat more general than in [24], in which only trivial bundles are considered, but
still less general than Marsden, Montgomery, and Ratiu[21]. We also refer the reader to

Weinstein[28] for another point of view.

3.1 Families of Hamiltonian Group Actions

Let (P,w) be a symplectic manifold, G a Lie group with Lie algebra g, and M a
manifold which we call the parameter space. Let w1 and 7y denote projections of M x P
onto M and P respectively, and suppose 2n = dim(P), and k = dim(M). Let E C M x P
be a smooth submanifold for which m|E : E — M is a smooth (not necessarily trivial)
subbundle, and each fiber E,, = 7] ' (m)NE is an open submanifold of 77 ' (m) = {m} x P.
Thus E,, is a symplectic manifold with symplectic form miw|E,,.

Definition 3.1.1: A smooth action of G on E is called a family of Hamiltonian G actions
if the following are satisfied:

1. G preserves the fibers E, of m1|E.
2. The action restricted to each fiber is symplectic.

3. The action admits a parametrized momentum map I : E — g*.
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Some explanation of (3) is required. For £ € g the infinitesimal generator is:

tolm,a) = 4| (expte) - (m2).

Here g - (m,z) denotes the action of g € G on (m,z) € M x P. Note that {g is vertical

with respect to the bundle m1|E, by (1). Let dp and djs denote the exterior derivatives

in the P and M directions respectively. That is, for f € C*°(M x P)

N~ (9F i, OF )
dpf—;(aqidq +odp)
and

k
0
duf = E —a’n']:jdmj,
Jj=1

where {¢*,p;}}; and {mj};?zl are local coordinates on P and M respectively. The
Hamiltonian vector field of f € C°°(FE) is defined as the unique vector field X; € X(FE)

which is vertical with respect to 71 |E and satisfies
mow(Xy,-) = dpf.

For ¢ € g, let I¢ denote the function on E given by I¢(m,z) = (I(m,z),&), where

(-,*) : g* X g — R is the natural paring. Then (3) says that for each ¢ € g,
Xre =¢&R.

A trivial example is given by a Hamiltonian action of G on P with momentum map
J: P — g*. Let G act trivially on M and take the diagonal action on E := M x P. In
this case I(m,z) = J(x) and there is no dependence on the “parameters” M. We will

be concerned primarily with integrable systems which depend nontrivially on a parameter.

Example 1. Let G = S! and suppose SO(3) acts on (P,w) in a Hamiltonian manner with
equivariant momentum map J : P — so(3)* = R3. Here we identify so(3)* = so(3) = R?
as in §2.2. Let M = S$2, the unit sphere in R®, and take E = M x P. Then for z € P

and 7 € S2, X3, = np(z) has flow ®4(z) = (expin) - ¥, where g - z denotes the action
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of g € SO(3) on x € P. We see that ®;(z) is 2w-periodic since ||| = 1. Thus for each
n € S% we have an action z — ®¢(z), of # € S* on P. Let S! act trivially on S? and take
the diagonal action on §2 x P. This forms a family of Hamiltonian S* actions. The action
clearly preserves fibers and is symplectic when restricted to fibers. For the parametrized
momentum map take I : S x P — R = £ie(S') to be I(n,z) = (J(n), ). This example

is used in Montgomery[24] to compute phases for the Foucault pendulum.

Example 2. Take E = M x P, let H € C°°(M x P) and consider the dynamical system
given by Xp. Since X is vertical, the fibers of m; are invariant under the flow. We may
consider Xz to be a Hamiltonian system on P = 77! (m) which depends on the parameter
m € M. We say that H defines a parameter dependent integrable system if for each m € M,
H(m,-) € C*®(P) is integrable in the usual sense. This means that there are functions
fi,..., fn = H € C®°(M x P) such that for each m € M, {fi(m,-), fj(m,-)} = 0 (using the
induced Poisson structure on 77 *(m)), and dp fi(m,z) A ... A dpfn(m,z) # 0 for almost
every x € P. By the Arnold-Liouville Theorem 2.1.1 the regular compact connected level
sets of f(m,-) = (fi(m,+),..., fn(m,-)) are diffeomorphic to T" and about such a torus
there exist local action-angle coordinates. This means we have functions I = (I1,...,1I,)
locally defined in (m,z), whose Hamiltonian flows are 2m-periodic. Also we have a local
diffeomorphism ¢, on K", depending on m € M, such that f(m,z) = ¢(m,I(m,z)). In
particular H is a function of m and I. For simplicity we assume that I is globally defined.
Then by flowing along the trajectories of Xy, ,..., X, (or equivalently by advancing the
angle coordinates conjugate to I,...,I,) we have an action of T" on M x P. We see
readily that this is a family of Hamiltonian T™ actions. Indeed, (1) in the definition is
satisfied since X7, (1 < i < n) is vertical, and (2) holds since Hamiltonian flows are

necessarily symplectic. By definition of the T™ action we have for £ € R* = Lie(T"),

Emxp =&Xn + - +&X, = Xentteal, = Xpe,

showing that (3) holds.
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Example 3. Let f1,...,fn, = H € C*°(M x P) form a parametrized integrable system
as in the previous example. We examine the case where action-angle coordinates are
not globally defined, which is the more common occurrence. The discussion preceding
Theorem 2.1.3 shows that for each parameter value m € M, there is an open submanifold
P(m) C P on which f(m,-) = (fi(m,-),..., fa(m,-)) is a proper submersion. Typically
P(m) is obtained from P by removing certain submanifolds of codimension at least one,
so that P(m) is dense in P. As m € M is allowed to vary, the connected components of
P(m) may migrate through P, change topology, or even disappear. Let us assume that

the number of components remains constant for all m € M; say

where each P;(m) is connected and open. Define
E={(m,z) e M x P|z¢€P(m)}

and consider the subbundle m|E : E — M, with fibers E,;, = {m} x P(m). If we follow
the i'* component as m executes a loop in M, it may be that P;(m) does not return to

itself, but say to P;(m). In other words the labeling map
{components of P(m)} — {1,...,k}

may be defined only locally on M. Put another way, the bundle 71 |E : E — M may not
be trivial. Now assume that each component of P(m) admits a single action-angle chart.
While not occurring generally, this situation is exactly what happens for the rigid body
(see §2.3). Just as in Example 2, T" acts in a Hamiltonian manner on each component
P;(m), 1 <14 < k, and hence on the fiber E,,, thus forming a family of Hamiltonian T"

actions on F.

In [21], Definition 3.1.1 is generalized further to the case when 71 : E — M is a Poisson

fiber bundle, not necessarily contained in a trivial bundle.
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3.2 Definition of the HB Connection

Let E C M x P be equipped with a family of Hamiltonian G actions, and assume G
is compact and connected. We will denote the action by ®,(m,z) for g € G, (m,z) € E.
Let dg denote Haar measure on G, and let o be a tensor field defined along (not necessarily

on) a G invariant submanifold of E.

Definition 3.2.1: The average of o over G is the tensor field of the same type given by

1
— [ @'0d
<U> |G|/G’ ga g,

where |G| denotes the volume of G with respect to dg.

Observe that if o is G-invariant, which means that ®;0 = o for g € G, then (o) = 0.
Conversely (o) = o implies ;0 = o by the translation invariance of Haar measure. Thus
(o) is itself G-invariant. Note that the map o — (o) is R linear, and in fact linear over
the ring of G-invariant functions.

Let v € T;,,M. The horizontal lift of v with respect to the trivial connection on
71 : E — M is simply (v,0). Let v@® 0 denote the vector field on E,,, whose value at (m, )
is (v,0) € Tpn,z)(E).

Definition 3.2.2: The Hannay-Berry (HB) connection is the Ehresman connection on

m|E : E — M whose horizontal lift is given by
Hor(y, oy (v) = (v @ 0)(m, z).

Note that if the G action is independent of m, then @} (v®0) = v®0 whence (v&0) = v®0,
and the HB connection is trivial in this case.
To motivate this definition recall Example 2 of the previous section. We consider

a parameter dependent integrable system with global action angle variables (I,0). Let

{mj};?:l be local coordinates on M for which (I, ) are defined. Then

(ml,...,mk,Il,...,In,01,...,9n)
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are local parameter dependent coordinates on F := M x P. We take G = T" in the above

definition, and denote the induced T" action by

for ¢ € T". Note that this action depends on m since the coordinates (I,8) do. To
determine the holonomy of the corresponding HB connection we first compute Hor - % €
J

X(M x P). Observe

P P
)
— @20 [ dI - ®h(=2— ®0)db
@) [ dr- S50
0
— (2n) /Tn(%j@())[fim_o]o%de

- en™ [ 3((%%)[@-]) a9

J
).
N Bm 5 '

(Hor - 0)[6] = < % >

j om;

In a similar manner we get

and

0
am, )mi] = d4j,

o o _flon\ o [oo\ o
Hor- -2 = 2 9 7.
A i DD <<amj> ar, " <amj> aoi>

(Hor -

whence

Recall that standard actions were those obtained via Theorem 2.1.2. The following result
is one of the basic facts concerning slowly varying completely integrable systems. A proof

is implicit in the work of Weinstein[28].

Lemma 3.2.1: If the actions are standard then (dpI) = 0 i.e <££LZ]> =0, for1 <i<

n, 1<j<k.
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Now assume that the actions are standard, or at least that (dj/I) = 0. Then the

horizontal lift becomes

0 0 "/ 86; \ 0
Hor - = ) =
o ij 8m]‘ ® Z <8mj> 801

1=t
Let m : [0,1] — M be a smooth path whose image C, lies in the domain of the coordinates

{m; }9?:1. Then

k
0
Hor-m' = Hor-(ZmQ%)

k n k
0 00; 0
v s < z>m/ Kl
; 7 Om; ;(; om; 7| 00;
= m'@Z(dMHi) m/,
=1

and the parallel transport equations are

fi =0
91' = (dMHz)m'

The parallel transport along m(t) is then

(m(0).1(0),6(0)) > (m(1),10),6(0) + [ (d)).

If C is a loop then the holonomy is

6(1) — 6(0) :/ (du),

c

which is precisely the Hannay angles mentioned in the introduction. We have proved
Theorem 3.2.1: If (dy/I) = 0, then for sufficiently small loops, the holonomy of the HB

connection is the Hannay angles.
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Remark. Sufficiently small in this case means that the loop must lie in a region in M over
which the m dependent action-angle coordinates can be defined. We see from this theorem

that the HB connection serves to generalize the Hannay angles to non-integrable systems.

3.3 Geometric Properties of the HB Connection

In this section we introduce the notion of a Hamiltonian connection for a given family
of Hamiltonian G actions. We quote a theorem of Montgomery regarding the existence
and uniqueness of such connections, and discuss a method for calculating the Hamiltonian
one-form (defined below.) This method will be used in the next chapter to construct the
HB connection for the rigid body. For m € M define P(m) :=={z € P | (m,z) € E,} =
o (Ep)-

Definition 3.3.1: Let the bundle m1 : E C M X P — M be equipped with a family of
Hamiltonian G actions, with parametrized momentum map I : E — g*. A Hamiltonian
connection for this family is an Ehresman connection on mi|E satisfying:

1. DI =0, where D denotes the covariant differentiation operator.
2. For each v € T;,M, there is a function K-v € C®°(P(m)) such the horizontal lift is
given by
Hor(,, 2)(v) = v ® XK.(7),
for x € P(m).

3. (K-v) is a constant, which can be taken to be zero.

Property (1) says that I is constant along the horizontal lift ¢(t) = (m(t), z(t)) of a curve

m(t) € M. By (2), the parallel transport equations are
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d(t) = Horgyy -m/(t)

= m'(t) ® Xk (z(t)),

so that
o' (t) = X (1) (@(2))-

Thus z(t) is the flow of a time dependent Hamiltonian vector field on P(m(t)). One says
that parallel transport is Hamiltonian. Regarding (3), note that K - v is defined only up
to an additive constant. Thus we may replace K -v by K - v — (K - v) which has average
Z€ero.

If Z € (M) we can regard K - Z as a function on E which is defined up to addition
of a smooth function on M. The map Z — K - Z can clearly be taken to be linear.
The operator K is thus a one-form on M taking values in the ring C*°(E)/C*°(M), and
determines the connection. K is called the Hamiltonian one-form for the connection. The
following is proved in [21,24].

Theorem 3.3.1: A family of Hamiltonian G actions admits a Hamiltonian connection if
and only if the adiabatic condition (dpI) = 0 holds. Furthermore, if such a connection ex-
ists it is unique and equals the Hannay-Berry connection. In particular the HB connection

is Hamiltonian.

The condition (dj/I) = 0 is not prohibitive, since it is always possible to replace I
with I’ satisfying (dpI') = 0, without changing the G action. The new momentum map is
defined globally in P but only locally in M. See [21,24] for details. This subtlety doesn’t
arise for the rigid body since the actions are standard and hence (dj/I) = 0 by Lemma
3.2.1.

Let v € T,,M and £ € g. Using (2) of the definition, we have

DIS-v = dIf-Hor-v

= dI*- (v® XK.)
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= dyI¢ v+ dpIf - XK.

= dyl® v+ {I*, K - v},
so by (1), K - v necessarily satisfies
dyI¢ v+ {I, K - v} =0

for each ¢ € g. This PDE is not sufficient however, to determine the function K-v. Instead
we have
Proposition 3.3.1: Suppose one can find a function K -v € C®(P(m)) such that for all
€y

dyI¢ v+ {I§, K - v} = 0. (3.1)
Then K -v=K-v — (IN{ v ) is the Hamiltonian 1-form for the HB connection.

Proof: Properties (2) and (3) of the definition are automatically satisfied. By the above

computation

DI¢.v = dyT¢. v+ {I*, K0}

= dyT¢ v+ {I§, K v} — {I¢, (K - v)}

= &p[(K-v)]
= 0,

since (K -v) is @ invariant. This proves (1), and by uniqueness, K - v determines the HB

connection. ]

We say that K - v almost generates parallel translation. This proposition provides a
procedure for calculating the horizontal lift operator, which is sometimes more feasible
than computing Hor - v directly from its definition. This is because it is easier to average
a function than a vector field. (For the latter, one must differentiate the group action
®,: E — E, g € G with respect to z € P(m).) Of course we have the added step of

solving (3.1), but this PDE is sometimes quite simple.
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If the family of Hamiltonian G actions admits additional symmetries the above proce-
dure simplifies considerably.
Proposition 3.3.2: Suppose another Lie group H, with Lie algebra b, acts on P in a
Hamiltonian manner with equivariant momentum map J : P — h*. Suppose also that H
acts on M in such a way that the corresponding diagonal action h-(m,z) = (h-m,h-x), h €
H, preserves I: E — g*. Then the action of K on vectors tangent to the H orbits in M
is given by

K-y =J3"—(J").

Here n € by, and nar denotes the infinitesimal generator of the H action on M.

Proof: Let ¢ € g. By hypothesis we have
I¢(h - m,h - z) = Té(m, z) (3.2)

for h € H, (m,z) € E. Let n € h, put h = exptn in (3.2), and differentiate both sides

with respect to t at £ = 0. We get

0 = dyIé-ny(m)+dpl® - np(x)

= dyI¢ - (m) + {1¢,37},

showing that J7 is a solution to (3.1). The result follows from the previous proposition.

3.4 Curvature of the HB Connection

Recall that the curvature of an Ehresman connection is the vertical bundle valued two
form given by the covariant derivative of the connection one form. The curvature induces

a two form on the base (also called the curvature) by composition with the horizontal
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lift operator. Maintaining the notation of previous sections, let curv(Vi, Va)(m, z) denote
the curvature of an Ehresman connection on 71 : £ C M x P — M applied to V1, V5 €

Time) E, (m,x) € E. The induced form is then

Q(v1,v2)(m,z) = curv(Hor - v1, Hor - v9)(m, ),

where v1,v9 € T, M.
For the HB connection the form € is Hamiltonian in the following sense.

Theorem 3.4.1: Let m € M and vi,vo € T,yuM. Then there is a smooth function

Q(v1,v2) : By — R such that

Q(’Ula UQ)(ma J)) = XQ(vl,w)(ma LE)

Q is given by
Q(’Ul,'l)g) = <{K . ’U1,K . ’Ug}).

The proof can be found in [21,24]. We will abuse the terminology slightly and call Q the
curvature of the HB connection.

Remark. As for the connection one-form, Q(v1,v2) is defined only up to addition of
a constant, so for Z1,Zs € X(M), Q(Z1,Z2) is a smooth function of E defined up to

addition of a smooth function of M. Thus Q is a two-form on M taking values in the ring

C>®(E)/C®(M).
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4. The HB Connection for the Rigid Body

In this chapter we study the rigid body with variable inertia tensor mentioned in
§2.5. Recall this is the time dependent Hamiltonian system on SO(3) x R® with energy
Hpyy (@) = (e, m~ta), where t — m(t) is a (piecewise) smooth path in the space of inertia
tensors. We are particularly interested in the case where m(t) is a loop.

As usual {e;,ez,e3} denotes an inertial frame in R3 and {E;,Ey, E3} denotes the
“body” frame in the sense of §2.5 (i.e. the motion of the system is known relative to
{E1,E5,E3}.) In the Euler description of the motion, one regards the body frame as
fixed and the inertial frame as moving. Accordingly we consider {Eq, Eo, E3} as a fixed
basis for R® throughout this chapter. It will be necessary to consider a third frame,
denoted by {&1(m),E2(m),E3(m)}, which diagonalizes the inertia tensor m. Note that
this basis is not unique and cannot be defined in a consistent manner along certain non-
contractible loops in the space of inertia tensors. We shall see in §4.1 that for m with
distinct eigenvalues, {&1(m),E2(m),E3(m)} is defined only up to rotations by a discrete
subgroup of SO(3). When considering loops m(t), we will usually take {E;, Eo, E3} and
{&1(m(t)),E2(m(t)),E3(m(t))} to coincide initially.

Define the open sets U(m), U;(m), U¥(m) C R* and P(m), P;(m), PY(m) C SO(3) x
R3 for 4 = 1,3; v = +,—, as in §2.3. In these definitions the coordinates a; of o € R3
are taken with respect to {&€1(m),&2(m),E3(m)}, so that these sets depend on m, as the

notation suggests. Recall from §2.3 that we have the disjoint union
P(m) = P"(m) U Py (m) U P§ (m) U Py (m),

where each P}(m) supports a single action-angle chart. As m executes a loop in the space
of inertia tensors, one can see that the ellipsoids H,,' (k) (h > 0), the sets U¥(m), P?(m),

and the basis {€1(m), E2(m),E5(m)} all move together relative to {E;, Eq, E3}. Set

E= {(m,ga Oé) | (g,a) € P(m)}’
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where M denotes the inertia tensors with distinct eigenvalues. Then m|E : E — M is a
nontrivial subbundle of 71 : M x (SO(3) x R®) — M, (m,g,a) — m. The action angle
coordinates on P/ (m) induce a family of Hamiltonian T2 actions on 71|E, just as in §3.1
Example 3. The goal of this chapter is then to study the corresponding HB connection.
We begin in §4.1 by examining the space of inertia tensors in detail, showing that
M has the structure of a smooth fiber bundle with contractible base and topologically
non-trivial fiber. In §4.2 we compute the Hamiltonian one-form for the HB connection on
vectors tangent to fiber and base respectively. In §4.3 we compute all but three terms in
the curvature form, and in §4.4 we calculate the holonomy of various loops in M. Finally
in §4.5 we consider whether the HB connection can be extended to the inertia tensors with

multiple eigenvalues, and discuss averaging over a natural T? action.

4.1 The Space of Inertia Tensors

The space of rigid body inertia tensors is the set M7, of real, positive definite, symmet-
ric matrices, whose eigenvalues A1, A, A3 satisfy A\; + A; > Ay (4,7, k cyclic.) Recall from
§2.5 that if we allow all the mass of the body to be concentrated in a plane then we have
weak inequality above. We assume this is not the case, so that M; is an open subset of the
six dimensional vector space of 3 x 3 symmetric matrices, and hence is a manifold. Each
m € M induces a completely integrable system on the phase space SO(3) xR® = T*SO(3)
via the Hamiltonian energy function H,(a) = 3{a,m™'a).

Define M C M; to be the set of m € M; with distinct eigenvalues. We claim that M
is an open submanifold of M;. In fact the set ¥, consisting of m € M; with exactly two
eigenvalues equal, is a submanifold of codimension two in M;. To see this observe that the
elements of M; are in one to one correspondence with the ellipsoids in R? which are the

level sets of the corresponding quadratic form (i.e. kinetic energy function.) The ellipsoids

corresponding to m € X are parametrized by the lengths of the distinct axes (giving two
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parameters since two of the three axes are equal) and by the direction of the one axis
which is unequal to the others (giving two parameters.) Thus dim(X) = 4. Similarly, the
set X/, of m € M, with three equal eigenvalues forms a submanifold of dimension one,
being parametrized by the radius of the corresponding level set (which is a sphere in this
case.) Thus M = M\ (2UY'), showing that M is an open submanifold of M as claimed.
One might have initially guessed that the codimension of ¥ in M; is equal to one, since it
is defined by a single equality. This is explained by noting that the functions which give
the eigenvalues of m (defined locally on M), cease to be independent at points of ¥ and
hence cannot be considered as coordinates there. (See Arnold[2] Appendix 10.)

We take M as the parameter space for the HB connection. Note that the T3 action on
m|E : E — M given by the parameter dependent integrable system H,, forms a family of
Hamiltonian group actions by §3.1 Example 3. In §4.5 we will see that the HB connection
cannot be extended to M, except in a certain restricted sense. The goal of this section is
to show that M has the structure of a trivial fiber bundle over an open set in R3.

Let SO(3) act on M; by conjugation: g-m = gmg~"' for m € My, g € SO(3). Note
that this action preserves eigenvalues, and therefore restricts to an action on M. It is an
elementary fact of linear algebra that two elements of M; are in the same orbit if and
only if they have the same eigenvalues, and furthermore that given m € M;, there is a

g € SO(3) such that gmg™! is diagonal. The infinitesimal generator of this action is

d ~ ~
Ev(m) = at—o (exptf)m(exptf)_1

= ém—mf: [éam]a

for ¢ € R3. If m is diagonal, say m = diag(\1, A2, A3), one computes

0 (A= X2)& (A3 — )&
Em(m) = | (A1 —A2)&3 0 (A2 —A3)&1 |- (4.1)
(A3 =A)& (A2 —A3)& 0

The isotropy algebra so(3),, = {¢£ € R® | £47(m) = 0} is the Lie algebra of the isotropy
subgroup SO(3),, = {g € SO(3) | gmg! = m}. If m € M, then by (4.1), &x(m) = 0

if and only if ¢ = 0. This is also true even if m is not diagonal, as one verifies. Thus
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$0(3)m = 0, and SO(3), is discrete, showing that the action is locally free when restricted
to M. From now on we consider the action on M only.
We now compute the isotropy on M. Again assume m = diag(A1, A2, A3). We claim

that

SO3)m = {id,exp B, expnEy,exprEs}

= {Zda dla‘g(la _13 _1), dia‘g(_la 1, _1)5 dia‘g(_la _15 1)},

which is isomorphic to the Klein four group. Indeed, direct computation shows the above

I'— m in terms of

matrices belong to SO(3),,, and if one writes out the condition gmg~
the entries of g, one finds that g is itself diagonal since the A; are distinct. Since the rows
of g are orthonormal, g = diag(+1,+1,+1), and since det(g) = 1, we see that the above

1

matrices exhaust SO(3),,, as claimed. In general we have that gmg™" is diagonal for some

g, and one checks easily that SO(3),,,0-1 = g-SO(3)m -9~ *. Thus all isotropy groups are

gmg
conjugate. The following result is a special case of Corollary (2.5) (p.309) of Bredon|[7].
Theorem 4.1.1: Let G be a compact Lie group acting smoothly on a manifold X. If all
the isotropy groups are conjugate, then X/G is a manifold, and the projection X — X/G
is a locally trivial fiber bundle with typical fiber G/Gy (for any x € X ) and structure group
N(G;)/G. Here N(G;) denotes the normalizer of Gy in G.

Let m: M — M/SO(3) be the canonical projection and put
Gy = {id, exp 7E1, exp TEq, exp 7r]:]3}.

Then Theorem (4.1.1), together with the preceding discussion proves:

Corollary 4.1.1: M/SO(3) is a smooth manifold and m : M — M/SO(3) is a locally
trivial fiber bundle with typical fiber SO(3)/Gy.

In fact, as we’ll see, M/SO(3) is diffeomorphic to an open ball in R®, and hence 7 is

globally trivial. Put

B={XeR |\ >X >\ >0and )\ +X; > N (4, 4,k cyclic)}.
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Define 71p : M — B by m — XA = (A1, 2A3) where \; (1 < ¢ < 3) are the distinct
eigenvalues of m taken in descending order. Note that 7p is smooth since the eigenvalues
are smooth functions of m. (Proof: By the implicit function theorem, the roots of a
polynomial are smooth functions of the coefficients as long as the roots are distinct. Apply
this to the characteristic polynomial of m € M.) mp is also clearly onto. Since the action
preserves eigenvalues, mp drops to a smooth function on the quotient. That is, we have
a smooth function ¢ : M/SO(3) — B satisfying ¢ om = mp. We claim that ¢ is a
diffeomorphism. To see this observe that 7p admits a smooth section o : B — M, \ =
(A1, A2, Ag) — diag(A1, A2, A3). Write [m] = w(m) for the equivalence class of m € M, so
that ¢([m]) = mp(m). Then

(moa) o ¢([m]) = (o o mp(m)) = w(m) = [m].

Also ¢ o (m o) = mp o o = identity g, whence moo : B — M/SO(3) is a smooth inverse
to ¢. This shows that M/SO(3) = B, and in fact that = and 7p are isomorphic as fiber
bundles.

Lemma 4.1.1: B is contractible.

Proof: Fix a = (a1,a2,a3) € B. Define G : [0,1] x B — B by G(t,\) = tA + (1 — t)a.
Then G(0,-) is the constant map at a, G(1,-) = identityg, and G is clearly continuous.
We need only check G(t,\) € B for all A € B, t € [0,1]. Observe that

tA1 + (1 —=t)ay > the + (1 — t)ag > tAs + (1 — t)as,
since the analogous inequalities hold for A\, a € B. Similarly

(XNi+ (1 —=t)a)+ N+ (1 -t)a;) = th+X)+ 1A —t)(ai +ay)

> (e + (1 - tay)

(cycle on i, j, k.) Thus G(t,\) € B as required. [ |
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Theorem 4.1.2: 7 : M — M/SO(3) is a trivial fiber bundle isomorphic to g : BX F —
B, with F := SO(3)/Gy. The fiber has homotopy group m1(F) = Q, where Q is the

quaternion group.

Proof: The first statement follows from Corollary (4.1.1), Lemma (4.1.1), and the preced-
ing discussion. For the second statement, let H denote the quaternions and identify S C
R* with the quaternions of unit length. The quaternion group is Q = {+1, +i, +75, +k}. If
q = qo+qi1i+qoj+qsk € H, its conjugate is § = qo — q17 — g2j — ¢3k, and its squared length
is |¢|> = gg. The covering projection p : S — SO(3) is defined as follows. The map
H— H, =+~ qzg, € H, g € S is orthogonal since it preserves lengths. It also preserves
the purely real quaternions, and so also their orthogonal complement, span{i, j, k} = R®.

Let p(q) € O(3) be the restriction to R3:

p(q) - v = qug,

for v = v1i + vej + w3k € R3. The matrix of p(g) is computed to be

2@ +4q)) -1 2(q1g2 — q093) 2(q193 + q0q2)
p(q) = | 2(q1g2+qog3) 2(ad+¢3) —1 2(g2g3 — q190)
2(q143 — q092) 2(q2g3 + qoq1) 2(g¢ +q3) — 1

(4.2)

We see that det(p(q)) = 1, whence p(q) € SO(3), and p is clearly smooth. Since dim(S53) =
dim(SO(3)) = 3, invariance of domain implies p is onto. For ¢, p € $% and v € R® we have
p(qp)-v = qpvgp = q(pvP)q = p(q)op(p)-v, showing that p is a homomorphism. From (4.2)
we obtain ker(p) = {1,—-1} C @, and p(Q) = Go. Thus the surjective homomorphism
p: 8% — SO(3) induces a diffeomorphism p : S3/Q — SO(3)/Gy of quotient manifolds,
showing that F = S$3/Q. Now the natural projection $* — $3/Q is a bundle with
discrete fiber ). The long exact sequence of homotopy groups arising from this fibering

(see Gray[13]) is

R 7Tn—|—1(53/Q) - Wn(Q) — 7Tn(53) - 7Tn(‘Sg/Q) — anl(Q) — oy

which leads to

0 — m(5%/Q) = m(Q) — 0,
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since 71(S3) = m(S%) = 0. Thus 71(S%/Q) = m(Q) and since Q is a discrete group,

m0(Q) = Q. Therefore 71 (F) = @ and the proof is complete. [ |

Under the identification M = B x F, the orbits F) := SO(3)-0(A), A € B, correspond
to the fibers {\} x F = §3/@Q which are compact. Note that since B is contractible, M
contracts onto a single fiber Fy, and hence m (M) = m(F)) = Q. We can realize the
isomorphism @@ — w1 (F)) explicitly as follows. Define ; to be the constant curve at

o(\) € Fy and

v_1(t) = expté-o(N) (0 <t < 2m),
yi(t) = exptE;-o()) 0<t<m),
12i(t) = expEtEy-o()) 0<t<m),
Yir(t) = exp+tEy-o()) O0<t<m).

In the definition of y_; we may take ¢ to be any unit vector in R®. (If we choose some
other unit vector € R®, then since ¢ — exp t€ and t — exp t7) (0 <t < 27) are homotopic
in SO(3), the loops t — expt - o(A) and ¢ — exptij - o(X) (0 < t < 2) are homotopic
in Fy.) The isomorphism @ = 71(F)) is then given by a € Q — [v,], where [,] denotes
the homotopy class of v,. We shall be interested in calculating the holonomy of the HB

connection on loops belonging to these classes.

4.2 Hamiltonian One-Forms

Using M = B x F we calculate the Hamiltonian one-form K - v, for the HB connection

on vectors v € T, M tangent to F' and B respectively. First we set some notation for
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what follows. Fix m € M and let (a1,a9,a3) denote coordinates on R® relative to

{&1(m),E2(m),E3(m)}. Recall from §2.3 the definitions

Ui(m) = {a€R |of <noi, o3+ of #0}
Us(m) = {a€® |aj>nai, of + a3 # 0}
U(m) = Ui(m)UUs(m).

Here m = o()\) = diag(A1, A2, A3), A € B, and

n— A3(A1 — >\2)'

A(A2 = A3)
Note that the definitions of U;(m), (¢ = 1,3) don’t depend on which diagonalizing basis
we pick. (By §4.1, the frame {£;(m) | 1 < j < 3 } is defined only up to rotations
by Gy = {id,exp mim,exp m%,exp wm}) Indeed, since the coordinates are

squared in the above definitions, it is immaterial which direction on each principal axis is

considered positive. Also from §2.3, we set
Urm) = {a€Um)|a>0)
U (m) = {aeU(m)| o <0},
for 1 = 1,3. If we transport these sets along the loop m(t) = (exp tﬁ‘:\g)m(exp tﬁ\g)_l, 0<

t < w, we see that Ui+ and U;” switch places, showing that these definitions are not

intrinsic. Also set

Py(m) = « Y(UY(m))NW
Py(m) = a '(Ui(m)) N W
P(m) = a ' (U(m))NW,

fori =1,3; v =+,—. Here m: SO(3) x B> = R3, (g,@) = aand W C SO(3) x R® is

defined just as in §2.3. Finally put

E={(m.g,0) | (9,2) € P(m)},

and consider the HB connection on 71 : E — M, (m,g,a) — m.
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4.2.1 Casel: v e F,

In this section we compute the Hamiltonian one-form for the HB connection on 7y :
E — M in the direction of vectors tangent to the orbits Fy, of the SO(3) action on M
described in §4.1. To do this we appeal to Proposition (3.3.2) which gives K - &3r(m)
in terms of a momentum map for an SO(3) action on P(m). The correct action is not

however, the usual lifted left action.

Consider the left SO(3) action on SO(3) x R? given in body coordinates by
h-(g,0) = (gh™", ha), (4.3)

for h € SO(3). This is the cotangent lift of the left action on SO(3) given by right
multiplication by A~!. We remark that this action commutes with the lifted left action

§2.2(i). Also (4.3) admits an equivariant momentum map L : SO(3) x R®> — R3, given by
L(g,Ot) = -

To check this, we first compute the infinitesimal generator of (4.3). For £ € R?,

d N
{p(g,a) = ), P & (g,)
= d@l, (g exp(—t€), (exp t)c)
= (_géag X Ot)
= _(géa a X 6)

Now Lé(g,a) = — (&, @) so that V,L¢ = —¢, and hence by §2.2(iii)

Xpe(9.@) = (9- VoL ax V,LE)
= _(g ' éaa X 5)
= §P(gaa)'

We have used the fact that L¢ is independent of g € SO(3). One checks easily that L is

equivariant with respect to (4.3) and the usual action of SO(3) on R3.
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To utilize Proposition (3.3.2) we must first check that the actions I = (I, I, I3) for the

rigid body are invariant under the corresponding diagonal action on E C M x (SO(3) xR3):
h-(m,g,@) = (hmh™", gh™" ha), (4.4)

for h € SO(3), m € M, (g9,a) € P(m). Recall that I = (J,e1), and I, = ||J|| do not
depend on the inertia tensor m. Here J denotes the momentum map §2.2(v) for the usual
lifted left action §2.2(i). Thus I(gh !, ha) = (ghh la,e1) = {ga,e;) = Ii(g, ), and
Ii(gh™ !, ha) = ||ghh 'a|| = ||a|| = I2(g, @), showing that I; and I5 are invariant.

1

To check the invariance of I3 we first note that the energy H(m, ) = 3(a,m™1a) is

invariant:

1
H(hmh™ ', ha) = E(ha,(hmh’l)’lha)

1
= 3 (ha, hm o)

= H(m,a).

Thus the original integrals in involution f = (I, I, H,,;), are invariant under the diagonal

action (4.4). Recall from §2.3 that

I3(maga a) = B, (45)

[rs(f(m,g,a),m)
where [ is the canonical 1-form on phase space and ~;(f(m,g,a),m), (1 < i < 3)
denote closed curves which generate the Z homology of the Liouville torus passing through
(g,) € P(m). Each ;, (1 < i < 3) depends smoothly on the value f(m,g,a) € R?, as

well as the parameter m € M. Since f is invariant we have

I3(h' (magva)) = (4'6)

/VS(f(m,g,a),hmhl) /
We showed in §2.3 that the value of the integral in (4.5) is —r~! times the oriented area
of the spherical cap enclosed by the curve S2 N H,,'(c). Here r,c¢ > 0 are constants, and
S2 is the sphere of radius r. Note that replacing m by hmh ™!, h € SO(3) has the effect

of rigidly rotating the level sets of H about the origin, i.e.

H L _.(c)=h-H,' (c).
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Observe that this rotation does not alter the above area, and therefore the righthand
sides of (4.5) and (4.6) are identical, showing that I3(hmh~',gh~! ha) = I3(m,g, o) as
required.

The invariance of I = (I1, Is, I3) under the diagonal action together with Proposition
(3.3.2) yields
Lemma 4.2.1: The Hamiltonian 1-form acting on vectors tangent to the SO(3) orbits in
M 1is given by

K&y (m) =L — (L),

form e M, £ € R3.

We remark that K - &x(m) is a left invariant function on P(m) since L¢ is. The next
two lemmas will facilitate the computation of the above average. We see that under
certain conditions, the averaging operation (over the T® action) can be replaced by the
time average over the rigid body dynamics.

Lemma 4.2.2: Fiz m € M and suppose F : P(m) — R is continuous and invariant

under the Hamiltonian flow of I;. Then
(F) =(F)H,,
Here (F)g,, denotes the time average of F' along the flow of Hy,:

(Fyu (g,0) = lim — [ F(®H"(g,a))dt.

T—0C T 0

Remark. Any function invariant under the lifted left action h-(g, o) = (hg, ), is invariant
under the flow ®!' (g, @) = ((expté1)g, @), so that L¢ satisfies the above hypothesis.

Proof: Let (-)72 denote averaging over the T? action generated by the flows of I and I3.
By Fubini’s Theorem and the invariance of F' we have immediately that (F') = (F)r2, so

we must show that (F)p2 = (F)g

m*
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Recall from §2.4 that the frequencies of rigid body motion are given by w; = 0, wy =
A®/T, and wy = 27/T. (Here T denotes the period of the reduced trajectory and A©
is the angle of rotation of the rigid body about the space angular momentum vector over
time 7'.) If the initial point (g, ) is such that wy/ws = A®/2x is irrational then the flow
of H,, is a dense winding on the 2-torus parametrized by the angles 6, 03, conjugate
to Is, I3. Since in this case we know that the time average equals the space average
(See Arnold|[2]) we have (F)r2(g,a) = (F)m,, (g9,a). Its clear that (F)r2 and (F)g,, are
continuous functions so to show they are equal its sufficient to show they coincide on a
dense subset of P(m). We have reduced the problem to showing that for a dense set of
initial conditions, A® is an irrational multiple of 2.

From the formulas for A® in Appendix B, we see that A® is a real analytic function
on P(m), being given by a combination of algebraic operations and complete elliptic in-
tegrals. Thus the critical points of A© are isolated and therefore any neighborhood of
(g9,@) € P(m) contains a regular point of A®, and hence also a point at which A© /27 is

irrational. This completes the proof. [ |

The next result shows that the operator K is invariant under a certain SO(3) action.

Lemma 4.2.3: Let £ € R}, m € M, a € U(m), and h € SO(3). Then
(K- (h)y (hmh™")] (ha) = [K - Ear(m)] (@).
Proof: Since L' (ha) = —(h&, ha) = —(h, o) = Lé(a), we need only show
(L") (hmh ™, ha) = (L) (m, ).

Note that even though L¢ does not depend on m, its average does since the T® action,

over which we average, does. By Lemma (4.2.2) its sufficient to show

(L"), -1 (ha) = (L) g, (a).
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With a slight abuse of notation let &' (a) denote the flow of the Euler equations (2.5)

in R® with energy H,, and initial point o € U. We assert that

o mmrt (ha) = b - B (a).

This says nothing more than the fact that by rotating a given trajectory by h € SO(3),
we obtain a trajectory for the system with rotated inertia tensor and rotated initial point,

which is obvious. Thus
LA (@, 2 (ha)) = —(hé, B, * " (ha))
= —(h&,h- B (a))

= —(£®™(a))

= L3 (a)),
and therefore
(L) (ha) = Tim = [ LA@Tm (ha))dt
Hypp—t \O) = 7-5207— 0 t «a
1 T
— 3 _ f Hm
= Tll)lgo'r ; L5 (®;™ (a))dt
= (L8 m, ()
as required. ]

As a consequence of Lemma (4.2.3) we need only calculate K - {57(m) for m which are
diagonal with respect to the fixed basis {E1, E2,E3}. Indeed taking m = o()), A € B,
then

K- &n(ho(h™)] (@) = [K- (A7) u(e (V)] (A 7'a) (4.7)
for any h € SO(3). (Replace ¢ by h~1¢ and a by h~ '« in the statement of Lemma, (4.2.3).)
Note that a € U(ha(A)h™!) = h-U(c())) implies h o € U(o())) so the right hand side

is defined whenever the left is.
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Proposition 4.2.1: Let m = o(A), A € B, a = (a1,a2,a3) € U(m), and & =

(é1,&2,€3) € R® with all coordinates relative to {E1,Eq, E3}. Then

[K - &m(m)] (@) = {

where

G1 (Ot)

Gs(a)

k1(a)
c1
C2

C3

G1(04)§1 - <§7 O[)
G3()&s — (€, a)

for o € Uy (m)
for a € Us(m),

m/od + pod

_ co02 + c3a?
k3(c) 1:\/72 z_°2
crag + ey

A2A3(A1 = A2) (A1 — A3)

Ads(Ar — A2)(Ag — Asg)

Ade (A2 — Az) (A1 — Ag).

Here K (k) denotes the complete elliptic integral of the first kind (see Appendiz B.)

Proof: By Lemmas (4.2.1) and (4.2.2) we have

[K - &nr(m)] (o)

= Lf(a) - (L)(m, a)

= —({,a) - <L§>Hm (Ot),

so we must show that for « € U;(m), i =1,3:

(L), (@) = —&Gi(). (4.8)

As in the previous proof let @, («) denote the solution to the Euler equations (2.5) with

initial point «. For a € U(m), @f{m () is periodic with period 7', whence

(L), ()

7 | @) ar
1

7 OT (&, @™ (a)) dt

_<§, %/()Téf’"(a)dt>.
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Comparing this to (4.8), we must show
1 (T _5
» / 8 (0) dt = G;(a)E: (4.9)
0

for a € U;(m). Now

P, (o) = a1(t)E1 + aa(t)Ez + a3(t)Es

is given by §2.2 cases (4e), (4d) for the initial point a(0) = a € U1(m), Us(m) respectively.

Let a € Us(m). Examining §2.2(4d) we have

/OT on () dt = /OTag(t) dt = 0,

since cn(-, k) and sn(-, k) have average zero over one period. Thus in this case
! /T<1>Hm( Yt = | = /T () dt) B
Let R, s,k be as in §2.2(4d), then
1 T R (T
g t)dt = = d t—tp),k)dt
7| wwa = 7 [ an—t).k)
R

AK ()
= KR /0 dn(u, k) du

In the second line above we have put u = s(t —ty) and used T' = 4s~' K (k). Here am(-, k)

denotes the Jacobi amplitude function (see Byrd and Friedman[8].) By §2.2(4d) we have

)\3(2)\1]1 — ‘l"2)

R?* =
A1 — A3
A3 Al —A2 9 A1—A3 2)
Al — A3 ( A2 ot A3 @3
~ vaj+al
and
k2 ()\1 — AQ)(T2 — 2)\3h)

()\2 — Ag)(2A1h — ’1"2)
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()\1 AQ) ()‘1 ASO( +>‘2 /\SOAZ)
()\2_/\3)( —A2 2_|_)\1 )\3 %)

clal + 02a2

Cga% + c;;a%
2

= ks(a)”.

We have used 72 = of + o3 + o2 and 2h = o2 /A1 + a3 /A2 + a3 /)3. Therefore

7r1/a+a
5 | esttyar ="M L = G,

2K (k3(@))

proving (4.9) and hence (4.8) for a € U3(m).

Similarly if o € U;(m) then §2.2(4e) yields

so that
1 T
/ @, dt = —/ oq()dt E,,
T Jo
and
1 /T 7P
T/o on(t)dt = s
where
P2 = &2+ pad
B2 — CQQ% +C3a§ & (a)2
c1a? + coa ’
Thus
1 T
7| e @ = G,
and the proof is complete. [ |

Using Proposition 4.2.1 and Equation (4.7) we have

[K - &n(ho(Nh™)] (@) = Gi(h™ ) (¢, hE:) — (¢, o) (4.10)
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for any h € SO(3) and o € U;j(ha(A\)h 1), i = 1,3. Equation (4.10) now gives the expres-

sion for K - {57(m) for any m € M.

4.2.2 CaselIl: veTB

Our goal in this section is to compute K - v for vectors v € T'M tangent to B under
the identification M = B x F in §4.1. These are vectors tangent to curves in M along
which the principle axes of inertia remain fixed and the moments of inertia are allowed to
vary. Throughout we take m to be diagonal with respect to the fixed frame {E;, E9, Es},
iem=o0(A), X\ € B.

By Proposition 3.3.1 we must solve the system
dylj-v+{I;,K-v} =0 (1<j<3) (4.11)
for the unknown function K - v, then take
K-v=K-v—(K-v).
Recall that Iy = (J,e1), and I = ||J|| do not depend on the parameter m so that

dyIj-v=0for j =1,2. Thus (4.11) becomes

{I,K-v} = 0
{I,,K - v} 0

dpIs-v+{I3,K-v} = 0

The first two equations say that K - v is constant along the flows of I; and I5. From
§2.2, ®/'(g,a) = ((expté;)g,a) and &2(g,a) = (gexptﬁ,a), so if we assume that
[f{ . 'u] (g9, @) is independent of g € SO(3), then the first two equations are automatically
satisfied. Therefore it is sufficient to find a smooth function K - v, depending only on

a € U(m), which satisfies the single equation

{K-v,Is} =dyls-v (4.12)
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Now recall that I3 = A/27||J|| where A is the spherical area enclosed by one of the
periodic trajectories of (2.5). We find in Appendix A that A is a function of r = ||a|| = ||J]|
and h = Hp,(a). If o € Us(m) we have by (A.3)

abr dxdy
A=-lA= _//R V2 —a2z? —b%y?’

where R C R? is the unit disc, and

a2 _ )\1(’)"2 — 2)\3}7,) b2 _ AQ(T’2 - 2A3h)

AL — A3 A2 — A3

Using 72 = o2 + o2 + o} and 2h = o2 /A + a3 /X2 + @} /A3 we have

AL — A g — A
2 1 3 92 2 3 2
— 2A h — I
r 3 Al al + )\2 0{2
so that
a? = of + paj, v =puta? + o,

where, as in Proposition 4.2.1, we have set

= A(A2 — A3)
Aa(A1 — A3)

7 1 abdxdy
3(e) = _Z/ /E V12— a?z? — b2y?

where a, b, r are the above functions of « and u. Observe that I3 depends on the parameter

Thus for a € Us(m)

m only through the principle moments of inertia, and on these only through the quantity
L.
Similar calculations show that for a € Ui(m), I3(«) depends on the the inertia tensor

only through the quantity
A3(A1 — A2)
A2(A1 — A3)

A short computation shows that Vu # 0 # Vv and that Vuy = —Vv for all A € B.

Since their gradients are parallel at each point, the level sets of the functions p(X), v(X)

coincide. Recall that
A3(A1 — A2)
A (A2 — A3)
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gives the slope of the separatrix planes which divide R?® into the regions Ui (m), Us(m),
and that n = v/u, so that n(\) has the same level sets as p and v. Thus if we let A € B
vary along such a level set, U;(m) and Us(m) are unchanged, and for fixed o € U(m),
I5(«) remains constant.

One also checks that Vi) # 0 on B. Since B is contractible (Lemma 4.1.1), it follows
that 1 can serve as a coordinate function on B. Put 71 = 7, then there exist smooth
functions 72,73 on B such that the gradients V7); are linearly independent at each A € B.

The coordinate vector fields 0/0n); are convenient directions along which to compute K- v.

Proposition 4.2.2: For j =2,3
0

-— =0.
677]'
Proof: From the preceding discussion we have
0 0
dyls - — =dyls- — =0,
M oz M on3

so that for v = 0/0n;, j = 2,3, (4.12) becomes {K - v,I3} = 0, which has the simple

solution K - v = 0. Therefore

for 7 = 2,3, as required. [ |

For v = 0/0n1, (4.12) becomes

_ ol
. = —. 4.1

Using §2.2(iii), we have
{K-v,L}a) = - <a , Va <I~{ . 11) X VQI3>

- <aXVaI3, Va (f(v)>
= D(f{-v) (),
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where D is the linear differential operator

D= (a X Vafg,va>

_ (a aIg_a 8Ig> 0 +<a%_a%> 0 +<a 013 a(’ﬂg) 0
N 28043 38&2 3041 33(11 13(13 18052 28051 8(13'

8052

Thus (4.13) is
D (K - 'U) = 813/8771,

a linear PDE whose coefficients and right hand side are elliptic integrals. Fortunately it
is not necessary to solve this equation in order to determine the holonomy of loops in B,

as we shall see in §4.3.

4.3 Curvature

We now turn our attention to calculation of the curvature form on M, described in

§3.4. Recall that for m € M, vi,v2 € Tn M,
Q(’Ul,’l)g) = <{K " U1, K- ’U2}> (414)

gives the smooth function on E,,, whose Hamiltonian vector field is the curvature applied
to Hor- vy, Hor-vg. Note Q is a two-form on M with values in C*°(E)/C*(M), and is also
called the curvature for obvious reasons (see §3.4). Throughout we take m = o(\), A € B,
diagonal with respect to {Ei,E;,E3}, and identify M & B x F) as in §4.1. We will
calculate €2 on a conveniently chosen basis for T;, M.

Note that since the SO(3) action on M is locally free, the map R® — T}, F) given by
& — & (m) is an isomorphism, so that the infinitesimal generators {(E;)(m) |1 < j < 3}
form a basis of T, F\. We will use the coordinates (71, 72,73), described in §4.2.2, on B,
and the coordinate vector fields {9/9n1,0/0m,0/0m } as a basis on T, B.

Define
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K = k.2 1<i<3
on;
Ki = K-(Ej)u(m) 1<j<3,

and

g o 0
i = o =, ~
<3m 377]')

= ({K' K7 1<i<j<3
Qy = Q(E:)m(m), (Ej)m(m))

= {Ki, K;}) 1<i<j<3
% = (5 E@)um)

= ({K',K;}) 1<i,j<3.

With these conventions we have

Theorem 4.3.1: For a € U(m)
Q2(a) = 23(a) = 03(a) = 0.

Proof: Proposition 4.2.2 yields K? = K* = 0 while K! is unknown. Thus {K?, K7} =

0, 1 <14 < j <3 and the result follows. [ |

Since B is contractible, an immediate consequence is
Corollary 4.3.1: The holonomy of the HB connection about any loop lying in B is trivial.

Thus the Hannay angles corresponding to any closed curve in M along which the
principal moments of inertia vary while the principal axes remain fixed, are zero. The

next result gives the curvature on F).

Theorem 4.3.2: Let a € U(m), then

_ —Gl(a) a € Ul(m)
Oas(a) = { 0 a € Us(m)

Qiz(@) = 0
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B 0 a € Ui(m)
Qo) = { —G3(a) a € Us(m),

where G1 and G5 are defined in Proposition 4.2.1.

To prove Theorem 4.3.2 we first establish two lemmas. An immediate consequence of

Proposition 4.2.1 is

Lemma 4.3.1: For a € U(m)
G = { ST e
Ko(a) = —ao
B — a € Ui(m)
Kale) = { Gyle) —as o cUsim),

where Gy and G are defined in Proposition 4.2.1.

Lemma 4.3.2: Let o € U(m) = Uy (m) U Us(m). If o € Ui(m) then

{Ko, Ks}a) = —a
{Kl,K:?,}(Oé) = ax+ ala?fl(a%aagaag) (415)
{IC1,IC2}(OK) = —a3 +ala3f2(a%,a%,a§)a

and if a € Us(m) then
{}CQa’C?)}(a) = —a1 +0[1043f3(a%,a%,a§)
{K1, K3} () = a2+ aazfa(ef,e3,03) (4.16)
{K1, K2} e) = —as3,

where f1, fa, f3, f4 are certain smooth functions of (a3, a3, a3).

Proof: The Poisson bracket for left invariant functions is given by §2.2 as

{ICZ-,ICj}(a) = —<Ol, VICz X V’Cﬂ



67

Let a € Ui(m), then by Lemma 4.3.1

VK, = VGi—E
VKy = —E,
VK; = —Es.

Now observe from the statement of Proposition 4.2.1 that G1(«) is actually a function of

(a2, a3, a?). Hence by the chain rule

VG = (191, 292, 393)

for some smooth functions g1, g2, g3 of (a?, @3, ). (Namely g; = 20G1/0(a?), 1 <i < 3.)

We compute:

VK x VK3 = (—E2) x (—Ej3)
= E

VK1 x VK3 = (VG —E;) x (—E3)
= —-VG; xE3—-—E,

= (~0202E1 + a191E2) — Eo

= —agE; + (a191 — 1)Ey
VKL xVK: = (VG —Ey) x (—Es)

= —VG1 X Egy+E;3

= (a3gsE1 —a191E3) + E3

= o3g3E1 + (1 — a191)E3.
Thus
{K2, K3} (@) = —(a,E1) = -
{K1,K3}(a) = —(a,—aogoE; + (191 — 1)Eg)

= ai(aege) — an(arg1 — 1)

= az+ajaz(g2 —g1)
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= w2+ aioefi

{K1,K2}(a) = —(a,a3g3E1 + (1 — a191)E3)
= —ai(asgs) —a3(l —a1g1)
= —az+aiaz(gr — 9g3)

= —az+ajazfo.

Note that f := go — g1 and f2 := g1 — g3 are smooth functions of (a?, a3, a3) as required.
This proves (4.15). Equation (4.16) is proved for the case a € Usz(m) by a similar argu-

ment. |

Proof of Theorem 4.3.2: By (4.14) we must average the expressions in Lemma
4.3.2 over the T? action induced by I, I, I3. Since in all cases {K;, K;} is left invariant,
we may instead take the time average over the rigid body dynamics. (See Lemma 4.2.2
and the remark immediately following.) Thus we substitute into the expressions (4.15)
and (4.16) the appropriate solution to the Euler equations (2.5) (§2.2 cases (4e), (4d) for
a € Uy(m), Us(m) respectively) and average over one period of the motion.

We review a few facts concerning the Jacobi elliptic functions. (See Byrd and Fried-
man(8] or Lawden[18] for additional details.) The functions cn(u, k), sn(u, k), (k? < 1),
are periodic in u of period 4K (k), while dn(u, k) has period 2K (k). Now cn(u, k) is an
even function with respect to the point u = 0, and odd with respect to u = K; sn(u, k) is
odd with respect to u = 0, and even with respect to u = K; finally dn(u, k) is even with
respect to both u = 0 and v = K.

Let a € Us(m). Then combining the above information with §2.2(4d) we see that a(t)
(with initial point @(0) = «) has period T = 4s 'K (k); ay(t) is even with respect to
t = 0, odd with respect to t = T'/4; as(t) is odd with respect to ¢ = 0, even with respect
to t =T/4; and as(t) is even with respect to both ¢t =0 and ¢t = T'/4.

Now the integral of an odd periodic function over one of its periods is zero. We see from

(4.16) that {2, K3} (a(t)) is an odd function with respect to t = T'/4, while {1, K3} (a(t))
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is odd with respect to t = 0. Hence

({K2, K3}) = ({K1,K3}) =0,

and

{K Ko})(a) = —(as)mn

The last calculation was done in the proof of Proposition 4.2.1. Thus for « € Us(m)

923(04) = 0
Qiz(a) = 0
Q2(a) = —Gs(a).

In a similar manner we obtain from (4.15) that for a € Uy(m)

923 (a) = —Gl (Ol)
913 (Oé) = 0
912 (a) = 0.
This completes the proof. [ |

The fact that X? = K3 = 0 implies that six of the nine cross terms are zero as well.
Three of the cross terms remain unknown since K! is undetermined. Summarizing the
results of this section:

onB: { QB =0B=0l2=0

( . —G’l(a) [ AS Ul(m)
Qag(e) = { 0 a € Us(m)
on Fy: < ng(a) =0
0 a € Ui(m)
0 =
| (@) { ~Gs(e) € Us(m),
0 =0 =0 1<j<3

cross terms:
{ Qf, O3, QF unknown.
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The presence of so many zero terms in the curvature suggests that there are many loops

in M with trivial holonomy.

4.4 Holonomy

As in the last section we identify M = B x F\. We saw in Corollary 4.3.1 that if
t — m(t) is a (piecewise) smooth loop lying in B, then its holonomy is trivial; equivalently
the Hannay angles are zero. In this section we compute the holonomy of certain loops
lying in F, A € B. These are closed curves in M along which the principal moments of
inertia remain fixed, while the principal axes rotate about a fixed vector in R3.

Throughout this section we consider curves of the form

m(t) = (expt&)o(N)(exp t)~! (4.17)

where o()\) = diag(A1, A2, A3), A € B, and ¢ € R?® with ||¢|| = 1. These are integral curves
of the infinitesimal generator &;y, i.e. m/(t) = £x7(m(t)). The interval of ¢ values for m(t)
will depend on our choice of &.

Let a € U;(m(t)), i =1,3. Then by (4.10)

[K-m' ()] (@) = [K-&u(m(t))](a)

= Gi((exptd) 'a) (& (exptE)Es) - (€, ).

Thus
K - m'(t)] (@) = G; ((expté) o) (&, Es) — (£, ), (4.18)
since exp t€ € SO(3) is a rotation about £. Note that U;(m(t)) = expté - U;(o())), so that
(expté)~'a € Uj(o())) as required.
The Hamiltonian vector field of K - m/(t) yields the parallel transport equations for

the path m(t), which we wish to solve. In general these equations are quite complicated,

involving the derivatives of G;, which contains an elliptic integral. A possible approach
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would be to attack these equations numerically, to determine the parallel transport oper-
ator. Our strategy will be to choose the vector ¢ so that K - m/(¢) is a simple as possible.

For ¢ € B, i =1 or 3 we have

i
(K- m'(t)] (@) = =(¢; a).
Observe that this function does not depend on ¢. Its gradient is
VIK-m/(t)] (a) = =¢,
and by §2.2(iii) its Hamiltonian vector field is
Xy (9:0) = (9(=€),ax (¢))
= (—¢é.é(),

which is autonomous. The parallel transport equations are then

{ 9 = fgé 9(0) = go
a = f(a) Ol(O):aO,
with solution
g(t) = go(expté)™?
{O‘(t) = (expté)ay. (4.19)

Note that this flow transports (go, ) along the orbits of the action (4.3). Also observe
that if ag € U;(o())) then a(t) € (exp t€) - U;(o(N)) as required by (4.18).

Thus (4.19) gives the parallel transport of (g, ag) € Pi(o(}\)), i = 1,3, along the path
consisting of rotation of the inertia tensor about ¢ € Ei-. For definiteness we take ¢ € E
and consider only initial points (go, ) € Ps(c(A)). A glance at the definition (4.17)
shows that m(0) = m(27) = o(A) since ||| = 1, so by (4.19) the holonomy of the loop
m(t), 0 <t < 2m, is trivial. Note from the discussion at the end of §4.1 that these loops
belong to a single nontrivial homotopy class.

If we take £ = £E; or £Es, (4.17) shows that m(0) = m(w) = o()\). Recall that these
loops represent four distinct non-trivial homotopy classes in Fy (see §4.1). By (4.19) the

holonomy of these loops is given by

(90, ) — (90 exp(nE;), eXP(WE\z')Oéo) ,
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for i« = 1,3. We remark that the above holonomy maps do not depend on the moments of

inertia \ € B.

4.5 Conclusions

Using the results obtained so far, we now draw several conclusions regarding the adi-
abatic invariance of the action integrals, and averaging over a natural T? action. We also

address the question as to whether the connection can be extended to ¥ C M.

4.5.1 Adiabatic Invariance

An adiabatic invariant of a time dependent Hamiltonian system is a phase space
function which is conserved to order € on a time scale of order 1/e. For single frequency
systems in which the frequency is nowhere zero, the action integral is a well known
adiabatic invariant. Arnold[2] proves this using the single frequency averaging theorem.
In [3] Arnold introduces the notion of an almost adiabatic invariant, which is a quantity
that is conserved to order (some power of) € on a time scale of order 1/e, excluding a set
of initial points whose measure approaches zero with e. A theorem of Neishtadt[25] states
that for multifrequency systems, the action integrals are almost adiabatic invariants. A
proof in which all constants are given explicitly appears in Golin, Knauf, and Marmi[11].

For the rigid body with time dependent inertia tensor however, the situation is some-
what better that for general three frequency systems. One checks easily that the angular
momentum J is exactly conserved, and thus the actions Iy = (J,e;) and I, = ||J|| are actu-
ally first integrals of this system. Now recall from §2.3 that the third action Is = A/2x||J||
is also an action for the reduced system on S2, r = ||J||, which has one degree of freedom.

Thus I3 is a true adiabatic invariant for the reduced, and hence also for the full system.
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We conclude that for slow variations of the inertia tensor, I1 and I» remain constant,

while I3 is adiabatically constant, regardless of the initial point.

4.5.2 T? Averaging

The basis for the averaging principle is the fact that for multifrequency systems without
resonances, the time average over a dynamic trajectory can be replaced by a space average
(see Arnold[2] Chapter 10). We saw in §2.4 that the generic trajectories of the rigid body
are dense windings on the 2-torus parametrized by the angles 02, 03 conjugate to I, I3.
Viewing this as a three frequency system, it has a proper resonance, while as a two
frequency system it is generically non-resonant. It would therefore seem more reasonable
to study the HB connection associated to the family of Hamiltonian T? actions induced
by the flows of I, I3. In fact the results would be identical to those already obtained, as
We NOW prove.

In calculating the Hamiltonian one-form in case I: v € TF), we find that we must
replace the average appearing in the statement of Lemma 4.2.1 with the average over the
T? action. But we argue in the proof of Lemma, 4.2.2 that since the momentum map L, is
left invariant, and hence doesn’t see the flow of I, the T? and T? averages of L coincide.
Thus the Hamiltonian one-forms are identical in this case.

In case II: v € T'B, Proposition 3.3.1 indicates that we must simply remove the first
equation from system (4.11). Proceeding as before we find it is sufficient to solve the single
equation (4.12). The Hamiltonian one-forms are again identical. Since the Hamiltonian
one-form uniquely determines the HB connection, it follows that the connections associated
to the T? and T? actions are identical.

Observe however that the T? action can be defined over a slightly larger region in
SO(3) x R? than can the T? action. In particular there is no need to assure that dI; be

independent of dIs and dH,,, which means we can drop the requirement ga x e; # 0 in
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the definition of W C SO(3) x R® (see Lemma 2.3.1). For m € M, set
W' ={(g,a) € SOB) x B | a x m ‘o #0},

and define P(m) C SO(3) xR}, E C M x (SO(3) x R?) just as in §4.2 with W replaced
by W'. Our formulas for the Hamiltonian one-form, curvature, and holonomy are then
valid on this slightly larger bundle.

That these two actions give the same results ultimately derives from the arbitrariness
with which we defined the action I;. Recall we could have taken I; = (J,u) where u € R?
is any unit vector. Then the corresponding action-angle charts do not cover points (g, «)
at which gaxu = 0. The different T2 actions (one for each choice of u) induce connections
defined on bundles which exclude different codimension one submanifolds of SO(3) x R®.
The resulting formulas are the same in each case so we need not leave out any such sub-

manifold.

4.5.3 Extending the Connection

Up until now we have not considered inertia tensors with multiple eigenvalues. As in
4.1 let X, X' denote those m € M; with two and three eigenvalues equal, respectively. If
m € ¥ then m is a multiple of the identity, so that every o € R? is an eigenvector of m,
and @ x m ta = 0. We saw in the proof of Lemma 2.3.1 that this implies dI; and dH,,
are linearly dependent everywhere, so that not even the T? action is defined (see §4.5.1).
Therefore the connection cannot be extended to X'.

Neither can it be extended to X as we now show. Let \;(t), 0 <t <1, for 1 <7 <3,

be smooth functions satisfying

At) > Ael?)
M) = Ae(p)
A(t) > \(?)

> As3(t) telo,d)
> A3(3)
> M(t) te(3,1],

and set

m(t) = diag(Ai(t), Ao (t), A3 (1)),
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for 0 <t < 1. Thenm(1/2) € %, or equivalently for » > 0, H;z%l/Z)(h) is an ellipsoid of rev-
olution with E3 as symmetry axis. Suppose the HB connection can be extended somehow
from m1 : E — M to a bundle which includes m(1/2) in its base. Let (g(¢),a(t)), 0 <t <1

be the horizontal lift of m(t), with initial point (g(0), @(0)) € P1(m(0)). Define

e
PO = ey (@)

(this is just the quantity 72/2h from §2.3 evaluated along the horizontally lifted path.)

Our choice of initial point forces
A1(0) > p(0) > A2(0) > A3(0)

(see §2.3.) Thus for some ty € (0,1), p(to) = A1(tg) or p(tg) = Aa(to) and therefore either
(9(to), a(to)) lies on a separatrix of the frozen system H,y, ), or a(to) x m(to) ™" a(to) = 0.
In neither case can a torus action be defined at (g(¢o), @(tp)). We conclude that the
horizontal lift of m(t) cannot be continued through ¢ = ¢y, and hence the HB connection,
as it is presently defined, cannot be extended to ..

If we choose instead (g(0), a(0)) € P3(m(0)) the above problem does not occur, but a
similar difficulty arises if we try to parallel transport along a path for which Ao and A3
cross. In order to accommodate parameter variations with eigenvalue collisions, we must
change the bundle on which we define the HB connection.

We take as base for a new bundle
By ={\€R | A1 > A3, X2 > A3, and \; + ;> Mg (4,4, k cyclic)},

and identify By with the matrices m = diag(A1, A2, A\3), A € By, which are diagonal with
respect to {E;, Ey, Es}. As initial points for parallel transport we allow only those (g, c)
for which
r? r?
>\1>%>)\3 >‘2>ﬁ>)‘3’
where r = ||a|| and h = H,,(a). We thus allow A\; = A9, but not A\; = A3 or Ay = As.

Define for A € B,

U ={a€® | A\ >7r%/2h > A3, Xa >17/2h > A3},
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and set

with 7 and W as in §2.3. Define
E={(\g,a) € B x (SO(3) xR®) | A€ By, (g9,a) € P(\)}

and form the bundle 71 : E — By, (), g,a) — A, with fiber Ey = 771 ()\) = {A} x P(\).
Note that P(\) € SO(3) x R? is the union of exactly two action-angle charts (formerly
denoted P (m), P; (m).) Thus m : E — B; admits a family of Hamiltonian T® actions
(or T? actions, see §4.5.1) and we can consider the corresponding HB connection.

We find that I3(a), a € U(X), for A € By, has the same expression as in §4.2.2. As
before I3 depends on A only through the quantity n()), and Vn(A) # 0 for all A € B;. Thus
there is only one direction in B; along which parallel transport is non-trivial, showing as in
84.3, that the curvature is zero. One checks that Bj is contractible, whence the holonomy

about any loop in Bj is trivial.
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Appendix A. Calculation of the Spherical Area

Consider the trajectory of the Euler equations (2.5) whose initial point «(0), lies in one
of the regions U;, Uz C R® on which action angle coordinates are defined. The solution
a(t), is then given by either Case (4d) or (4e) of §2.2. Our goal in this section is to
compute the oriented surface area A, on the sphere S? = {a € R®|||a|| = r} enclosed
by this trajectory, where r = ||a(t)||. For definiteness we assume throughout this section
that «(0) € Us so (4d) applies. (The details would be similar if a(0) € U;.) As noted
in §2.2 this curve is one component of the intersection S? N H,.!(h), where h = H(a(t)).
Our assumption (4d) says that A\; > Ay > r2/2h > A3, and one verifies that in this case
the two components of S2 N H,_.'(h) lie in the two half spaces {a3 > 0} and {a3 < 0}
respectively. We assume that as(t) > 0. Let |A| denote the positive area of the spherical
region in question. The orientation of this region is that given by the direction of the
curve «(t). Examination of the solutions in this case shows that A = —|A|. (In Case (4e)
one has A = |A|.) Now a € §2 N H;,}(h) if and only if

a%—l—a%—i—a% = r?

(A1)
UpByps = o

We project this curve onto the aj-as plane by eliminating ag from (A.1), obtaining

2 2
al aj
where
A1 (r? — 2X3h) Aa(r? — 2X3h)
2 1 3 2 2 3

— = 2
a )\1 v and b I (A.2)
Let R = {(o1, ) | 5% + < 1}, and put f(ai, ) = 1/r? — a2 — 3. We seek the

positive surface area, |A|, on the graph of f which lies over the elliptical region R C R2.

Thus

2
|A| // 6_f> + 1 dalda2 = // " daldaQ .
8041 8012 %
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To facilitate this integration we change coordinates as follows. Put R = {(z,y)| 2? + y? <

1}, and apply the diffeomorphism (z,y) — (az,by) with Jacobian ab. We obtain

abr dzdy
|A\://_ e R (A.3)
R /12— a?z? — b2y
Converting this to polar coordinates p, ¢ yields
2 dod /2 dpd
|A\—abr/ / p dpdp —4abr/ P pr, (A.4)
\/ (a2 cos? ¢ + b2sin? ¢)p Ve —e

where
e = a? cos® ¢ + b?sin’ ¢ = a® + (b — a?)sin? ¢.
The inner integral (with respect to p) is readily computed as:

r— ‘1“2—62 T

/1
0 [r2 — 62p2 e2

1 2
Vr2 — e2y/r? — e? ]
T r?
a? cos? ¢ + b2 sin2¢ a? 7'2 —a? A (1 +nsin p)A(d, k) |’

where we have set
b2 — (1,2 N )\3()\1 — Az)
a2 o )\1()\2 — >\3)’
b —a® (A — A2)(r® — 2)3h)
7‘2 - (1,2 N ()\2 - /\3)(2)\1h - TQ)’

A(p, k) = /1 — k2sin? ¢.

Recall from Case (4c) in §2.2 that +,/7 gives the slope of the intersection of the separatrix

’]7:

k? =

and

planes with the a;-a3 plane. Referring to (A.4) we then have that
/2 d
|A| = 4abr2/ ¢ —
0o a?cos?¢+b%sin® ¢
4br 2 /2 de 2 /7T/2 d¢
aV'r? — a? o Alg,k) o (L+nsin® A, k)]

The first term becomes, upon integration, 272 (by putting y = tan ¢), while we recognize

_l.

the terms in brackets as complete elliptic integrals of the first and third kinds respectively
(see Byrd & Friedman[8].) We denote these by K (k), and II(n, k), so that

4b
|A| = 27 + » rzr_ = [azK(k) - 7‘21_[(7],]{:)] .
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Remark. The first term above is half the total surface area of S2, and so the second
term is the negative area of the complement of our enclosed spherical cap in the upper
hemisphere. One checks that this term is indeed negative. The modulus k, appearing
above is also the modulus of the elliptic functions which give the explicit solution to the
Euler equations (2.5), as well as that of the complete elliptic integral which gives the
period T'. (see Appendix B.)

Using (A.2), we write |A| in terms of r, h, and \; (1 <3 < 3),

I .

V2 [ (p2 _ 20y, _
|A| = 2772 + 4r ( A1A2A3 )) [(T 2A3h)f(__7'(A1 A3)

(/\2 — /\3)(2A1h — 7‘2 )\3 /\1)\3

From §2.2 Case (4d) we have

82 . ()\2 - )\3)(2)\1h — 7‘2)
A1 Ao)s ’

thus
2 _ 20y, _
|A| = 2772 + 4rst (r 2)\3h)K _ >\3)H .
A3 A3
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Appendix B. Calculation of dI;

In this section we show that I3 defined by

A
27!']3 = —
r

satisfies

d(2mI3) =T dh — AOdr.

Here as in §2.2, T denotes the period of a(t), the solution to the Euler equations, and
AO is the angle in space by which the rigid body has rotated after time 7. Recall also

h = H(a(t)) and r = ||a(t)||. We show by direct computation that

0
and
0

This calculation is performed specifically for a(t) € Us C R® defined in §2.2. The case
a(t) € Uy is is entirely similar and we omit it. (The remaining cases represent trajectories
in phase space not contained in the domain of any action-angle variables.)

Now the Jacobi elliptic functions of modulus & are periodic with period 4K (k), where

/2 do

KB =1, a6.m

is the complete elliptic integral of the first kind. Here we have

A, k) = /1 — k2 sin? ¢,

and in our case
()\1 - )\2)(7‘2 - 2)\3h)

k? =
()\2 - )\3)(2)\1h - ’1"2) '

Examining §2.2 case (4d) we see the period of «(t) is

T =45 'K (k), (B.3)
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where

82 ()\2 - )\3)(2>\1h - 7‘2)

A1A2A3
From Appendix A we have that the oriented surface area enclosed by a(t) in this case is
2 —2X3h 2\ —
A= —omr? —aps |1 3l g M=)l (B.4)
A3 A1 )3

where

T d¢
II(n, k) —/0 (14 nsin® ¢)A(¢, k)

is the complete elliptic integral of the third kind, and

Az(A1 — A2)
A1(A2 — A3)

Combining Montgomery’s formula (2.8) with (B.3) and (B.4) yields the expression for

AO in terms of elliptic integrals:

A 2nT
AO = ——2+L
T T
1 [1 A1 — A3
= 2r44rs | —K — I .
T+ 4rs » i

One could at this point calculate

0 0

showing that T'dh — A®dr is closed. Instead we show directly that this form integrates
to 2m13.

To this end we first calculate the derivatives of K (k) and II(n, k) with respect to r and
h. Formulas (710.07) and (710.12) of Byrd and Friedman[8] yield

d E(k) — (1 — k*)K (k)
ap k) = k(1 — k2) ’
and
4, k) = k [E(k) - (1 = K))11(n, k)]
dk T T AR i+ k) E

where E(k) is the complete elliptic integral of the second kind:

™/
B = [ AR
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Using these formulas, the definitions of k£ and 7, and diligent application of the chain rule,

we obtain
9w _ —r2(A2 — X3) (A1 — A3) K
ah 2ok —12) (2 — 22ah) - @Mh — 12)(r2 — 23h)
QK _ 27‘h(A2 - /\3) E— 2’I‘h(/\1 — Ag) K
or (2Xoh — 72)(r%2 — 2X3h) (2\1h —72) (1% — 2X3h)
0 —A1(A2 — A3) A
—1I1 = E II
oh O =) (20l —12) T @Mk —r?)
) 2Ah(As — As) 2\ h
—II = E - II.
or (A = A3)(2XAoh — 72) r(2A\h — 1r?)

These formulas were worked by hand then checked using Mathematica.

Now by (B.4)
27TI3 = é
r
2 _ 2X3h) r2(A1 — A3)
= —2mr —4s7! ul(—iﬂ .
r S [ )\3 )\1)\3
Thus
0
0s 7‘2 — 2)\3]7, 7‘2()\1 — )\3)
= 4572 K — II
oh { A3 A1A3
—2)\3h 0K
1) T T AAROR 5
s { X3 Oh /\1/\3 }
_ )\2 — Ag rT — 2)\3h 7‘2
o ()
’ A2A3 { A3 /\1)\3
—48_1 ’1"2 — 2)\3h ()\2 — )\3) + 7"2()\1 — Ag) K
)\3 (2)\2h — ’)"2)( — 2)\3h) (2)\1]1 — 7’2)(’)"2 — 2A3h)

r2(A1 — X3) [ —A1(A2 — A3) A1 ]
9K — B il
VSV (G VIS WIT WA Sy Wy e

_ 48_1 )\1(7"2 - 2)\3h)K . ’1”2()\1 — )\3) 7’2()\2 - )\3)
/\3(2)\1}& — 7‘2) )\3(2A1h — 7‘2) )\3(2A2h — 7"2)

PO =) g op o P2 X) g r2<A1—A3))H}

" A3(2Ah —12) A3(2Aoh —12)" " A3(2A1h — 12

gt /\1(7"2 —2X\3h) — 7"2(>\1 — A3) + 2XA3(2A1h — 7‘2) K
)\3(2)\1h - 7‘2)

= 4s 'K =T,
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which proves (B.1). Also

0
— (27 I
Br( 1)
ds 7‘2 — 2)\3h T'Q(Al — Ag)
= -2 4s2 28— K - T
TS or { )\3 >\1A3
_ 2r ’1"2 — 2/\3h 0K 27"()\1 — )\3) 7"2(A1 — /\3) oIl
/P iy - G T Sl II— -
s {)\3 + )\3 or )\1)\3 )\1)\3 ar
(Mo — A3) [ 12 —2X3h r2(A — A3)
_ gp g2 K- il
T 8 Al)\g)\g )\3 )\1>\3
_ 2r 7‘2 - 2>\3h 27‘h(>\2 - )\3) 2’1"h()\1 - )\3)
—4s 1K E — K
’ {Ag LW [(2)\2h T (E k) 2k — )2 - 22gh) ]
27‘(A1 - A3) T2(A1 - )\3) |: 2A1h()\2 - )\3) 2)\1}1 ]
— II - E— II
A1)3 A3 (A — A3)(2Aoh — 12) r(2A1h —1?)

2 _2)3h) r3 (A1 — A3) 2r 2rh(A2 — A3)
R AU 3 L=A) qg gy SrMA27A3)
T {,\g(mlh S VO W TS VY ) Sl Ve WS W A
_ 2’/‘h(>\1 — )\3) K— 2’)"(A1 — )\3)1_[ _ 2’)"h(A2 — A3) E 2’)"h(>\1 — )\3) H}
)\3(2A1h - ‘1“2) A1>\3 A3(2)\2h - 7‘2) )\3(2)\1h - ’)"2)
2 _2X3h) +2r(2X1h —12) — 2rh(A; — A3)
= 971 —14 -1 '7'(7' 3 1 1 3 K
T { l a2k — 1)

N [—7"3()\1 —A3) — 2r(A1 — A3)(2A1h — 72) + 2rhA (A — Ag)] H}

)\1)\3(2)\1h - 7‘2)

(1 A1 — A3 }

= 2r—4sT'{ K — I
T {)\3 A3

= -he,

proving (B.2).
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