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Abstract

A Comparison of two methods of resolution: blow up and prolongation

by

Vidya Swaminathan

A standard method for resolving a plane curve singularity is method of blow up. We

describe a less-known alternative method which we call prolongation, in honor of Car-

tan’s work in the direction. This method is known to algebraic geometers as Nash blow

up.

A standard method for resolving a plane curve singularity is the method of

blow up. We describe a less-known alternative method which we call prolongation, in

honor of Cartan’s work in this direction. This method is known to algebraic geometers

as Nash blow up. With each application of prolongation the dimension of the ambient

space containing the new ‘prolonged’ singularity increases by one. The new singularity

is tangent to a canonical plane field on the ambient space. Our main result, Theorem

3.3.1 asserts that the two methods, blow up and prolongation, yield the same resolution

for unibranched singularities. The primary difficulties encountered are around under-

standing the prolongation analogues of the exceptional divisors from blow up. These

analogues are called critical curves. Most of the critical curves are abnormal extremals

in the sense of optimal control theory as it applies to rank 2 distributions (2 controls).
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Chapter 1

Introduction

This paper introduces connections between two methods of resolving plane

curve singularities: blow up and prolongation. The first method, blow up, is classical and

well-known, [10], [4], [5] and will be reviewed later. The second method, prolongation,

was introduced recently in [8], and is based on Cartan’s notions of “prolongation” [2], [3].

Prolongation appeared earlier in a slightly different guise in algebraic geometry, where it

is known as Nash blow up, [7]. In this thesis we explore examples that led us to believe

that the two resolutions are “the same” for the class of analytic, singular plane curve

germs. These examples led to the paper [9], where it is proved that the two resolutions

are equal. Some care will be needed in explaining what we mean by the same.

Each method consists of iteratively applying a transformation – blow up or

prolongation – to curves. Each application of the respective transformation, blow up or

prolongation, adds a projective line to the transforms of the curves from the previous

steps, so that after k applications we have the transform of the original curve – known as

2



the “proper transform” in the case of blow up — together with k projective lines, these

being called the “exceptional divisors” or “exceptional curves” in the case of blow up,

and critical curves in the case of prolongation. We continue applying the transformation

until the proper transform of the original curve is smooth, and all intersections amongst

all curves are “normal” . The meaning of “normal” is well-known in the case of blow

up: it means all intersections are transverse and there are no triple intersections. In

the case of prolongation some thought is needed to make sense of the notion of normal.

When the proper transform is smooth and all intersections are normal we stop, and

declare the resulting union of curves to be the resolution (by whichever method) of the

original plane curve singularity . The integer k at which resolution is achieved will be

called “the number of steps to resolution”. This number could, a priori, be different

for blow up and prolongation. (It is not!) In both cases the result of resolution can

be encoded combinatorially by a graph. The verticies of the graph are the component

curves: some number k of projective lines and the proper transform. Two verticies are

joined by an edge if the curves they represent are “incident”. In the case of blow up

“to be incident” means to intersect. In the case of prolongation the meaning of “to

be incident” is more subtle, but roughly it means the curves which the edges represent

intersect at some appropriate “level” in an appropriate way.

We will call the resulting graphs, the “resolution graphs”. One of the main new

results here is how to construct, in a natural way, a resolution graph for prolongation.

In our recent paper [9], it is proved that the resolution graphs for blow up and for

prolongation are isomorphic.

3



1.0.1 Outline of Paper

Section 1: Planar Curves.

Section 2: Blow up, a review.

Section 3: Prolongation. The Monster is introduced here.

Section 4:(t3, t8), an example for which both prolongation and blow up resolve

the curve singularity in the same number of steps.

Section 5: Critical Curves.

Section 6: Resolution by prolongation

Section 7: (t3, t8), an example for which both prolongation and blow up have

isomorphic resolution graphs. Main theorem is stated here.

Section 8: A2k singularity.(t2, t7),and (t2, t2k+1).

Section 9: E singularity (t3, t7).

Section 10: Quasi-Homogeneous Case: (tm, tn). (Case of Puiseux characteristic

of length 2, mention Brieskorn and the sequence of Euclidean Algorithms)

Section 11: (t3, t10 + t11), a non-planar example and the failure of intermediate

step equivalences. This example proves that a step-by-step diffeomorphism between the

results of blow up and prolongation does not exist.

Section 12: Conclusion
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Chapter 2

Preliminaries

2.1 Plane curves

Curves in the plane can be represented by a set of points whose coordinates

satisfy some defining equation f(x, y) = 0 or as the images of parametrizations t 7→

(x(t), y(t)), where x and y may be taken as polynomials or power series. To pass from

a defining equation to a parametrization near a regular point, use the implicit function

theorem. Near a singular point p use the Newton-Puiseux expansion, an algorithm for

expressing the curve locally as the finite union of images of parameterized curves. These

parametrized curves are called the branches of the singularity at p. A curve c has a

unique decomposition as a finite union of branches. Each branch has a unique tangent

direction at the singular point, p. A parametrization (x(t), y(t)) determines a unique

branch. See [4], or [10], for details on plane curves and the Newton-Puiseux expansion.

In this thesis we are concerned with germs of analytic unibranched singularities:
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singular curves consisting of a single branch. Examples are xp − yq = 0, p, q relatively

prime integers. Such a curve is parameterized as x = tq, y = tp. After a rotation of the

xy plane, any unibranched analytic singularity can be parameterized as

x = tm, y = Σr>mart
r. (2.1.1)

It is worth pointing out that being unibranched for an analytic curve germ

singularity f(x, y) = 0 is equivalent to f being irreducible, in the usual sense of algebra,

within the space of complex analytic function germs of two variables. See for example,

ch. 2 of [10].

We have chosen to work over the field of complex rather than real numbers

because C is the traditional field within which to blow up plane curves and so we have

found it easier to state and compare results when working over C. Also, we work over

the complex numbers so that x, y and the parameter t all take values in C. All of our

definitions and constructions here carry through for real analytic plane curves but C is

the traditional field over which to perform blow up so we will work there.

We consider a parametrization to be good, or a curve to be well-parametrized

if a general point of the curve corresponds to just one value of the parameter t.

Definition 1. A curve germ t 7→ c(t), t ∈ C defined near t = 0 is well-parameterized if

there is a neighborhood of t = 0 such that the parameterization is one-to-one

Example. The standard parameterization x = t2, y = t3 makes the the cusp

y2 = x3 well -parameterized. But if we parameterize the cusp by x = t4, y = t6 then

this parameterized curve is not-well parameterized.

7



Remark. If we work over the reals, a somewhat different definition of well-

parameterized must be given. See [8].

Remark. We have the following number-theoretic way of establishing whether

or not an analytic curve is well-parameterized. Suppose the curve to be given by equa-

tion (2.1.1). Let supp(y) ⊂ N be the set of exponents r occurring in the expansion of

y(t) such that ar 6= 0. This set supp(y) will be called the support of y(t). Then c(t) is

well-parameterized if and only if the greatest common divisor of m ∩ supp(y) is 1. See

section 2.3, [10].

Henceforth, we will fix our attention primarily on singular well-parameterized

planar curve germs.

2.2 Blow up

We review the method of blow up to resolve plane curve singularities. We set

up notation to calculate examples that illustrate the main theorem. There are numerous

good references for this section, including [4], [5], [10].

Constructing blow ups. The blow up of the plane at the origin can be realized as

that subvariety Bl0(C
2) of P 1(C2) consisting of those pairs (p, `) ∈ P 1(C2) for which `

passes through the origin 0 as well as through p. The restriction of the natural projection

P 1(C2) → C
2 to Bl0C

2 is called the “blow-down map” and denoted β : Bl0C
2 → C

2:

β(p, `) = p. We set E = β−1(0) and call E the exceptional curve. E is an embedded

copy of CP 1. It coincides with the vertical curve V1 over 0. Away from E the blow-down

8



map is a diffeomorphism since if β(p, `) = p, and p 6= 0 then ` = span(p).

Coordinates on the blow up. Away from the exceptional fiber E planar coordinates

(x, y) coordinatize the blow up since β is a diffeomorphism off E. To cover points of E we

need two coordinate charts. Take p1 = ((0, 0), `0) ∈ E and suppose `0 6= y−axis. As a

neighborhood of p1 consider all points ((x, y), `) of the blow up for which ` 6= y−axis. Use

affine coordinate w1 for these lines: ` = [1, w1] and p1 = ((0, 0), [1, w1]). Then (x, w1)

coordinatize our neighborhood . The condition defining Bl0(C
2) is that [x, y] = [1, w1]

for (x, y) 6= (0, 0), which is to say that y = xw1 and so the blow-down map is

β : (x, w1) 7→ (x, xw1) = (x, y).

In the coordinates (x, w1) the exceptional curve E is defined by x = 0.

Notation. By a slight abuse of notation we will say that w1 is defined by the equation

w1 = y/x (2.2.1)

which is valid for x 6= 0. Even though equation (2.2.1) does not make sense on the

exceptional curve E, there is no ambiguity in our original definition of w1 and that

equation uniquely picks out w1 as an affine coordinate when restricted to the projective

line E. The notational abuse of equation (2.2.1) will be useful later on when defining

coordinates on iterated blow ups.

The coordinates (x, w1) miss one point, the point ((0, 0), [0, 1]) corresponding

to `0 = y-axis (and so w1 = ∞). To cover this missing point use (y, v1) for which [v1, 1]

9



are the affine coordinates, and for which the the blow-down map is

β : (y, v1) 7→ (yv1, y) = (x, y).

By the same abuse of notation, we write v1 = x/y in this case.

Blowing up the curve. If c is a curve with singular point at the origin, its blow

up is the curve Bl1(c) = β−1(c) ⊂ Bl0(C
2), called the total transform. It consists of

two components, the “proper transform” which is the closure of β−1(c \ {0}), and the

exceptional fiber E. If c is algebraic, its blow up is algebraic. If c is analytic its blow

up is analytic.

Iterated blow up. To resolve c we typically need to blow up more than once. In

order to blow up a second time, we realize that Bl0(C
2) is itself an analytic surface, and

define the blow up operation works on any analytic surface. So, let us define the blow

up Blp(S) of an analytic surface S at a point p ∈ S. Choose coordinates (x, y) centered

at p, coordinatizing a neighborhood U of p and so identifying U with a neighborhood

V of 0 in C
2. Using these coordinates, we identify Blp(S) over p with the open set

β−1(V ) ⊂ Bl0(C
2). In these coordinates the blow-down map β takes the same form as

it did in the plane. The exceptional curve is E = β−1(p) and is a P
1 ⊂ Blp(S). Away

from p, we declare Blp(S) → S to be an analytic diffeomorphism, and this endows

Blp(S) with the structure of an analytic surface. If c ⊂ S is an analytic curve with

singularity p then its blow up at p is β−1(c), which again splits up into two parts, the

proper transform, and the exceptional curve.

We are now able to iterate the blow up process. Suppose that the first blow

10



up B(c) of the unibranched curve singularity c is still singular. Then B(c) will have a

single singular point p1 which must be the intersection point of the proper transform

c̃ with the exceptional curve E = E1. We blow up X1 = Bl0(C
2) at p1 so as to form

a new surface X2 = Blp1
Bl0(C

2), and a new blown up curve B2(c) = B(B(c)) ⊂ X2

which consists of the new proper transform, still denoted c̃, and two exceptional curves,

the new one, written E2, and the proper transform of the old one, typically written Ẽ1.

If this configuration is still deemed singular, we keep going. At the kth iteration of the

process we have a curve Blk(c) in an analytic surface Xk = Blpk
(Blpk−1

. . . Bl0(C
2) . . .),

with pi ∈ Ei. The kth blow up of the curve has k +1 components (in the Zariski sense):

Bk(c) = c̃k ∪ Ẽ1 ∪ . . .∪ Ẽk−1 ∪Ek, with c̃k denoting the proper transform of the original

curve at the kth step, and Ẽj , j < k denoting the proper transform of the exceptional

curve Ej arising from the earlier level j. We stop the process when this collection of

curves is normal in the following sense.

Definition 2. A collection of curves in a smooth surface has normal crossing singular-

ities if each curve is smooth, no three meet in a point, and any intersection of two of

them is transverse.

Definition 3. The number of blow ups required to reach this normal crossing situation

is called the resolution number by blow up.
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2.3 Prolongation

Let c be a complex analytic curve in a smooth complex manifold Mn. Its

singular points Σ are discrete. At each non-singular point p ∈ c \ Σ the tangent line

Tpc to c is uniquely defined, and can be viewed as a point in the projectivized tangent

bundle PTM . The closure of the set of points (p, TpC), p ∈ c \ Σ is defined to be the

first prolongation of c, and is denoted by c1. Away from Σ, the projection PTM → M

maps c1 diffeomorphically onto c \ Σ. In [8] we prove that c1 is analytic.

It is worth pointing out that if c = c(t) is parameterized by the parameter t,

then at regular points t (where dc/dt(t) 6= 0) we have c1(t) = (c(t), span {dc(t)/dt}).

At singular points t∗ (where dc/dt(t∗) = 0) we have c1(t∗) = limt→t∗ c1(t).

If c is tangent to a rank 2 (complex) distribution D ⊂ TM then its prolongation

c1 must lie in the projectivization PD ⊂ PTM of D. The space PD is a bundle over M

with fiber the complex projective line. Now PD, viewed as a complex manifold, is itself

endowed with a canonical rank 2 (complex) distribution which we denote D1, and call

the prolongation of D. We may define D1 by

D1(p) = (dπm)−1(`), p = (m, `) ∈ PD.

Here π : PD → M is the projection sending (m, `) to s. Alternatively, a smooth curve

γ in PD consists of a moving point and a moving line γ(t) = (m(t), `(t)) and we can

define D1 by declaring that

a curve γ(t) = (m(t), `(t)) is tangent to D1 iff dm(t)/dt ∈ `(t).
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Now c1 is tangent to D1 at every point over c\Σ. It is in fact tangent to D1 at all of its

points, by continuity of D and the analyticity of c. Thus, we can repeat the procedure, to

achieve the second prolongation c2 = (c1)1 tangent to a rank 2 distribution D2 = (D1)1

on the manifold M2 = P(D1). Continuing in this manner we get a sequence of prolonged

curves ck tangent to rank 2 distributions Dk on manifolds Mk. The Mk , k = 1, 2, . . .

form a tower of CP
1-bundles

. . . → Mk+1 → Mk → Mk−1 → . . .M1 = P(D) → M.

We apply this construction to a planar curve c ⊂ C
2, assumed analytic. The

curve is trivially tangent to the tangent bundle ∆0 := TC
2 of C

2, a rank 2 distribu-

tion. The first prolongation of the triple (c,∆0, C
2) consists of an integral curve c1, a

rank 2 distribution ∆1 = (∆0)
1, and a (complex) 3-dimensional manifold PTC

2 which

supports both ∆1 and c. The points of PTC
2 are the marked lines described in the

introduction. ∆1 is a contact distribution. Iterating the prolongation construction we

obtain (cj , ∆j , P
j(C2)). The P j(C2) fit together to form a tower of P

1-bundles

. . . → P j+1(C2) → P j(C2) → . . . → P 1(C2) = PTC
2 → C

2.

Each P j(C2) is endowed with its rank 2 distribution ∆j , and P j+1(C2) is the total space

of the projectivized bundle P(∆j). Note that a point pj+1 ∈ P j+1(C2) is to be viewed

as a pair (pj , `) with pj ∈ P j(C2) and ` ⊂ ∆j(pj) a line.

We call this tower of P
1 bundles, endowed with their distributions “the Monster tower”,

see [8]. When we say we are at level j we mean we are working within (P j(C2), ∆j).
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The curves cj ⊂ P j(C2) are tangent to ∆j and are defined iteratively by

cj+1 = (cj)1. They are all analytic. (See [8]).

The real version of P 1(C2) occurs frequently in books and papers of Arnol’d.

The real version P 2(C2) occurs infrequently and is the primary example of an “Engel

manifold”.

2.3.0.1 K-R coordinates

Kumpera and Ruiz introduced a special system of coordinates designed to fit

Goursat distributions, see [1]. We use them to coordinatize the Monster. We write a

K-R coordinate system for P
k
C

2 as (x, y, u1, . . . , uk). The construction goes as follows:

fix coordinates x, y on the plane C
2. Arbitrarily designate the lines parallel to the y-axis

as being “vertical”. Then {dx, dy} form a coframe for ∆0 = TC
2 and the vertical line is

anihilated by dx. So we have that [dx, dy] form homogeneous coordinates on ∆0(x, y).

There are two corresponding fiber-affine coordinates, obtained by writing [dx, dy] =

[1, dy
dx

] or [dx, dy] = [dx
dy

, 1]. If the point p∗ is not vertical then u1 = dy
dx

, and if the point

p∗ is vertical, then u1 = dx
dy

. Then P
1
C

2 is covered by two charts of the form (x, y, u1),

and the coordinate transformation between the charts is (x, y, u1) 7→ (x, y, 1/u1).

If u1 = dy
dx

, then dy − u1dx = 0 and this relation defines the contact form ∆1

on P
1
C

2 within this chart. Similarly, when u1 = dx
dy

, then the contact form is given

by dx − u1dy = 0. Now to go from k to k + 1, we proceed inductively. Suppose that

systems of K-R coordinates x, y, u1, . . . , uk have been constructed such that:

(a) {dui, duj} form a basis for (∆k−1)∗ fori, j ≤ k − 1;
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(b) one of i or j is k − 1;

(c) uk = dui

duj
is the corresponding fiber-affine coordinate at level k

Taking p∗ ∈ P
1+k

C
2, let i, j satisfy (a), (b), and (c). Then define uk+1 = duk

duj
if the

point p∗ is not vertical; or define uk+1 =
duj

duk
if the point p∗ is vertical.

In a K-R coordinate system for P
k
C

2 the 2-distribution ∆k is described by

1-forms α1, . . . , αk, whose form corresponds to the structure of the coordinates ui. In

general at level j if the coordinate uj has the form uj = dua

dub
then αj = dua − ujdub.

From here on, all coordinates in the Monster are taken to be K-R coordinates.

Let u1, . . . , ui be the coordinates at the point γi(0) ∈ P
i
C

2, then the ith pro-

longation of γ(t) is γi(t) = (x(t), y(t), U1(t), . . . , Ui(t)), where Uk(t) = uk(γ
k(t)). We

calculate the KR cooordinate functions using the following formulae.

Define u−1, u0 and U−1, U0 by

u−1 = x, u0 = y, U−1 = x(t), U0(t) = y(t) if ord(y′(t)) ≥ ord(x′(t))

u−1 = y, u0 = x, U−1 = y(t), U0(t) = x(t) if ord(y′(t)) < ord(x′(t))

Then for i ≥ 1

ui =
duβi

duαi

, Ui(t) =
U ′

βi

U ′
αi

(t), α, β ∈ {−1, 0, . . . , i − 1},

with α1 = −1, β1 = 0 and α≥2, β≥2 given by

αi = αi−1, βi = i − 1 if ord(U ′
i−1(t)) ≥ ord(U ′

αi−1(t));

αi = i − 1, βi = αi−1 if ord(U ′
i−1(t)) < ord(U ′

αi−1(t))
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2.4 Example

In this section we compute the blow ups and prolongations necessary to trans-

form the curve singularity (t3, t8) into a smooth, immersed curve. We note that after

three iterations of each method, the resulting curves are non-singular. We begin with

blow up.

2.4.1 Blow up

Example 1. Blow up: (t3, t8)

The curve (t3, t8) has a singularity at the origin. We will work with the defining

equation x8 = y3. Let the coordinates for C
2 be given by x, y and the affine coordinates

for CP 1 be given by u1, v1. Recall that CP 1 is covered by two affine charts corresponding

to u 6= 0 and v 6= 0 for homogeneous coordinates [u; v] on CP 1. We take u1 = u
v

and

v1 = v
u
, in the respective charts. We coordinatize the blow up of C

2 at the origin by

X1 = {([u, v], x, y) ∈ CP 1×C
2| xv = yu}. In the affine chart [1, v1], we have u1 = 1 and

v1 = v
u
, so that y = xv1. The defining equation x8 = y3 becomes (xv1)

3 − x8 = 0, or

x3(x5 − v3
1) = 0. In the other chart [u1, 1] the equation of the curve is y3(y5u8

1 − 1) = 0.

These are the equations for the total transforms in their respective charts. The proper

transform is the part of the curve defined by setting the expression in the parentheses

equal to zero. The factor outside the parentheses represents the exceptional divisor.

Since the singularity of the proper transform lies at the origin of the first chart with

coordinates (x, v1), we blow up there.

16



Coordinates for the surface X1 near the singular point of the blown-up curve

are x, v1. Let u2, v2 be affine coordinates for the new CP
1 corresponding to the sec-

ond exceptional divisor. The blow up of X1 at the singular point is given by X2 =

{([u, v], x, v1) |xv = v1u}, locally over the singular point in X1. In the affine chart

[1, v2], we have u2 = 1 so that v1 = xv2. The defining equation for the total transform

becomes x3(x5 − (xv2)
3) = x6(x2 − v3

2). In the chart [u2, 1], the defining equation is

u3
2v

6
1(u

5
2v

2
1 − 1). The singularity of the proper transform lies in the first chart and we

blow up again.

X3 = {([u, v], x, v2) |xv = uv2}, locally over the singular point in X2. In

the affine chart [1, v3], the equation of the curve is x8(1 − xv3
3) = 0, and in the chart

[u3, 1], the equation is v8
2u

6
3(u

2
3 − v2) = 0. Now, the curve is immersed. We record this

information in the following table.

Table 2.1: The blow up of the curve c : x(t) = t3, y(t) = t8.

Blow up total transform proper transform

B1(c) x3(x5 − v3
1) (x5 − v3

1)

B2(c) x6(x2 − v3
2) (x2 − v3

2)

B3(c) v8
2u

6
3(u

2
3 − v2) (u2

3 − v2)

2.4.2 Prolongation

Example 2. Prolongation: (t3, t8)
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Table 2.2: The prolongation of the curve c : x(t) = t3, y(t) = t8.

Prol KR coord KR function

c1 u1 = dy
dx

U1(t) = c1t
5

c2 u2 = du1

dx
U2(t) = c2t

2

c3 u3 = dx
du2

U3(t) = c3t

The curve x8 = y3 is parameterized as c(t) = (t3, t8). Introduce the fiber

coordinate u1 on P 1(C2) by setting [dx, dy] = [1, u1] which is to say u1 = dy/dx is

the slope of the tangent curve. We compute with the coordinates x, y, u1 = dy/dx its

first prolongation c1 is (t3, t8, c1t
5) which is singular. For the second prolongation c2,

introduce the fiber coordinate u2 on P 2(C2), near the point c2(0) = (0, 0, 0, span {∂/∂x})

by setting [dx, du1] = [1, u2] which is to say u2 = du1/dx. In the coordinates (x, y, u1, u2)

the second prolongation c2 is given by (t3, t8, c1t
5, c2t

2). Again this curve is singular.

Its third prolongation c3 is immersed. To see this introduce the fiber coordinate u3 on

P 3(C2), near the point c3(0) = (0, 0, 0, 0, span {∂/∂x}) by setting [dx, du2] = [u3, 1]

which is to say u3 = dx/du2. In the coordinates (x, y, u1, u2, u3) the third prolongation

c3 is given by (t3, t8, c1t
5, c2t

2, c3t), where the ci’s are nonzero constants.

This example illustrates:

Proposition 2.4.1 (Nobile [7], see also [8]). Let c be an analytic plane curve germ.

Then there is a finite number j such that the jth prolongation cj ⊂ P j(C2) is a nonsin-

gular curve germ.
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Part III

Third Part
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Chapter 3

Isomorphism of Resolution Graphs

3.1 Resolution by Prolongation

3.1.1 Critical Curves

Proposition 2.4.1 guarantees that the jth prolongation cj of an analytic plane

curve germ c is non-singular for large enough j. If we stopped at the first such j and

simply compared this prolonged curve cj(t) with the resolution of c by blow up (its

proper transform) our story would be uninteresting. We would have two immersed

curves, albeit in spaces of different dimensions. Any two immersed curve germs are

equivalent from the viewpoint of local analytic geometry: they look like one of the

coordinate axes in some coordinate system. We would not have anything interesting to

compare beyond how many steps are required to resolution in the two cases.

What makes blow up of a planar curve germ c interesting is the exceptional

curves. These are projective lines added to the curve with each blow up. Together
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with the proper transform of c they form a “multi-curve” in a surface : a finite union

of curves in a surface whose union is the resolved curve of blow up. The intersections

among the components of this multi-curve define a graph intrinsically related to the

curve germ. It is this graph that we want to “see” in prolongation. In order to see it

we need prolongation analogues of the exceptional fibers. These analogues are called

“critical curves”.

Definition 4. A critical curve in P j(C2), j > 0 is an embedded integral curve for ∆j

whose projection to the plane C
2 is a constant curve.

The simplest critical curves are the vertical curves.

Definition 5. The vertical curves at level j are the fibers of the projection P j(C2) →

P j−1(C2). Such a curve will be denoted Vj.

Remark 1 (Warning). The definitions of critical curve and of vertical curves which we

have just given differ at level 1 from the definitions in [8]. In [8] we do not consider the

vertical curves V1 at level 1, or its prolongations, to be critical curves. All the other

Vj , j > 1 and their prolongations comprise the critical curves of [8]. See section 1 for

more on this difference.

We can view a vertical curve as the prolongation of the point over which it lies.

For example, think of the origin in C
2 as the image of the constant curve t 7→ 0. Every

line through 0 is tangent to this curve, so the prolongation of 0, viewed as a constant

curve, is the vertical curve over 0, i.e. the fiber over 0 for the fibration P (C2) → C
2. It

is a copy of CP
1 in P (C2).
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Definition 6. A tangency curve is the prolongation (Vi)
j, j > 0 of some vertical curve

Vi, i ≥ 1.

For the rationale between the terminology “tangency” see [8].

Proposition 3.1.1. Let γ be a critical curve. Then γ is either a vertical curve, or a

tangency curve. Tangency curves are not vertical curves.

Proof. The proof of the corresponding proposition in [8] holds here. (See the Remark

1, and section 1 concerning the difference between critical curves there and here).

3.2 Resolution Graphs

Start with our singular curve c ⊂ C
2. Add to the prolongation c1 of c the

prolongation of each of c’s singular points of c, in this way adding a finite collection of

vertical curves to the old prolongation c1. The resulting collection of curves is called

the full (first) prolongation

Iterate this construction, forming P (c), P 2(c), . . . , P j(c) ⊂ P j(C2). The differ-

ent branches of P j(c) consist of the old prolongation cj and a finite collection of critical

curves.

Consider the case of a unibranched curve germ c = c(t). Suppose that its

j − 1st prolongation cj−1 is singular, with singular point pj−1 = cj−1(0). When we

prolong again to form cj we must add the vertical curve Vj = p1
j at level j. We carry

along with us the previously introduced critical curves, by prolonging them. Since we
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add exactly one new critical curve upon each prolongation, P j(c) consists of j+1 curves,

these being cj and the j critical curves, Vj , V
1
j−1, V

2
j−1, . . . , V

j−1

1
.

At what step j do we declare the multi-curve P j(c) to be “resolved”?

Definition 7. A finite collection of embedded integral curves for a rank 2 distribution

D is said to form a ‘normal system” if, whenever two curves intersect at a point p ,

their tangent lines intersect transversally within D(p), and no three curves intersect at

a single point.

Remark 2 (Normal Crossing is a Normal System). A collection of curves with a normal

crossing singularity forms a normal system, by taking the distribution D of 7 to be the

whole tangent bundle of Xk

If cj is tangent to Vj , or to a V i
j−i then we will count that tangency point as a

critical point even if cj is immersed. Similarly if cj is immersed but forms a triple point

with two of the critical curves, we count that triple point as a singular point and we

continue the prolongation process as before. (If two critical curves intersect, then their

intersection is transverse within ∆j , so that tangencies between critical curves cannot

occur.)

Definition 8. We will say that the unibranched singularity c has been resolved by pro-

longation when cj is immersed and P j(c) = cj ∪ Vj ∪ V 1
j−1 ∪ . . . ∪ V j−1

1
forms a normal

system of curves for ∆j.

Theorem 3.2.1. Any well-parameterized curve germ can be resolved by prolongation

in a finite number r of steps.
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Proof. The theorem is almost completely proved in [8]. We prove there that for any such

curve germ c, there is a finite number k (depending only on c’s Puiseux characteristic

) such that after k prolongations ck becomes immersed and regular, where “regular”

means that ck is not tangent to a critical curve. For j < k the ck are either not

immersed, or are tangent to a critical direction. At step k we are in a situation identical

to the penultimate step in the cubic cusp example just presented: ck forms a triple

intersection with the vertical curve and a tangency curve. One more prolongation yields

the resolution in the sense of Definition 8. Thus the r of Theorem 3.2.1 is k + 1 where

k is the regularization number of [8].

3.3 Main theorem

Definition 8 was made in analogy with the definitions in blow up where the

jth blow up Bj(c) of c consists of the proper transform of c, and j exceptional curves

E1, . . . , Ej , each one an embedded CP
1. These curves all lie on a surface Xj . We declare

the curve to be resolved by blow up when the component curves of Bj(c) form a normal

system for the tangent bundle D = T (Xj), in the sense of Definition 8.

There is a standard way to draw a graph, associated to blow up, sometimes

called the “dual graph”, which encodes the combinatorial relationships among compo-

nent curves in resolution by blow up. (See for example [5]. The dual graph is dual to

the ‘diagram’ there.) The vertices of the dual graph are the exceptional curves. Two

vertices are connected by an edge if and only if they intersect. Finally, there is an arrow
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representing the proper transform and this arrow connects to the exceptional curve to

which it intersects, this curve always being the last occurring exceptional curve.

If we associate a graph to the normal system in resolution by prolongation in

this same way, we will obtain at a dual graph having little relation to the graph for blow

up. What one finds is that most of the critical curves intersect no other critical curves

within the prolongation, and hence most of the critical curves correspond to isolated

vertices. On the other hand, in blow up, every exceptional curve intersects some other

exceptional curve, and one finds that the blow up graph is connected. The discrepancy

between the two graphs is a direct consequence of the difference between what happens

to a pair of transversally intersecting curves when we prolong, versus when we blow

up. When we prolong two integral curves which intersect transversally within ∆j , the

resulting curves do not intersect at all. On the other hand, when we blow up two curves

which intersect transversally at any point besides the point which is the center of the

blow up operation, then the resulting curves continue to intersect transversally.

To get the correct diagram for prolongation we must alter our definition of

what it means for two component curves to “intersect”. We call the new relation of

intersection “incidence”. To present the definition of incidence, we first introduce a

notational labelling conventions for the critical curves of P j(c).

Notational convention. Let V j−r
r be one of the critical curves comprising P j(c). We

will use the symbol Vr to denote this curve, viewed at any level of the monster. Since

the curve first arises at level r, it is declared to be the empty curve when viewed at
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levels k < r, that is , we declare, for incidence counting purposes, that Vr, viewed in

P k(C2), k < r is the empty curve. When we view Vr at level k > r we mean the k − r-

fold prolongation V k−r
r of Vr. Similarly, when we say we are viewing cj at level i < j

we are speaking of the ith prolongation ci.

Using this notation, we have that P j(c) = cj ∪ Vj ∪ Vj−1 ∪ . . . ∪ V1.

Definition 9. We declare that two component curves A, B of P j(c) to be incident if,

for some i ≤ j they intersect normally within P i(c). In other words, when viewed at

level i ≤ j the curves A and B intersect transversally at some point q ∈ P i(C2), and no

other component of P i(c) passes through q.

3.3.1 Main Result

Theorem 3.3.1 (Main Theorem). Let C be a plane curve singularity consisting of a

single branch. Consider two graphs associated to C, one for C’s resolution by blow up,

the other graph for C’s resolution by prolongation. Use definitions for 7 and 9 for

resolution by prolongation. Then these two labelled graphs are isomorphic. In particular

the number of steps to resolution by blow up is equal to the number of steps to resolution

by prolongation, these numbers being the number of verticies for each graph.

This theorem is proved in our paper [9].
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3.3.2 (t3, t8) an example for which both prolongation and blow up have

isomorphic resolution graphs

3.3.2.1 Prolongation

Example 3 (Resolution by prolongation). We return to the curve c(t) = (x(t), y(t)) =

(t3, t8). We saw (Example 2) that its first prolongation is coordinatized as (t3, t8, c1t
5)

with the last coordinate representing u1 = dy/dx. In these coordinates the vertical

curve V1 is (0, 0, t). We see that c1 is tangent to the vertical curve and still singular. See

Figure 3.1(a). So we must prolong again. This is done by introducing the new coordinate

u2 = du1/dx which represents a fiber affine coordinate on P 2(C2) → P 1(C2). In the

x, y, u1, u2 coordinates we find that c2 = (t3, t8, c1t
5, c2t

2) while V 1
1 = (0, 0, t,∞), and

V2, the new vertical curve is given by (0, 0, 0, t). The vertical curve V2 is incident to the

tangency curve V 1
1 by Definition 9, since both the curves intersect normally and since

c2 does not pass through their point of intersection. See Figure 3.1(b). We carry along

the tangency curve V 1
1 through further prolongations by recording the intersection of

V 1
1 with V2 in the diagrams to come. The distribution ∆2 at level 2 is given in these

coordinates by dy − u1dx = 0 and du1 − u2dx = 0. The second prolongation c2 is

still singular and at t = 0 is tangent to the vertical curve V2, since u2 is the lower

order coordinate of u1, u2. So we prolong again. We introduce the new coordinate

u3 = dx
du2

. In the x, y, u1, u2, u3 coordinates we find that c3 = (t3, t8, c1t
5, c2t

2, c3t)

while V 1
2 = (0, 0, 0, t, 0), and V3, the new vertical curve is given by (0, 0, 0, 0, t). See

Figure 3.1(c). Although V3 and V 1
2 intersect normally at a point q, the prolonged curve
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c3 also passes through q, so by Definition 9, V3 and V 1
2 are not incident. We see that

c3, though immersed, is tangent to the vertical curve. So we must prolong again.

This is done by introducing the new coordinate u4 = du2/du3 which represents

a fiber affine coordinate on P 4(C2) → P 3(C2). In the x, y, u1, u2, u3, u4 coordinates we

find that c4 = (t3, t8, c1t
5, c2t

2, c3t, c4t) while V 1
3 = (0, 0, 0, 0, t, 0), the tangency curve

V 2
2 = (0, 0, 0, t, 0,∞) and V4, the new vertical curve is given by (0, 0, 0, 0, 0, t). See

Figure 3.1(d). The vertical curve V4 is incident to V 2
2 . We carry along V 2

2 through

further prolongations by recording its intersection with V4. The vertical curve V4 is not

incident to V 1
3 , since V4, V 1

3 , and c4 intersect in a point. All three curves pass through

the coordinate origin, and their tangents form three distinct lines, du3 = 0, du4 = 0

and du3 = du4 within ∆2(0, 0, 0, 0, 0, 0). We have a triple intersection. One more

prolongation is required to resolve the singularity according to the definition. We find

that P 5(c) = c5∪V 2
3 ∪V 1

4 ∪V5. At level 5, we have that c5 and V5 intersect transversally,

and c5 intersects none of the other curves V 2
3 and V 1

4 . Thus the component curves form

a normal system and the singularity is resolved. The configuration of the component

curves of P 5(c) is depicted with a resolution diagram in Figure 3.1(e). To obtain the

dual graph, we represent each of the component curves with a vertex, and an edge

joining two verticies when the component curves are incident. An arrow stemming from

a vertex indicates that the prolonged curve intersects the component curve represented

by the vertex. The dual graph is depicted in Figure 3.1(f).
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Figure 3.1: The Prolongations of (t3, t8)
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3.3.2.2 Blow up

In this section, we repeatedly blow up the singular point of the curve singularity

(t3, t8) until we reach an immersed curve with normal crossings with the exceptional

curves. We demonstrate the construction of the resolution diagrams and resolution

graphs for blow up, see [5], [10] for more details.

Example 4 (Resolution by blow up). We return to the curve (t3, t8) with defining

equation x8 = y3. We saw in (Example 1) that after the first blow up, the total transform

in the chart containing the singular point is given by the equation x3(x5 − v3
1) = 0. The

factor outside the parentheses represents the exceptional curve. Each exceptional curve

has a multiplicity. The multiplicity of the exceptional curve is the exponent on the

factor representing the exceptional curve. The multiplicity helps to keep track of which

exceptional curves appear locally near the singular point. After the first blow up, we

have an exceptional curve with multiplicity 3, denoted by E1. The coordinates for the

blown up surface near the singular point are (x, v1). The exceptional curve is given by

the equation x = 0, which is the v1-axis. See Figure 3.2(a). We blow up again at the

point (x, v1) = (0, 0). The singular point of the resulting curve lies in the chart [1, v2],

where the total transform has defining equation x6(x2 − v3
2). Since the multiplicity

of x is 6, the exceptional fiber E2, given by x = 0, has multiplicity equal to 6. The

exceptional divisor is marked by its multiplicity. In the other affine chart, the equation

u2 = 0 with multiplicity 3 gives us the blow up of E1, which we now call E1
1 , still with

multiplicity equal to 3. The singular point of the proper transform lies in the first chart
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and we blow up again. See Figure 3.2(b).

In the chart [u3, 1], the equation is v8
2u

6
3(u

2
3 − v2) = 0. Our new exceptional

divisor E3 has multiplicity equal to 8, and E1
2 , the blow up of E2 still with multiplicity

equal to 6. Now, the curve is immersed, but we continue until our proper transform is

transverse to all of the exceptional divisors, and we have no triple intersection points.

See Figure 3.2(c). We blow up again. In the chart [u4, 1], we have u15
3 u8

4(u3 − u4) = 0.

Our new exceptional divisor E4 has multiplicity equal to 15. The second chart contains

both of the exceptional curves E4 and E2
2 . In the chart containing the origin, all three

curves intersect at the origin, we call this a triple intersection point and we must blow

up there one last time. See Figure 3.2(d).

In the affine chart [1, v5], the equation of the curve is u24
3 v8

5(1 − v5) = 0. In

the chart [u5, 1] the equation is u24
4 u15

5 (u5 − 1) = 0. This chart contains the exceptional

curve E5 with multiplicity 24, as well as E1
4 with multiplicity 15. In either chart the

proper transforms are smooth curves and intersect the corresponding exceptional curves

transversally. In both charts the total transforms have only have normal crossing sin-

gularities, so we have reached a good resolution in five steps. The resolution diagram

is depicted in Figure 3.2(e). We can also describe the configuration of curves with

the dual graph: we have five verticies, one for each exceptional curve, and four edges,

one for each transverse intersection between the exceptional curves. We have an arrow

stemming from the vertex which represents E5, to indicate that the proper transform

intersects the exceptional curve E5. The number of edges of the dual graph represents

the number of transverse intersections of the exceptional curves. See Figure 3.2(f).
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Figure 3.2: The Blow ups of (t3, t8)
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Chapter 4

Examples and Figures

4.1 A2k singularity (t2, t7),and (t2, t2k+1).

4.1.1 Blow up of (t2, t7)

Example 5. The curve (t2, t7) has a singularity at the origin. We will work with the

defining equation x7 = y2. Let the coordinates for C
2 be given by x, y and the affine

coordinates for CP 1 be given by u1, v1. We take u1 = u
v

and v1 = v
u

for homogeneous

coordinates [u; v] on CP 1. We coordinatize the blow up of C
2 at the origin by X1 =

{([u, v], x, y) ∈ CP 1 × C
2| xv = yu}. In the affine chart [1, v1], we have u1 = 1 and

v1 = v
u
, so that y = xv1. The defining equation x7 = y2 becomes x2(x5 − v2

1) = 0.

In the other chart [u1, 1] the equation of the curve is y2(y5u7
1 − 1) = 0. These are the

equations for the total transforms in their respective charts. Recall that the proper

transform is the part of the curve defined by setting the expression in the parentheses

equal to zero and the factor outside the parentheses represents the exceptional curve.
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The multiplicity of the exceptional curve is the exponent on the factor representing the

exceptional curve. After the first blow up, we have an exceptional curve with multiplicity

2, denoted by E1. The coordinates for the blown up surface near the singular point are

(x, v1). The exceptional curve is given by the equation x = 0, which is the v1-axis. Since

the singularity of the proper transform lies at the origin of the first chart, we blow up

there. See 4.1(a).

Coordinates for the surface X1 near the singular point of the blown-up curve

are x, v1. Let u2, v2 be affine coordinates for the new CP
1 corresponding to the sec-

ond exceptional divisor. The blow up of X1 at the singular point is given by X2 =

{([u, v], x, v1) |xv = v1u}, locally over the singular point in X1. In the affine chart

[1, v2], we have u2 = 1 so that v1 = xv2. The defining equation for the total transform

becomes x4(x3−v2
2) = 0. In the chart [u2, 1], the defining equation is u2

2v
4
1(u

5
2v

3
1−1) = 0.

The singular point of the resulting curve lies in the chart [1, v2]. Since the multiplicity

of x is 4, the exceptional fiber E2, given by x = 0, has multiplicity equal to 4. In the

other affine chart, the equation u2 = 0 with multiplicity 2 gives us the blow up of E1,

which we now call E1
1 , with multiplicity equal to 2. The singular point of the proper

transform lies in the first chart and we blow up again. See Figure 4.1(b).

X3 = {([u, v], x, v2) |xv = uv2}, locally over the singular point in X2. In the

affine chart [1, v3], the equation of the curve is x6(x − v2
3) = 0, and in the chart [u3, 1],

the equation is v6
2u

4
3(v2u

3
3 − 1) = 0. Our new exceptional divisor E3 has multiplicity

equal to 6, and E1
2 , the blow up of E2 still with multiplicity equal to 4. Now, the

curve is immersed, but we continue until our proper transform is transverse to all of the
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exceptional curves, and we have no triple intersection points. See Figure 4.1(c).

We blow up again. In the chart [u4, 1], we have v7
3u

6
4(u4 − v3) = 0. This chart

contains both our new exceptional divisor E4 with multiplicity equal to 7, as well as

E1
3 with multiplicity 6. In the chart [1, v4], we have x7(1 − v2

4x) = 0. In the first chart,

which contains the origin, all three curves intersect at the origin, and we call this a

triple intersection point. We must blow up there one last time. See Figure 4.1(d).

In the affine chart [1, v5], the equation of the curve is v14
3 v6

5(v5 − 1) = 0. In

the chart [u5, 1] the equation is u14
4 u7

5(1 − u5) = 0. The affine chart [1, v5] contains the

exceptional curve E5 with multiplicity 14, as well as E2
3 with multiplicity 6. The affine

chart [u5, 1] contains the new exceptional curve E5 and the old E1
4 with multiplicity 7. In

either chart the proper transforms are smooth curves and intersect the corresponding

exceptional curves transversally. In both charts the total transforms have only have

normal crossing singularities, so we have resolved the curve singularity in five steps.

The resolution diagram is depicted in Figure 4.1(e). The dual graph has five verticies,

one for each exceptional curve, and four edges, one for each transverse intersection

between the exceptional curves. We have an arrow stemming from the vertex which

represents E5, to indicate that the proper transform intersects the exceptional curve

E5. See Figure 4.1(f). We record the proper and total transforms in a table, see

Table 4.1.
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Figure 4.1: The Blow ups of (t2, t7)
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Table 4.1: The blow up of the curve c : x(t) = t2, y(t) = t7.

Blow up total transform proper transform

B1(c) x2(x5 − v2
1) (x5 − v2

1)

B2(c) x4(x3 − v2
2) (x3 − v2

2)

B3(c) x6(x − v2
3) (x − v2

3)

B4(c) v7
3u

6
4(u4 − v3) (u4 − v3)

B5(c) v14
3 v6

5(v5 − 1) (v5 − 1)

4.1.2 Prolongation of (t2, t7)

Example 6. The curve x7 = y2 is parameterized as c(t) = (t2, t7). We introduce the

fiber coordinate u1 on P 1(C2) by setting [dx, dy] = [1, u1] where u1 = dy/dx is the

slope of the tangent curve. We compute with the coordinates x, y, u1 = dy/dx its first

prolongation c1 is (t2, t7, c1t
5). In these coordinates the vertical curve V1 is (0, 0, t). The

prolonged curve c1 is tangent to the vertical curve and still singular. See Figure 4.2(a).

We must prolong again.

We introduce the new coordinate u2 = du1/dx which represents a fiber affine

coordinate on P 2(C2) → P 1(C2). In the x, y, u1, u2 coordinates we find that c2 =

(t2, t7, c1t
5, c2t

3) while V 1
1 = (0, 0, t,∞), and V2, the new vertical curve is given by

(0, 0, 0, t). The vertical curve V2 is incident to the tangency curve V 1
1 by Definition 9,

since both the curves intersect normally and since c2 does not pass through their point

of intersection. See Figure 4.2(b). We carry along the tangency curve V 1
1 through
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further prolongations by recording the intersection of V 1
1 with V2 in the diagrams to

come. The distribution ∆2 at level 2 is given in these coordinates by dy−u1dx = 0 and

du1 − u2dx = 0. The second prolongation c2 is still singular. At t = 0, c2 is tangent

to the vertical curve V2, since u2 is the lower order coordinate of u1, u2. So we prolong

again. We introduce the fiber coordinate u3 on P 3(C2), near the point c3(0) by setting

[dx, du2] = [1, u3] which is to say u3 = du2/dx. In the coordinates (x, y, u1, u2, u3)

the third prolongation c3 is given by (t2, t7, c1t
5, c2t

3, c3t), where the ci’s are nonzero

constants. The tangency curve V 1
2 is given by V 1

2 = (0, 0, 0, t,∞), and V3, the new

vertical curve is given by (0, 0, 0, 0, t). See Figure 4.2(c). The vertical curve V3 and the

tangency curve V 1
2 are incident and we carry along V 1

2 through further prolongations

by recording its last seen intersection with V3. We see that c3, though immersed, is

tangent to the vertical curve. So we must prolong again.

This is done by introducing the new coordinate u4 = dx/du3 which represents

a fiber affine coordinate on P 4(C2) → P 3(C2). In the x, y, u1, u2, u3, u4 coordinates

we find that c4 = (t2, t7, c1t
5, c2t

3, c3t, c4t) while V 1
3 = (0, 0, 0, 0, t, 0), the tangency

curve V 2
2 = (0, 0, 0, t, 0,∞) and V4, the new vertical curve is given by (0, 0, 0, 0, 0, t).

See Figure 4.2(d). The vertical curve V4 intersects V 1
3 and c4 in a point. All three

curves pass through the coordinate origin, and their tangents form three distinct lines,

du3 = 0, du4 = 0 and du3 = du4 within ∆2(0, 0, 0, 0, 0, 0). We have a triple intersection.

One more prolongation is required to resolve the singularity according to the definition.

We find that P 5(c) = c5 ∪ V 2
3 ∪ V 1

4 ∪ V5. At level 5, we have that c5 and V5 intersect

transversally, and c5 intersects none of the other curves V 2
3 and V 1

4 . Thus the component
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Table 4.2: The Prolongation of the curve c : x(t) = t2, y(t) = t7.

Prol KR coord KR function

c1 u1 = dy
dx

U1(t) = c1t
5

c2 u2 = du1

dx
U2(t) = c2t

3

c3 u3 = du2

dx
U3(t) = c3t

c4 u4 = dx
du3

U4(t) = c4t

c5 u5 = du4

du3
U5(t) = c5

curves form a normal system and the singularity is resolved. The configuration of the

component curves of P 5(c) is depicted with a resolution diagram in Figure 4.2(e). The

dual graph contains 5 verticies, 4 edges and arrow stemming from the vertex representing

V5. The dual graph is depicted in Figure 4.2(f). We list the K-R coordinates and K-R

coordinate functions corresponding to each of the prolongations in the Table. 4.2

4.1.3 Blow up of (t2, t2k+1)

Example 7. We will work with the defining equation x2k+1 = y2 and blow up the curve

at the origin. Let the coordinates for C
2 be given by x, y and the affine coordinates

for CP 1 be given by u1, v1. We take u1 = u
v

and v1 = v
u

for homogeneous coordinates

[u; v] on CP 1. We coordinatize the blow up of C
2 at the origin by X1 = {([u, v], x, y) ∈

CP 1 × C
2| xv = yu}. In the affine chart [1, v1], we have u1 = 1 and v1 = v

u
, so that

y = xv1. The defining equation x2k+1 = y2 becomes x2(x2k−1 − v2
1) = 0. In the other

chart [u1, 1] the equation of the curve is y2(y2k−1u2k+1
1

−1) = 0. These are the equations
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for the total transforms in their respective charts. After the first blow up, we have an

exceptional curve with multiplicity 2, denoted by E1. The coordinates for the blown

up surface near the singular point are (x, v1). The exceptional curve is given by the

equation x = 0, which is the v1-axis. Since the singularity of the proper transform lies

at the origin of the first chart, we blow up there.

Let u2, v2 be affine coordinates for the new CP
1 corresponding to the sec-

ond exceptional divisor. The blow up of X1 at the singular point is given by X2 =

{([u, v], x, v1) |xv = v1u}, locally over the singular point in X1. In the affine chart [1, v2],

we have u2 = 1 so that v1 = xv2. The defining equation for the total transform becomes

x4(x2k−3−v2
2) = 0. In the chart [u2, 1], the defining equation is v2

2v
4
1(v

2k−1
2

v2k−3
1

−1) = 0.

The singular point of the resulting curve lies in the chart [1, v2]. Since the multiplicity

of x is 4, the exceptional fiber E2, given by x = 0, has multiplicity equal to 4. In the

other affine chart, the equation u2 = 0 with multiplicity 2 gives us the blow up of E1,

which we now call E1
1 , with multiplicity equal to 2. The singular point of the proper

transform lies in the first chart and we blow up again.

X3 = {([u, v], x, v2) |xv = uv2}, locally over the singular point in X2. In the

affine chart [1, v3], the equation of the curve is x6(x2k−5 − v2
3) = 0, and in the chart

[u3, 1], the equation is v6
2u

4
3(v

2k−5
2

u2k−3
3

− 1) = 0. Our new exceptional divisor E3 has

multiplicity equal to 6, and E1
2 , the blow up of E2 still with multiplicity equal to 4.

We continue in this fashion and note the pattern that the multiplicity of the

exceptional curve increases by two and the degree of the proper transform decreases

by two after every blow up. In the affine chart [1, vk], the equation of the curve is
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x2k(x− v2
k) = 0. Our new exceptional divisor Ek has multiplicity equal to 2k. Now the

curve is immersed but tangent to an exceptinal curve, so we blow up again.

Xk+1 = {([u, v], x, vk) |xv = uvk}, locally over the singular point in Xk. In

the affine chart [1, vk+1], the equation of the curve is x2k+1(1 − xv2
k+1

) = 0, and in the

chart [uk+1, 1], the equation is v2k+1

k u2k
k+1

(uk+1 − vk) = 0. Our new exceptional divisor

Ek+1 has multiplicity equal to 2k + 1, and E1
k , the blow up of Ek still with multiplicity

equal to 2k. The proper transform, and the exceptional curves all intersect in a point,

this point is called a triple intersection point, and we must blow up one last time.

Xk+2 = {([u, v], vk, uk+1) |vkv = uk+1u}, locally over the singular point in

Xk+1. In the affine chart [1, vk+2], the equation of the curve is v4k+2

k v2k
k+2

(vk+2 −1) = 0,

and in the chart [uk+2, 1], the equation is u4k+2

k+1
u2k+1

k+2
(1−uk+2) = 0. Our new exceptional

divisor Ek+2 has multiplicity equal to 4k + 2, and E1
k+1

, the blow up of EK with

multiplicity equal to 2k + 1. In either chart the proper transforms are smooth curves

and intersect the corresponding exceptional curves transversally. In both charts the

total transforms have only have normal crossing singularities, so we have reached a

good resolution in k + 2 steps. We can describe the configuration of curves with the

dual graph: we have k + 2 verticies, one for each exceptional curve, and k + 1 edges,

one for each transverse intersection between the exceptional curves. We have an arrow

stemming from the vertex which represents Ek+2, to indicate that the proper transform

intersects the exceptional curve Ek+2. See Figure 4.3. We record the proper and total

transforms in a table, see Table 4.3.
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Table 4.3: The blow up of the curve c : x(t) = t2, y(t) = t2k+1.

Blow up total transform proper transform

B1(c) x2(x2k−1 − v2
1) (x2k−1 − v2

1)

B2(c) x4(x2k−3 − v2
2) (x2k−3 − v2

2)

B3(c) x6(x2k−5 − v2
3) (x2k−5 − v2

3)

...
...

...

Bk(c) x2k(x − v2
k) (x − v2

k)

Bk+1(c) v2k+1

k u2k
k+1

(uk+1 − vk) (uk+1 − vk)

Bk+2(c) v4k+2

k v2k
k+2

(vk+2 − 1) (vk+2 − 1)

E1
E2 Ek Ek+2

Ek+1

Figure 4.3: The dual graph for resolution by blow up of (t2, t2k+1)

4.1.4 Prolongation of (t2, t2k+1)

Example 8. The curve x2k+1 = y2 is parameterized as c(t) = (t2, t2k+1). We introduce

the fiber coordinate u1 on P 1(C2) by setting [dx, dy] = [1, u1] where u1 = dy/dx is

the slope of the tangent curve. We compute with the coordinates x, y, u1 = dy/dx

its first prolongation c1 is (t2, t2k+1, c1t
2k−1). In these coordinates the vertical curve
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V1 is (0, 0, t). We see that c1 is tangent to the vertical curve and still singular. See

Figure 4.2(a). So we must prolong again.

We introduce the new coordinate u2 = du1/dx which represents a fiber affine

coordinate on P 2(C2) → P 1(C2). In the x, y, u1, u2 coordinates we find that c2 =

(t2, t2k+1, c1t
2k−1, c2t

2k−3) while V 1
1 = (0, 0, t,∞), and V2, the new vertical curve is given

by (0, 0, 0, t). The vertical curve V2 is incident to the tangency curve V 1
1 by Definition 9,

and we carry along the tangency curve V 1
1 through further prolongations by recording

the intersection of V 1
1 with V2 in the diagrams to come. The distribution ∆2 at level 2 is

given in these coordinates by dy−u1dx = 0 and du1−u2dx = 0. The second prolongation

c2 is still singular. At t = 0, the prolonged curve c2 is tangent to the vertical curve

V2, since u2 is the lower order coordinate of u1, u2. So we prolong again. We introduce

the fiber coordinate u3 on P 3(C2), near the point c3(0) by setting [dx, du2] = [1, u3]

which is to say u3 = du2/dx. In the coordinates (x, y, u1, u2, u3) the third prolongation

c3 is given by (t2, t2k+1, c1t
2k−1, c2t

2k−3, c3t
2k−5), where the ci’s are nonzero constants.

The tangency curve V 1
2 is given by V 1

2 = (0, 0, 0, t,∞), and V3, the new vertical curve

is given by (0, 0, 0, 0, t). The vertical curve V3 and V 1
2 intersect normally at a point q

and the prolonged curve c3 does not pass through q, so by Definition 9, V3 and V 1
2 are

incident. We carry along V 1
2 through further prolongations by recording its intersection

with V3. The curve c3 is tangent to the vertical curve, so we prolong again.

We note the pattern that the order of the KR coordinate function drops by two

and Vk is incident to Vk−1 for the first k prolongations. After the kth prolongation the

curve ck is immersed but tangent to the vertical curve. For the k +1th prolongation we
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introduce the new coordinate uk+1 = dx/duk. In the x, y, u1, u2, u3, . . . , uk, uk+1 coordi-

nates we find that ck+1 = (t2, t2k+1, c1t
2k−1, c2t

2k−3, c3t
2k−5, . . . , ckt, ck+1t) while V 1

k =

(0, 0, 0, 0, . . . , 0, t, 0) and the new vertical curve Vk+1 is given by (0, 0, 0, 0, 0, . . . , 0, t).

The vertical curve Vk+1 is not incident to V 1
k , since V 1

k and ck intersect. All three

curves pass through the coordinate origin, and their tangents form three distinct lines,

duk = 0, duk+1 = 0 and duk = duk+1 within ∆k+1(0, 0, 0, . . . , 0). We have a triple

intersection. One more prolongation is required to resolve the singularity according to

the definition.

We find that P k+2(c) = ck+2 ∪ V 2
k ∪ V 1

k+1
∪ Vk+2. The prolongation ck+2 and

Vk+2 intersect transversally, and ck+2 intersects none of the other curves V 2
k and V 1

k+1
.

Thus the component curves form a normal system and the singularity is resolved. The

dual graph contains k + 2 verticies, k + 1 edges, and an arrow stemming from the

vertex representing Vk+2. The dual graph is depicted in Figure 4.4. We list the K-R

coordinates and K-R coordinate functions corresponding to each of the prolongations

in the Table 4.4

V1
V2 Vk Vk+2

Vk+1

Figure 4.4: The dual graph for resolution by prolongation of (t2, t2k+1)
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Table 4.4: The Prolongation of the curve c : x(t) = t2, y(t) = t2k+1.

Prol KR coord KR function

c1 u1 = dy
dx

U1(t) = c1t
2k−1

c2 u2 = du1

dx
U2(t) = c2t

2k−3

c3 u3 = du2

dx
U3(t) = c3t

2k−5

...
...

...

ck uk =
duk−1

duk
Uk(t) = ckt

ck+1 uk+1 = dx
duk

Uk+1(t) = ck+1t

ck+2 uk+2 =
duk+1

duk
Uk+2(t) = ck+2

4.2 E singularity (t3, t7).

4.2.1 Blow up of (t3, t7)

Example 9. We blow up the curve (t3, t7), with the defining equation x7 = y3, at the

origin. Let the coordinates for C
2 be given by x, y and the affine coordinates for CP 1 be

given by u1, v1. We take u1 = u
v

and v1 = v
u

for homogeneous coordinates [u; v] on CP 1.

We coordinatize the blow up of C
2 at the origin by X1 = {([u, v], x, y) ∈ CP 1×C

2| xv =

yu}. In the affine chart [1, v1], we have u1 = 1 and v1 = v
u
, so that y = xv1. The defining

equation x7 = y3 becomes x3(x4−v3
1) = 0. In the other chart [u1, 1] the equation of the

curve is y3(y4u7
1−1) = 0. In both charts, we have an exceptional curve with multiplicity

3, denoted by E1. The coordinates for the blown up surface near the singular point are

(x, v1). The exceptional curve is given by the equation x = 0, which is the v1-axis. Since
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the singularity of the proper transform lies at the origin of the first chart, we blow up

there. See 4.5(a).

Coordinates for the surface X1 near the singular point of the blown-up curve

are x, v1. Let u2, v2 be affine coordinates for the new CP
1 corresponding to the second

exceptional divisor. The surface X2 = {([u, v], x, v1) |xv = v1u}, locally over the singular

point in X1. In the affine chart [1, v2], we have u2 = 1 so that v1 = xv2. The defining

equation for the total transform becomes x6(x−v3
2) = 0. In the chart [u2, 1], the defining

equation is u3
2v

6
1(u

4
2v1−1) = 0. The singular point of the resulting curve lies in the chart

[1, v2]. Since the multiplicity of x is 6, the exceptional fiber E2, given by x = 0, has

multiplicity equal to 6. In the other affine chart, the equation u2 = 0 with multiplicity

3 gives us the blow up of E1, which we now call E1
1 , with multiplicity equal to 3. The

singular point of the proper transform lies in the first chart and we blow up again. See

Figure 4.5(b).

X3 = {([u, v], x, v2) |xv = uv2}, locally over the singular point in X2. In the

affine chart [1, v3], the equation of the curve is x7(1−x2v3
3) = 0, and in the chart [u3, 1],

the equation is v7
2u

6
3(u3 − v2

2) = 0. Our new exceptional divisor E3 has multiplicity

equal to 7, and E1
2 , the blow up of E2 still with multiplicity equal to 6. Now, the

curve is immersed, but we continue until our proper transform is transverse to all of the

exceptional curves, and we have no triple intersection points. See Figure 4.5(c).

We blow up again. In the chart [u4, 1], we have u14
3 u7

4(1 − u3u
2
4) = 0. This

chart contains both our new exceptional divisor E4 with multiplicity equal to 14, as well

as E1
3 with multiplicity 7. In the chart [1, v4], we have v14

2 v6
4(v4 − v2) = 0. In the first

47



chart, which contains the origin, all three curves intersect at the origin, and we call this

a triple intersection point. We must blow up there one last time. See Figure 4.5(d).

In the affine chart [1, v5], the equation of the curve is v21
2 v6

5(v5 − 1) = 0. In

the chart [u5, 1] the equation is v21
4 u14

5 (1− u5) = 0. The affine chart [1, v5] contains the

exceptional curve E5 with multiplicity 21, as well as E3
2 with multiplicity 6. The affine

chart [u5, 1] contains the new exceptional curve E5 and E1
4 with multiplicity 14. In

either chart the proper transforms are smooth curves and intersect the corresponding

exceptional curves transversally. In both charts the total transforms have only have

normal crossing singularities, so we have reached a good resolution in five steps. The

resolution diagram is depicted in Figure 4.5(e). The dual graph has five verticies, one

for each exceptional curve, and four edges, one for each transverse intersection between

the exceptional curves. We have an arrow stemming from the vertex which represents

E5, to indicate that the proper transform intersects the exceptional curve E5. See

Figure 4.5(f). We record the proper and total transforms in a table, see Table 4.5.

Table 4.5: The blow up of the curve c : x(t) = t3, y(t) = t7.

Blow up total transform proper transform

B1(c) x3(x4 − v3
1) (x4 − v3

1)

B2(c) x6(x − v3
2) (x − v3

2)

B3(c) v7
2u

6
3(u3 − v2

2) (u3 − v2
2)

B4(c) v14
2 v6

4(v4 − v2) (v4 − v2)

B5(c) v21
2 v6

5(v5 − 1) (v5 − 1)
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(f) Dual graph

Figure 4.5: The Blow ups of (t3, t7)

4.2.2 Prolongation of (t3, t7)

Example 10. The curve x7 = y3 is parameterized as c(t) = (t3, t7). We compute

with the coordinates x, y, u1 = dy/dx its first prolongation c1 is (t3, t7, c1t
4). In these

coordinates the vertical curve V1 is (0, 0, t). We see that c1 is tangent to the vertical

curve and still singular. See Figure 4.6(a). So we must prolong again.

We introduce the new coordinate u2 = du1/dx. In the x, y, u1, u2 coordinates
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we find that c2 = (t3, t7, c1t
4, c2t) while V 1

1 = (0, 0, t,∞), and V2, the new vertical curve

is given by (0, 0, 0, t). The vertical curve V2 is incident to the tangency curve V 1
1 and

we carry along the tangency curve V 1
1 through further prolongations. See Figure 4.6(b).

The distribution ∆2 at level 2 is given in these coordinates by dy − u1dx = 0 and

du1−u2dx = 0. The second prolongation c2 is an immersed curve. Since u2 is the lower

order coordinate of u1, u2, at t = 0 c2 is tangent to the vertical curve V2. We introduce

the fiber coordinate u3 on P 3(C2), near the point c3(0) by setting [dx, du2] = [u3, 1] so

that u3 = dx/du2. In the coordinates (x, y, u1, u2, u3) the third prolongation c3 is given

by (t3, t7, c1t
4, c2t, c3t

2), where the ci’s are nonzero constants. The tangency curve V 1
2

is given by V 1
2 = (0, 0, 0, t, 0), and V3, the new vertical curve is given by (0, 0, 0, 0, t).

See Figure 4.6(c). The curves V3 and V 1
2 are not incident since the prolonged curve c3

passes through their point of intersection. We see that c3, though immersed, is tangent

to the tangency curve. So we must prolong again.

We introduce the new coordinate u4 = du3/du2. In the x, y, u1, u2, u3, u4 coor-

dinates we find that c4 = (t3, t7, c1t
4, c2t, c3t

2, c4t) while V 1
3 = (0, 0, 0, 0, t,∞), the tan-

gency curve V 2
2 = (0, 0, 0, t, 0, 0) and V4, the new vertical curve is given by (0, 0, 0, 0, 0, t).

See Figure 4.6(d). The vertical curve V4 is incident to V 1
3 . The vertical curve V4, the

tangency curve V 2
2 , and the prolonged curve c4(t) all pass through the coordinate origin,

and their tangents form three distinct lines, du3 = 0, du4 = 0 and du3 = du4 within

∆4(0, 0, 0, 0, 0, 0). We have a triple intersection. One more prolongation is required to

resolve the singularity according to the definition. We find that P 5(c) = c5∪V 2
2 ∪V 1

4 ∪V5.

At level 5, we have that c5 and V5 intersect transversally, and c5 intersects none of the
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Table 4.6: The Prolongation of the curve c : x(t) = t3, y(t) = t7.

Prol KR coord KR function

c1 u1 = dy
dx

U1(t) = c1t
4

c2 u2 = du1

dx
U2(t) = c2t

c3 u3 = dx
du2

U3(t) = c3t
2

c4 u4 = du3

du2
U4(t) = c4t

c5 u5 = du4

du2
U5(t) = c5

other curves V 2
2 and V 1

4 . Thus the component curves form a normal system and the

singularity is resolved. The configuration of the component curves of P 5(c) is depicted

with a resolution diagram in Figure 4.6(e). The dual graph is depicted in Figure 4.6(f).

We list the K-R coordinates and K-R coordinate functions corresponding to each of the

prolongations in the Table. 4.6

4.3 Quasi-Homogeneous Case (tm, tn).

4.3.1 Prolongation of (tm, tn)

Example 11. A multigerm of a curve c in C
3 is called quasi-homogeneous if there exist

weights λ1, λ2, λ3 > 0 such that c is RL-equivalent to a multigerm whose components

have the form

x = atrλ1 , y = btrλ2 , z = ctrλ3 , a, b, c, r ∈ C
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Figure 4.6: The Prolongations of (t3, t7)
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Let c(t) = (tm, tn) with m and n relatively prime and m < n. The curve c prolongs

to a quasi-homogeneous curve. We compute with the coordinates x, y, u1 = dy/dx its

first prolongation c1 is (tm, tn, c1t
n−m). Applying the Euclidean Algorithm to the pair

(m, n), we have positive integers q1, . . . , qk+1, . . . , r1, . . . , rk+1, such that

n = q1m + r1

m = q2r1 + r2

...

rk−2 = qkrk−1 + rk

rk−1 = qk+1rk + rk+1

where m > r1 > r2 > . . . > rk > rk+1 = 0, and rk = (m, n) = 1. Let sk =
∑k

i=1
qi. It

takes sk+1 steps to resolve this singularity. Since n > q1m, for the first i prolongations,

i < q1 we introduce the new coordinate ui = dui−1

dx
. In the x, y, u1, u2, . . . , ui coordinates

we find that ci = (tm, tn, c1t
n−m, c2t

n−2m, . . . , cit
n−im). When i = q1, we find that ci =

(tm, tn, c1t
n−m, c2t

n−2m, . . . , cit
r1) and the q1-coordinate is the lowest order coordinate.

The distribution ∆q1
at level q1 is given in these coordinates by duq1−1 −uq1

dx = 0 and

duq1−2 − uq1−1dx = 0. The curve is still singular, so we prolong again. We introduce

the new coordinate uq1+1 = dx
duq1

. In the x, y, u1, u2, . . . , uq1+1 coordinates we find that

cq1+1 = (tm, tn, c1t
n−m, . . . , cq1+1t

m−r1).

Since m > q2r1, for the next i prolongations, s1 < i < s2 we introduce the

new coordinate ui =
duq1+i

duq1
. In the x, y, u1, u2, . . . , ui coordinates we find that ci =
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(tm, tn, c1t
n−m, c2t

n−2m, . . . , cit
m−ir1). When i = s2, we find that U i(t) = cit

r2 and

the s2-coordinate is the lowest order coordinate. We continue in this fashion and at

level sk, the curve is immersed. We introduce coordinates usk
=

dusk−1

dusk−1

, and we have

Usk
(t) = csk

trk with rk equal to 1. We continue one more level for resolution. We

introduce the new coordinate usk+1
=

dusk+1−1

dusk

. In the x, y, u1, u2, . . . , sk+1 coordinates

we find that csk+1 = (tm, tn, c1t
n−m, . . . , , csk

t, csk+1
trk+1) and rk+1 = 0. We list the

sequence of prolongations in Table 4.7.

4.3.2 Blow up of (tm, tn)

Example 12. We blow up the curve (tm, tn) with defining equation xn = ym at the

origin. This is an example of a curve with a Puiseux characteristic of length 2. The

case of Puiseux characteristics of longer length is dealt with in [4]. We ingnore the

exceptional divisors and focus our attention on the proper transform to count the steps

to resolution. We coordinatize the blow up of C
2 at the origin by X1 = {([u, v], x, y) ∈

CP 1 × C
2| xv = yu}.

The affine chart [1, v1] contains the total transform xm(xn−m − vm
1 ) = 0. We

use the same integers q1, . . . , qk+1, r1, . . . , rk+1 from Example 11 given by the Euclidean

algorithm. For 1 ≤ i ≤ s1, the proper transform of Bi(c) is (xn−im − vm
i ). When

i = s1, we have the proper transform is (xr1 − vm
i ). Since r1 < m, for s1 ≤ i ≤ s2, the

proper transform takes the form (ur1

s1+i − vm−ir1
s1

). We continue in this fashion, using

the integers from the Euclidean algorithm applied to m and n. After sk blow ups, the

curve is immersed and has proper transform (vrk−1
sk

− vsk−1
). It takes one more blow up
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Table 4.7: The Prolongation of the curve c : x(t) = tm, y(t) = tn.

Prolongation KR coordinate KR coordinate function

c1 u1 = dy
dx

U1(t) = c1t
n−m

c2 u2 = du1

dx
U2(t) = c2t

n−2m

c3 u3 = du2

dx
U3(t) = c3t

n−3m

...
...

...

cs1 us1
=

dus1−1

dx
Us1

(t) = cs1
tr1

cs1+1 us1+1 = dx
dus1

Us1+1(t) = cs1+1t
m−r1

cs1+2 us1+2 =
dus1+1

dus1
Us1+2(t) = cs1+2t

m−2r1

...
...

...

cs2 us2
=

dus2−1

duq1
Us2

(t) = cs2
tr2

...
...

...

csk usk
=

dusk−1

dusk−1

Usk
(t) = csk

t

csk+1 usk+1
=

dusk+1−1

dusk

Usk+1
(t) = csk+1

for a normal crossing singularity. The proper transform of Bsk+1(c) is (vsk+1
− 1). We

record the proper transforms in a table, see Table 4.8.

4.3.3 Prolongation of (t3, t10 + t11)

Example 13. (t3, t10+t11) is an example of a curve that prolongs to a non-planar curve

and the failure of intermediate step equivalences betwwen blow up and prolongation. A

multigerm of a curve in P
1
C

2 is planar if it’s image belongs to a non-singular surface
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Table 4.8: The blow up of the curve c : x(t) = tm, y(t) = tn.

Blow up proper transform

B1(c) (xn−m − vm
1 )

B2(c) (xn−2m − vm
2 )

B3(c) (xn−3m − vm
3 )

...
...

Bs1(c) (xr1 − vm
s1

)

...
...

Bs2(c) (vr1
s2

− vr2
s1

)

...
...

Bsk(c) (v
rk−1
sk

− vsk−1
)

Bsk+1(c) (vsk+1
− 1)

of P
1
C

2. The curve y3 − x10 − x11 − 3yx7 = 0 is parameterized as c(t) = (t3, t10 +

t11). We compute with the coordinates x, y, u1 = dy/dx its first prolongation c1 is

(t3, t10 + t11, 10

3
t7 + 11

3
t8). The curve c(t) = (t3, t10 + t11) prolongs to a non-planar curve

c1(t) = (t3, t10 + t11, 10

3
t7 + 11

3
t8) in P

1
C

2. Suppose that there exists f = f(x, y, z) with

df(0, 0, 0) 6= 0 and f(x(t), y(t), z(t)) = 0. Let f = Ax + By + Cz + Dx2 + · · · , equating

coefficients in the polynomial equation f(c1(t)) = 0, we have that A, B, C = 0. This

contradicts the assumption that df(0, 0, 0) = Adx+Bdy+Cdz 6= 0. This example proves

that a step-by-step diffeomorphism between the results of blow up and prolongation does
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not exist.

In the x, y, u1 = dy/dx coordinates the vertical curve V1 is (0, 0, t). We see

that c1 is tangent to the vertical curve and still singular. See Figure 4.7(a). So we must

prolong again.

We introduce the new coordinate u2 = du1/dx. In the x, y, u1, u2 coordinates

we find that c2 = (t3, t10 + t11, a1t
7 + b1t

8, a2t
4 + b2t

5) while V 1
1 = (0, 0, t,∞), and V2,

the new vertical curve is given by (0, 0, 0, t). The vertical curve V2 is incident to the

tangency curve V 1
1 , since both the curves intersect normally and since c2 does not pass

through their point of intersection. See Figure 4.7(b). We carry along the tangency

curve V 1
1 through further prolongations by recording the intersection of V 1

1 with V2 in

the diagrams to come. The second prolongation c2 is still singular and at t = 0 is tangent

to the vertical curve V2, since u2 is the lower order coordinate of u1, u2. We introduce

the fiber coordinate u3 on P 3(C2), near the point c3(0) by setting [dx, du2] = [1, u3]

which is to say u3 = du2/dx. In the coordinates (x, y, u1, u2, u3) the third prolongation

c3 is given by (t3, t10 + t11, a1t
7 + b1t

8, a2t
4 + b2t

5, a3t+ b3t
2), where the ai’s and bi’s are

nonzero constants. The tangency curve V 1
2 is given by V 1

2 = (0, 0, 0, t,∞), and V3, the

new vertical curve is given by (0, 0, 0, 0, t). See Figure 4.7(c). The curves V3 and V 1
2 are

incident since the prolonged curve c3 does not pass through their point of intersection.

We see that c3, though immersed, is tangent to the vertical curve. So we must prolong

again.

We introduce the new coordinate u4 = dx/du3. In the x, y, u1, u2, u3, u4 co-

ordinates we find that c4 = (t3, t10 + t11, a1t
7 + b1t

8, a2t
4 + b2t

5, a3t + b3t
2, a4t

2 + b4t
3)
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while the tangency curve V 1
3 = (0, 0, 0, 0, t, 0) and V4, the new vertical curve is given by

(0, 0, 0, 0, 0, t). See Figure 4.7(d).

The vertical curve V4, the tangency curve V 1
3 , and the prolonged curve c4(t)

all pass through the coordinate origin. Since c4(t) is tangent to the tangency curve, we

prolong again.

We introduce the new coordinate u5 = du4/du3. In the x, y, u1, u2, u3, u4, u5

coordinates we find that c5 = (t3, t10 + t11, a1t
7 + b1t

8, a2t
4 + b2t

5, a3t + b3t
2, a4t

2 +

b4t
3, a5t+ b5t

2) while the tangency curve V 2
3 = (0, 0, 0, 0, t, 0, 0) and V5, the new vertical

curve is given by (0, 0, 0, 0, 0, 0, t). See Figure 4.7(e).

The vertical curve V5, the tangency curve V 2
3 , and the prolonged curve c4(t)

all pass through the coordinate origin, and their tangents form three distinct lines. We

have a triple intersection. One more prolongation is required to resolve the singularity

according to the definition. We find that P 6(c) = c6 ∪ V 3
3 ∪ V 1

5 ∪ V6. At level 6, we

have that c6 and V6 intersect transversally, and c6 intersects none of the other curves

V 3
3 and V 1

5 . Thus the component curves form a normal system and the singularity

is resolved. The configuration of the component curves of P 6(c) is depicted with a

resolution diagram in Figure 4.7(f). The dual graph is depicted in Figure 4.7(g). We

list the K-R coordinates and K-R coordinate functions corresponding to each of the

prolongations in the Table. 4.9.
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Figure 4.7: The resolution by prolongation of (t3, t10 + t11)
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Table 4.9: The Prolongation of the curve c : x(t) = t3, y(t) = t10 + t11.

Prol KR coord KR function

c1 u1 = dy
dx

U1(t) = a1t
7 + b1t

8

c2 u2 = du1

dx
U2(t) = a2t

4 + b2t
5

c3 u3 = du2

dx
U3(t) = a3t + b3t

2

c4 u4 = dx
du3

U4(t) = a4t
2 + b4t

3

c5 u5 = du4

du3
U5(t) = a5t + b5t

2

c6 u6 = du5

du3
U6(t) = a6 + b6t

4.4 Blow up of (t3, t10 + t11)

Example 14. The curve (t3, t10+t11) has a singularity at the origin. We will work with

the defining equation y3 − x10 − x11 − 3yx7 = 0. Let the coordinates for C
2 be given by

x, y and the affine coordinates for CP 1 be given by u1, v1. We take u1 = u
v

and v1 = v
u

for homogeneous coordinates [u; v] on CP 1. We coordinatize the blow up of C
2 at the

origin by X1 = {([u, v], x, y) ∈ CP 1 × C
2| xv = yu}. In the affine chart [1, v1], we have

u1 = 1 and v1 = v
u
, so that y = xv1. The defining equation y3 − x10 − x11 − 3yx7 = 0

becomes x3(v3
1 − x7 − x8 − 3v1x

5) = 0. In the other chart [u1, 1] the equation of the

curve is y3(1 − y7u10
1 − y8u11

1 − 3y5u8
1) = 0. These are the equations for the total

transforms in their respective charts. After the first blow up, we have an exceptional

curve with multiplicity 3, denoted by E1. The coordinates for the blown up surface near

the singular point are (x, v1). The exceptional curve is given by the equation x = 0,
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which is the v1-axis. See Figure 4.8(a). Since the singularity of the proper transform

lies at the origin of the first chart, we blow up there.

Let u2, v2 be affine coordinates for the new CP
1 corresponding to the sec-

ond exceptional divisor. The blow up of X1 at the singular point is given by X2 =

{([u, v], x, v1) |xv = v1u}, locally over the singular point in X1. In the affine chart

[1, v2], we have u2 = 1 so that v1 = xv2. The defining equation for the total transform

becomes x6(v3
2 − x4 − x5 − 3x3v2) = 0. In the chart [u2, 1], the defining equation is

v6
1u

3
2(1 − v4

1u
7
2 − v5

1u
8
2 − 3v3

1u
5
2) = 0. The singular point of the resulting curve lies in

the chart [1, v2]. Since the multiplicity of x is 6, the exceptional fiber E2, given by

x = 0, has multiplicity equal to 6. In the other affine chart, the equation u2 = 0 with

multiplicity 2 gives us the blow up of E1, which we now call E1
1 , with multiplicity equal

to 3. The singular point of the proper transform lies in the first chart and we blow up

again. See Figure 4.8(b).

X3 = {([u, v], x, v2) |xv = uv2}, locally over the singular point in X2. In the

affine chart [1, v3], the equation of the curve is x9(v3
3 − x − x2 − 3xv3) = 0, and in the

chart [u3, 1], the equation is v9
2u

6
3(1 − v2u

4
3 − v2

2u
5
3 − 3v2u

3
3) = 0. Our new exceptional

divisor E3 has multiplicity equal to 9, and E1
2 , the blow up of E2 still with multiplicity

equal to 6. The coordinates for the blown up surface near the singular point are (x, v1).

Our singular point lies in the first chart, and we blow up there. See Figure 4.8(c).

X4 = {([u, v], x, v3) |xv = uv3}, locally over the singular point in X3. In the

affine chart [1, v4], the equation of the curve is x10(x2v3
4 − 1− x− 3v4x) = 0, and in the

chart [u4, 1], the equation is v10
3 u9

4(v
2
3 − u4 − v3u

2
4 − 3v3u4) = 0. Our new exceptional
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divisor E4 has multiplicity equal to 10, and E1
3 , the blow up of E2 still with multiplicity

equal to 9. The coordinates for the blown up surface near the singular point are (u3, v4).

Our singular point lies in the second chart, and we blow up there. See Figure 4.8(d).

In the chart [u5, 1], we have u20
4 u10

5 (u4u
2
5−1−u462u5−3u4u5) = 0. This chart

contains both our new exceptional divisor E5 with multiplicity equal to 20, as well as

E1
4 with multiplicity 10. In the chart [1, v5], we have v20

3 v9
5(v3 − v5 − v2

3v
2
5 − 3v3v5) = 0.

This chart contains both our new exceptional divisor E5 with multiplicity equal to 20,

as well as E2
3 with multiplicity 9. In the second chart, all three curves intersect at the

origin, and we call this a triple intersection point. We must blow up there one last time.

See Figure 4.8(e).

In the affine chart [1, v6], the equation of the curve is v30
3 v9

6(1 − v6 − v3
3v

2
6 −

3v3v6) = 0. In the chart [u6, 1] the equation is v30
5 u20

6 (u6 − 1 − v3
5u

2
6 − 3v5u6) = 0. The

affine chart [1, v6] contains the exceptional curve E6 with multiplicity 30, as well as E3
3

with multiplicity 9. The affine chart [u6, 1] contains the new exceptional curve E6 and

E1
5 with multiplicity 20. In either chart the proper transforms are smooth curves and

intersect the corresponding exceptional curves transversally. In both charts the total

transforms have only have normal crossing singularities, so we have reached a good

resolution in six steps. The resolution diagram is depicted in Figure 4.8(f). We can

also describe the configuration of curves with the dual graph: we have six verticies, one

for each exceptional curve, and five edges, one for each transverse intersection between

the exceptional curves. We have an arrow stemming from the vertex which represents

E6, to indicate that the proper transform intersects the exceptional curve E6. See
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Figure 4.8(g). We record the proper and total transforms in a table, see Table 4.10.

Table 4.10: The blow up of the curve c : x(t) = t3, y(t) = t10 + t11.

Blow up total transform proper transform

B1(c) x3(v3
1 − x7 − x8 − 3v1x

5) (v3
1 − x7 − x8 − 3v1x

5)

B2(c) x6(v3
2 − x4 − x5 − 3x3v2) (v3

2 − x4 − x5 − 3x3v2)

B3(c) x9(v3
3 − x − x2 − 3xv3) (v3

3 − x − x2 − 3xv3)

B4(c) v10
3 u9

4(v
2
3 − u4 − v3u

2
4 − 3v3u4) (v2

3 − u4 − v3u
2
4 − 3v3u4)

B5(c) v20
3 v9

5(v3 − v5 − v2
3v

2
5 − 3v3v5) (v3 − v5 − v2

3v
2
5 − 3v3v5)

B6(c) v30
3 v9

6(1 − v6 − v3
3v

2
6 − 3v3v6) (1 − v6 − v3

3v
2
6 − 3v3v6)
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(f) Sixth blow up
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Figure 4.8: The dual graph for resolution by blow up of (t3, t10 + t11)
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Conclusion
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Appendix A

Some Ancillary Stuff

Ancillary material should be put in appendices, which appear after the bibli-

ography.
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