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Abstract

Two Problems in Sub-Riemannian Geometry

by

Corey R. Shanbrom

In this thesis we study two interesting problems in sub-Riemannian geome-

try. First, we pose and partially solve the Kepler Problem on the Heisenberg Group.

Second, we present a formula for computing the Puiseux characteristic corresponding

to a Goursat germ with prescribed small growth vector.

The Kepler Problem is among the oldest and most fundamental problems

in mechanics. It has been studied in curved geometries, such as the sphere and

hyperbolic plane. Here, we formulate the problem on the Heisenberg group, the

simplest sub-Riemannian manifold. We take the sub-Riemannian Hamiltonian as

our kinetic energy, and our potential is the fundamental solution to the Heisenberg

sub-Laplacian. We record many interesting properties of the system, prove the

existence of periodic orbits, deduce a version of Kepler’s third law, and reduce the

integration of a fundamental integrable subsystem to the parametrization of a family

of algebraic plane curves.

Germs of Goursat distributions can be classified according to a geometric

coding called an RVT code. Jean and Mormul have shown that this coding carries

precisely the same data as the small growth vector. Montgomery and Zhitomirskii

have shown that such germs correspond to finite jets of Legendrian curve germs, and

that the RVT coding corresponds to the classical invariant in the singularity theory

of planar curves: the Puiseux characteristic. Here we derive a simple formula for

the Puiseux characteristic of the curve corresponding to a Goursat germ with given

small growth vector.
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Chapter 1

Introduction

1.1 Overview

In Hamiltonian mechanics, one typically begins with a Riemmanian man-

ifold and a choice of potential energy function. The Riemannian metric induces

a kinetic energy function on the cotangent bundle of the manifold, which in turn

generates the geodesics of the geometry. One chooses a potential function on the

manifold, and calls the sum of the potential and kinetic energies the total energy, or

Hamiltonian. The flow lines of the induced Hamiltonian vector field on the cotan-

gent bundle correspond precisely to the trajectories of particles under the influence

of the a�liated mechanical system.

Here, we study one such mechanical system, albeit with one caveat. Our

setting is not a Riemannian manifold, but instead a sub-Riemannian manifold: the

three-dimensional Heisenberg Group. Thankfully, we still have a natural choice of

kinetic energy, induced by the metric, which indeed generates the sub-Riemannian

geodesics. We choose our potential function so as to model the classical Kepler

Problem: that of determining the motion of a planet around a fixed sun subject

only to the force of gravity.

Thus, the primary question we seek to answer is the following: What would

the orbit of a planet around a sun look like in Heisenberg geometry? Naturally, we are

interested in other properties of this system as well, and many of the these properties

are recorded below. Our primary result, Theorem 2, asserts that closed orbits do

indeed exist; approximations of such orbits are depicted in Figures 3.4 and 3.5. We
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also show that these periodic orbits must lie on the zero energy hypersurface, and

that the problem is integrable on this hypersurface. Moreover, we prove a version

of Kepler’s third law for these periodic orbits.

More specifically, we choose our (gravitational) potential to be the funda-

mental solution to the Heisenberg sub-Laplacian. The delta function source, acting

as our sun, lies at the origin. (The Heisenberg group is topologically a vector space,

whose origin corresponds to the group identity.) The explicit form of this function

was discovered by Folland in 1970 ([12]).

1.2 Motivation

Our motivations for studying this problem are multiple. Originally, we

sought to study the question: Can we do sub-Riemannian mechanics? That is, we

were curious whether classical mechanics could be formulated on a sub-Riemannian,

rather than a Riemannian, manifold. While this is a broad question which we hope

to pursue further in future work, it seemed natural to start with the simplest sub-

Riemannian geometry: the Heisenberg group. The Kepler Problem was chosen as

it is simple to formulate and interpret but retains many of the most fundamental

aspects of mechanical systems in the large. In other words, the classical Kepler

Problem is very well understood but simultaneously non-trivial and subtle.

This line of thinking fits with the historical study of the problem. Isaac

Newton studied the Euclidean Kepler Problem in the 17th century and derived Ke-

pler’s three laws of planetary motion. But the problem was posed on spaces of

constant curvature much later. In 1835, Lobachevsky ([18]) posed the Kepler Prob-

lem in three-dimensional hyperbolic space. Bolyai did similar work (independently)

in the same time period. Paul Joseph Serret posed and solved the Kepler Problem

on the two-sphere in 1860. Schering, Lipschitz, Killing, and Liebmann studied the

Kepler Problem on hyperbolic and spherical three-space between 1870 and 1902. For

more information, and the relevant references, see Florin Diacu’s wonderful paper

[11].

With this historical background in mind, it seems natural to continue e↵orts

to pose and solve the Kepler Problem in more general geometries (sub-Riemannian

geometry encompasses the Riemannian sort.) But let us revisit Sir Newton momen-
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tarily. While Kepler wrote down his laws based on observational data alone, Newton

derived them from more elementary laws. The first law (that planetary orbits are

ellipses) and second law (“equal areas in equal times,” equivalent to conservation

of angular momentum) have been shown to hold in spherical and hyperbolic space.

But the third law (the period T of an orbit is related to its size a by the universal

relation a3 = cT 2) fails in both.

Why should Kepler’s third law fail in these spaces? Where might it hold?

The short answer (pursued in more detail in [23]) is that these spaces do not admit

dilations. In fact, it follows from Gromov’s work in [16] that the only homogeneous

Riemannian manifolds which admit dilations are Euclidean spaces (see again [23]

for a sketch of the proof). Following Galileo we will insist that our spaces are

homogeneous, so that the location of the sun does not matter. Then we conclude that

to regain Kepler’s third law in a non-Euclidean geometry, we must leave the world

of Riemannian manifolds. Indeed, the non-Euclidean spaces admitting dilations are

Carnot groups. The simplest of these is the Heisenberg group, and we derive a

version of Kepler’s third law here.
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Chapter 2

The Problem

2.1 The Setting

2.1.1 Sub-Riemannian Geometry

A sub-Riemannian geometry is a triple (M,D, h·, ·i) where M is a smooth

manifold, D is a distribution (subbundle of the tangent bundle), and h·, ·i is a fiber

inner product on D. We call curves and vector fields horizontal if they are tangent

to D.

This structure induces a distance function on M in the usual way, where

we restrict our attention to horizontal curves. If � : [a, b]!M is a horizontal curve,

define its length by

l(�) =

Z b

a

p
h�̇(t), �̇(t)idt.

We can then define the distance between the points p, q 2M to be

d(p, q) = inf l(�),

where the infimum is taken over all horizontal curves connecting p to q. A horizontal

curve � is called a geodesic if it realizes this distance; that is, if

l(�) = d(�(a), �(b)).

It may so happen that there are no horizontal curves connecting p to q. If this is

the case, then we say the distance between the points is infinite, and d fails to be a

genuine metric.
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However, this is not a problem for sub-Riemannian geometries whose dis-

tributions are of the following type.

Definition 1 A distribution D is called non-holonomic or bracket-generating if D

Lie-generates TM .

In other words, if one takes a local frame of vector fields for D, then su�ciently

many Lie brackets will generate the entire tangent bundle. One can check that

this definition does not depend on the choice of frame. Note that bracket-generating

distributions are also known as those satisfying Hörmander’s condition, as he proved

that their induced sub-Laplacians (see Section 2.2.1) are hypoelliptic.

The main theorem on these distributions is the Chow-Rashevskii theorem,

which says for M connected, D bracket-generating, our manifold is horizontally

path-connected.

Theorem 1 (Rashevskii, 1938; Chow, 1939) If D is bracket-generating, then

there exists a horizontal path connecting p 2M to any point in the same component.

Thus, in this setting, the distance function d is a genuine metric, known as the

Carnot-Carathéodory metric. Note that, in some sense, bracket-generating distribu-

tions are antithetical to involutive ones. By the Frobenius theorem, in an involutive

distribution, only the points on the same leaf can be connected by a horizontal path.

Finally, every sub-Riemannian geometry comes equipped with a sub-Riemannian

gradient operator. If f is a smooth function on M , we define the horizontal field

rsRf much like the Riemannian version. For a horizontal vector field V , we put

hrsRf, V i = df(V ).

For further background, see the usual sub-Riemannian references [5, 20, 30].

2.1.2 The Heisenberg Group

The Heisenberg group is a well-studied and ubiquitous object in mathemat-

ics, with many discrete and higher-dimensional incarnations. Here we will content

ourselves with the smooth, three-dimensional version, although we will exploit its

Lie group, contact, and sub-Riemannian structures.
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Lie group structure

Definition 2 The Heisenberg algebra is the three-dimensional real Lie algebra

h = hX,Y, Z | [X,Y ] = Z, [X,Z] = [Y, Z] = 0i.

The Heisenberg algebra is so named because one can considerX and Y as self-adjoint

operators measuring the position and momentum of a particle, respectively, with Z

a multiple of the identity. The failure of X and Y to commute is one version of the

famous uncertainty principle.

Since h is nilpotent, the exponential map exp: h! H maps h di↵eomorphi-

cally onto its simply connected Lie group. This H will turn out to be the Heisenberg

group. The exponential map endows H with global coordinates (x, y, z). According

to the Baker-Campbell-Hausdor↵ formula, in these coordinates, the group law will

be polynomial, with degree equal to the degree of nilpotency of h, which happens to

be 2 in this case.

Definition 3 The Heisenberg group is the Lie group H which is di↵eomorphic to

R3, and whose group law is

(x1, y1, z1) · (x2, y2, z2) = (x1 + x2, y1 + y2, z1 + z2 +
1
2(x1y2 � x2y1)).

Thus, the Heisenberg group is topologically a vector space endowed with global

coordinates (x, y, z). In these coordinates, the origin (0, 0, 0) is indeed the group

identity element.

In the literature both the Lie algebra and Lie group are often realized as

matrices. We have

h =

8
>><

>>:

2

664

0 a c

0 0 b

0 0 0

3

775

9
>>=

>>;
,

where the Lie bracket is just the matrix commutator. We also have

H ⇠=

8
>><

>>:

2

664

1 x z

0 1 y

0 0 1

3

775

9
>>=

>>;
,

where the product is matrix multiplication and the Lie group isomorphism is given

by z 7! z + 1
2xy. Here, a, b, c, x, y, z are all real numbers.
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Figure 2.1: The Heisenberg distribution

Sub-Riemannian Structure

So far, we know that the Heisenberg group as a manifold is just R3. We

now give it a distribution and fiber inner product.

By construction, X,Y , and Z are a basis for h = T0H. But we can push

these vectors forward via left multiplication in the group and think of X,Y , and Z

instead as left invariant vector fields which frame the tangent bundle. In coordinates

(which we will exploit liberally in the sequel), we have

X =
@

@x
� 1

2
y
@

@z
, Y =

@

@y
+

1

2
x
@

@z
, Z =

@

@z
.

Now we define our 2-plane distribution to be

D = span{X,Y }.

Then D is clearly bracket-generating (it only takes one Lie bracket to generate the

missing direction). A picture of some of these distribution planes appears as Figure

2.1 – other planes are obtained by vertically translating those shown.

But D is also contact (it is in fact the canonical contact structure on R3).

To see this, we can realize D as the kernel of the one-form

⇥ = dz � 1
2(xdy � ydx).
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Then the contact condition is that

⇥ ^ d⇥ = �dx ^ dy ^ dz

is non-zero. It is evidently the opposite of the Lebesgue volume form on R3, which is

certainly not zero. Moreover, this shows that H is endowed with a canonical volume

form, a property which most sub-Riemannian manifolds do not enjoy. We will exploit

this fact later. Finally, note that a curve �(t) = (x(t), y(t), z(t)) is horizontal if and

only if it satisfies

ż = 1
2(xẏ � yẋ).

Next, we define the fiber inner product. Let p 2 H and let v, w 2 Dp have

coordinate expressions v = v1
@
@x + v2

@
@y + v3

@
@z and w = w1

@
@x +w2

@
@y +w3

@
@z . Then

we put

hv, wip = v1w1 + v2w2.

In other words, the sub-Riemannian inner product is just the usual Euclidean dot

product on R3 with the third component ignored. This is the right choice for two

reasons. First, our frame X,Y is now orthonormal. Second, left multiplication in

the group is now an isometry. Note that the length of a curve is equal to the length

of its projection to the xy-plane.

Since D is bracket-generating and H is connected, the Chow-Rashevskii

theorem guarantees that H is horizontally path-connected and we do have a genuine

metric

ds2H = dx2 + dy2.

In the following we will denote the Heisenberg distance function by d:

d(p, q) = the sub-Riemannian distance between points p and q.

There is no known explicit form of this function. We will denote by || · ||sR the

sub-Riemannian distance to the origin, and || · ||H will denote the Heisenberg norm

of a horizontal vector:

||p||sR = d(p, 0), p 2 H

||v||H =
p
hv, vi, v 2 Dp.

9



The sub-Riemannian gradient of a function f : H ! R is the horizontal

vector field

rsRf = X(f)X + Y (f)Y.

In the standard R3 basis, this takes the form

rsRf = X(f)
@

@x
+ Y (f)

@

@y
+ 1

2(xY (f)� yX(f))
@

@z
.

We now briefly investigate the induced geometry. Consider T ⇤H with

canonical coordinates (x, y, z, px, py, pz). Then

PX = px � 1
2ypz and PY = py +

1
2xpz

are dual momenta to X and Y, respectively. Let

K = 1
2(P

2
X + P 2

Y ).

The functionK : T ⇤H! R is known as the sub-Riemannian Hamiltonian, as the flow

lines of its Hamiltonian vector field (symplectic gradient) are precisely the geodesics

in H. As these geodesics can be thought of as trajectories of free particles, we will

call the function K our kinetic energy. While it is written here in coordinates, it

can be defined canonically in terms of the cometric.

Proposition 1 Heisenberg geodesics are “helices.”

The quotation marks are included since these curves are only qualitatively

helices, meaning they project to circles (we consider line segments degenerate circles).

The z-coordinate does not grow linearly in the angle, but is instead given by the area

traced out by the projection of the curve to the xy-plane. See the proof sketched

below and Figure 2.2.

Proof (Sketch) Fix two points. We may assume that one point is the origin since

left multiplication in the group is a transitive isometric action. Suppose the other

is q = (x1, y1, z1). Suppose � is a horizontal path connecting (0, 0, 0) to q, and let �̃

denote its projection to the xy-plane. Then we want to minimize l(�) = l(�̃). But

10



Figure 2.2: A Heisenberg geodesic

we compute

z1 = z1 � z0

=

Z

�̃
dz

=

Z

�̃

1
2(xdy � ydx) (horizontal condition)

= area inside �̃. (Stokes’ Theorem)

Thus, the problem is to minimize the length of a planar curve given a fixed area

enclosed by the curve and the line segment connecting its endpoints. This is the

dual to the isoperimetric problem (Dido’s problem), and solutions are known to be

arcs of circles (with line segments as a degenerate case). Thus, �̃ traces out an arc

of a circle, and the z-coordinate of � grows like the area traced out by this arc.

Note that the computation above shows that the z-coordinate of any hor-

izontal curve must grow like the area traced out by its projection to the xy-plane.

To end this section, we observe that the Heisenberg group (like any Carnot

group) admits dilations. For any positive real number �, define the map

�� : H! H

(x, y, z) 7! (�x,�y,�2z).

11



To say that this map is a dilation is to say that

d(��(p), ��(q)) = �d(p, q), 8 p, q 2 H.

This map lifts to a map on the cotangent bundle, which we also denote by ��:

(x, y, z, px, py, pz) 7! (�x,�y,�2z,��1px,�
�1py,�

�2pz).

Observe that this dilation on T ⇤H is generated by the function

J = xpx + ypy + 2zpz.

2.2 The System

2.2.1 The Potential Energy

Recall the classical Kepler Problem on R3. Let r =
p

x2 + y2 + z2. Then

the Hamiltonian is

H = 1
2(p

2
x + p2y + p2z)�

k

r
.

How do we characterize the potential U = �k
r ? The usual answer is that U is (a

constant times) the inverse of the distance function. However, this characterization

fails to provide guidance when we attempt to study the problem on spaces without

an explicit distance function, such as the Heisenberg group. A better answer is that,

when k = 1
4⇡ , U is the fundamental solution to the Laplacian on R3 (see [2]). In

other words, U satisfies �U = �0, where �0 is the Dirac delta function with source

at 0.

Now consider the vector fields X and Y which form an orthonormal frame

for the Heisenberg distribution. Thinking of these as first-order di↵erential opera-

tors, we define the Heisenberg sub-Laplacian to be the second-order operator

�H = X2 + Y 2.

A di↵erent choice of orthonormal frame will yield a di↵erent sub-Laplacian in gen-

eral. However, as H is equipped with a canonical volume form, we can resolve the

ambiguity using integration by parts as in Riemannian geometry: we define �H by

the formula

�
Z

f(�Hg)dvol =

Z
hrsRf,rsRgidvol.

12



Here, f and g are smooth functions with compact support, dvol denotes the canon-

ical volume form (negative Lebesgue measure) described in Section 2.1.2, and rsR

denotes the sub-Riemannian gradient. One checks that the sub-Laplacian defined

above is indeed correct.

In [12], Folland found the fundamental solution to the Heisenberg sub-

Laplacian �H:

U = �↵ �(x2 + y2)2 + 1
16z

2
�� 1

2 .

Here, ↵ = 2/⇡; for our purposes it su�ces to leave ↵ as a positive constant. This

constant is given by an integral in Folland’s work and is computed in Section 3.1.2.

We recognize that this potential has a singularity at the origin (x, y, z) = (0, 0, 0),

but is smooth away from this point. The singularity corresponds physically to our

planet crashing into the sun, at which point the planet’s potential energy is �1
and its kinetic energy is +1. For this reason we will refer to a trajectory passing

through the origin as a collision.

For notational purposes, we set

µ = (x2 + y2)2 + 1
16z

2.

Note that Folland uses the notation ⇢ = µ1/4, which is homogeneous of degree 1

with respect to the dilation �� defined in Section 2.1.2; we will use ⇢ later as a norm.

Then we can write

U = �↵µ�1/2 = �↵⇢�2.

2.2.2 Hamiltonian Formalism

We define our Hamiltonian H in the usual way, as the sum of the kinetic

and potential energies: H = K + U . For this reason, we will often refer to H as

the total energy or simply the energy. As our Hamiltonian has a singularity at the

origin (from the potential U), this function is defined on the cotangent bundle of

the Heisenberg group with the origin deleted:

H : T ⇤(H� {(0, 0, 0)})! R.

Explicitly, we have

H = 1
2(px � 1

2ypz)
2 + 1

2(py +
1
2xpz)

2 � 2
⇡

�
(x2 + y2)2 + 1

16z
2
�� 1

2 . (2.1)

13



Using the notation developed above, we can rewrite this equation in the less intim-

idating form

H = 1
2(P

2
X + P 2

Y )� ↵µ� 1
2 . (2.2)

Our goal is to investigate the flow of the induced Hamiltonian vector field on the

cotangent bundle T ⇤(H � {(0, 0, 0)}), called phase space, of the Heisenberg group

with deleted origin H� {(0, 0, 0)}, called configuration space.

Our first task is writing down Hamilton’s equations, or the equations of

motion:

q̇i =
@H

@pi

ṗi = �@H

@qi
.

Here, qi and pi denote the ith position and momentum coordinate, respectively.

That is, (q1, q2, q3, p1, p2, p3) = (x, y, z, px, py, pz) 2 T ⇤H. We will attempt to stick

with the latter notation, but will on occasion make use of the convenient indexing

provided by the former.

For our Hamiltonian (2.1), these equations take the form:

ẋ = PX

ẏ = PY

ż =
1

2
xPY � 1

2
yPX

ṗx = �1

2
PY pz � 2↵x(x2 + y2)µ�3/2

ṗy =
1

2
PXpz � 2↵y(x2 + y2)µ�3/2

ṗz = � ↵

16
zµ�3/2.

Our goal, in its strongest form, is to solve this six-dimensional autonomous non-

linear system of ordinary di↵erential equations.

For future reference, we record the second derivatives of the position coor-
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dinates:

ẍ = ṖX = �PY pz +
�
↵
32yz � 2↵x(x2 + y2)

�
µ�3/2

ÿ = ṖY = PXpz �
�
↵
32xz + 2↵y(x2 + y2)

�
µ�3/2

z̈ = 1
2pz(xpx + ypy)� ↵

64(x
2 + y2)zµ�3/2.

Polar Coordinates

Throughout this document, we will often make use of polar (cylindrical)

coordinates (r, ✓, z). We will now determine the appropriate conjugate momenta,

then write down the Hamiltonian and equations of motion.

Define the coordinate transformation

� : (x, y, z) 7! (r, ✓, z) = (
p
x2 + y2, arctan y

x , z).

We want � to be a canonical transformation, so we require �⇤⇤ = ⇤, where ⇤ denotes

the canonical one-form on the cotangent bundle, and �⇤ denotes the pullback of �.

That is, we require

⇤ = pxdx+ pydy + pzdz

= prdr + p✓d✓ + pzdz,

where pr, p✓, pv are our new momenta coordinates. Solving, we define the new mo-

menta by the equations

pr =
xpx + ypy

r

p✓ = xpy � ypx

pz = pz.

We can then write the transformed Hamiltonian (in one of its many incar-

nations) as

H = 1
2p

2
r +

1
2

⇣p✓
r

+ 1
2rpz

⌘2 � ↵µ�1/2, (2.3)

where, as above, we have written µ = r4 + 1
16z

2. It is worth noting that the Hamil-

tonian is invariant under the following reflections:

z 7! �z, pr 7! �pr, (pz, p✓) 7! (�pz,�p✓).
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Finally, we can write the transformed equations of motion:

ṙ = pr

✓̇ =
p✓
r2

+ 1
2pz

ż = 1
2(p✓ +

1
2pzr

2)

ṗr =
p2✓
r3
� 1

4rp
2
z � 2↵r3µ�3/2

ṗ✓ = 0

ṗz = � ↵
16

�
r4 + 1

16z
2
 �3/2

z = � ↵
16µ

�3/2z.

2.2.3 Lagrangian Formalism

In this section we consider our problem as a variational problem with sub-

sidiary constraints. As usual, we define our Lagrangian L : TH! R as the di↵erence

of the kinetic and potential energies L = K � U . Explicitly, we have

L(t, q, q̇) = 1
2 ẋ

2 + 1
2 ẏ

2 + ↵
⇣
(x2 + y2)2 + 1

16z
2
⌘�1/2

.

(Here, as in Section 2.2.2, we write q = (x, y, z).)

Suppose � : (0, T )! H is an absolutely continuous path. Define the action

of this path by the functional

A(�) =

Z T

0
L(t, �, �̇)dt.

The general theory of Lagrangian mechanics says that if � minimizes A, then � is a

solution to the equations of motion.

Here, we have the additional constraint that our solutions must be horizon-

tal curves for our distribution. This condition can be expressed as the di↵erential

constraint

ż = 1
2xẏ � 1

2yẋ.

That is, solutions must lie on the zero set of the function G : TH! R defined by

G(t, q, q̇) = 1
2xẏ � 1

2yẋ� ż.

The calculus of variations (see, for example, Section 12 of [13]) tells us that if �

is a minimum of the functional A which also satisfies our constraint, then there
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exists a scalar � = �(t), commonly known as a Lagrange multiplier, such that � is a

minimum of the functional

A�(�) =

Z T

0
L�(t, �, �̇)dt,

where we have written L�(t, q, q̇) = L(t, q, q̇)� �(t)G(t, q, q̇). Setting the first varia-

tion of A� equal to zero and integrating by parts yields the Euler-Lagrange equations

@L�

@qi
� d

dt

✓
@L�

@q̇i

◆
= 0, (2.4)

which we may write more explicitly as

@L

@qi
� �(t)

@G

@qi
� d

dt

✓
@L

@q̇i
� �(t)

@G

@q̇i

◆
= 0

with i = 1, 2, 3. We will verify the validity of these statements in Section 3.3.

Finally, we compute the Euler-Lagrange equations (2.4). We first write

down the partial derivatives of L,

@L

@x
= �2↵x(x2 + y2)µ�3/2

@L

@y
= �2↵y(x2 + y2)µ�3/2

@L

@z
= � ↵

16zµ
�3/2

@L

@ẋ
= ẋ,

@L

@ẏ
= ẏ,

@L

@ż
= 0.

and the partial derivatives of G,

@G

@x
= 1

2 ẏ,
@G

@y
= �1

2 ẋ,
@G

@z
= 0

@G

@ẋ
= �1

2y,
@G

@ẏ
= 1

2 ẋ,
@G

@ż
= �1.

These give the Euler-Lagrange equations:

ẍ = ��ẏ � 1
2 �̇y � 2↵x(x2 + y2)µ�3/2

ÿ = �ẋ+ 1
2 �̇x� 2↵y(x2 + y2)µ�3/2

�̇ = � ↵
16zµ

�3/2.
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If we take � = pz, then these equations read

ẍ = �ẏpz +
�
↵
32yz � 2↵x(x2 + y2)

�
µ�3/2 (2.5)

ÿ = ẋpz �
�
↵
32xz + 2↵y(x2 + y2)

�
µ�3/2 (2.6)

ṗz = � ↵
16zµ

�3/2. (2.7)

Note that these equations agree with the calculations given in Section 2.2.2, so that

the Euler-Lagrange equations are indeed equivalent to Hamilton’s equations.
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Chapter 3

Results

3.1 Dynamics

3.1.1 Integrals and Symmetries

Unfortunately, we do not have many symmetries to work with. Those which

we do have have already been described above, albeit only implicitly. Looking at

our polar Hamiltonian in Equation (2.3), we recognize the absence of the variable

✓. Consequently, the equations of motion are independent of this angle coordinate,

so the system enjoys rotational symmetry about the z-axis. As this symmetry can

be expressed as the invariance under an action of the compact one-dimensional Lie

group S1, symplectic reduction reduces the dimension of our system by one.

As mentioned shortly after Equation (2.3), we have a few reflectional sym-

metries as well. But since these correspond to actions of discrete Lie groups, we

cannot reduce the dimension of the system. We also have the family of dilations ��

which correspond to an action of R+ (see Section 2.1.2). But, alas, our Hamiltonian

is not preserved under this action. Rather, it is homogeneous of degree -2:

�� : H 7! ��2H.

By construction, the total energy will be conserved in time. That is, Ḣ = 0.

Corresponding to the rotational symmetry (cf. Noether’s theorem), we have the

conservation of angular momentum p✓. This was apparent from the polar equations

of motion, but we prove it explicitly below for completeness. Also, corresponding

to the ‘partial’ dilational symmetry, we have that the generating function J (see
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Section 2.1.2) is an ‘almost’ integral. That is, J satisfies J̇ = 2H, so it is an integral

of motion for orbits with zero energy. We will see in Section 3.2.1 that {H = 0} is

a smooth submanifold on which our system is integrable.

Proposition 2 The angular momentum p✓ = xpy � ypx is an integral of motion.

Proof Using Hamilton’s equations to express the time derivatives of our coordinates,

we first observe that

ẋpy = PXpy

xṗy = 1
2xPXpz � ↵µ�3/22(x2 + y2)xy

ẏpx = PY px

yṗx = �1
2yPY pz � ↵µ�3/22(x2 + y2)xy.

Then we have

d

dt
(xpy � ypx) = ẋpy + xṗy � ẏpx � yṗx

= PXpy +
1
2xPXpz � PY px +

1
2yPY pz

= PX(py +
1
2xpz)� PY (px � 1

2ypz)

= PXPY � PY PX

= 0.

Proposition 3 The dilation generating function J = xpx + ypy + 2zpz satisfies

J̇ = 2H.

Proof As in the previous calculation, we first observe

ẋpx = PXpx

xṗx = �1
2xPY pz � ↵µ�3/22(x2 + y2)x2

ẏpy = PY py

yṗx = 1
2yPXpz � ↵µ�3/22(x2 + y2)y2

2żpz = xPY pz � yPXpz

2zṗz = �1
8↵µ

�3/2z2.
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Then we have

d

dt
J = ẋpx + xṗx + ẏpy + yṗy + 2żpz + 2zṗz

= PX(px +
1
2zpz � ypz) + PY (py � 1

2xpz + xpz)

� ↵µ�3/2
�
2(x2 + y2)x2 + 2(x2 + y2)y2 + 1

8z
2
�

= P 2
X + P 2

Y � 2↵µ�3/2
�
(x2 + y2)2 + 1

16z
2
�

= P 2
X + P 2

Y � 2↵µ�1/2

= 2H.

3.1.2 Properties

The next two propositions show that negative energy solutions are always

bounded, and that periodic orbits necessarily have total energy zero. This latter fact

is of particular interest as we will show that periodic orbits do indeed exist (Section

3.3) and that the dynamics restricted to the zero energy submanifold are integrable

(Section 3.2).

Proposition 4 If H < 0 then any solution is bounded.

Proof Suppose H = �h where h is positive. Then K + U = �h, so

�U = K + h � h,

since K is always non-negative. But

�U = ↵
�
(x2 + y2)2 + 1

16z
��1/2

.

So a solution (x(t), y(t), z(t)) in configuration space must satisfy

0  �
(x2 + y2)2 + 1

16z
�1/2  ↵

h
,

where ↵ and h are positive constants.

Proposition 5 Periodic orbits must have zero energy.
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Proof If �(t) = (x(t), y(t), z(t), px(t), py(t), pz(t)) satisfies �(0) = �(T ) for some

t = T , then J = xpx + ypy + 2zpz is also periodic; that is, J(�(0)) = J(�(T )). But

we know the time derivative of J is constant, given by J̇ = 2H. Since, by virtue

of its periodicity, J cannot be monotonically increasing nor decreasing in time, we

must have J̇ = 2H = 0, so H = 0.

The next two propositions describe the only two families of solutions which

we have in explicit form: lines through the origin in the xy-plane, and constant

paths lying on the z-axis.

Proposition 6 The only solutions in the plane z = 0 are lines through the origin.

Proof The equations for ż and ✓̇ satisfy the relation

ż = 1
2r

2✓̇.

For a path lying entirely in the plane z = 0, this implies either r = 0 or ✓̇ = 0. In

the first case, the path is trivial. In the second, it lies on a line through the origin.

Such a curve may be parametrized by

�(t) = (c1t
1/2, c2t

1/2, 0, 12c1t
�1/2, 12c2t

�1/2, 0).

It is easy to verify that the desired equations are satisfied. Here, c1 and c2 must

satisfy the relation

c21 + c22 =
p
8↵.

However, as t assumes all positive values, this relation places no restriction on ad-

missible planar lines through the origin. Thus, we have a circle’s worth of solutions

�. It is easy to check that for any such �, we have

H = 0

p✓ = 0

J =
p
2↵,

which do not depend on our particular choice of �.

Proposition 7 The only solutions which are constant in the configuration space lie

on the z axis.
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Proof Suppose �(t) = (c1, c2, c3, px(t), py(t), pz(t)) is a solution to Hamilton’s equa-

tions. Then the equations immediately imply c1 = c2 = px = py = 0. The equations

for ẋ and ẏ imply PX = PY = 0, and therefore py = 1
2c1pz and px = �1

2c2pz. Then

the ṗi are all constant, so the curves pi(t) are lines. In fact, if we write pz(t) = mt+b,

then we must have

px(t) = �1
2c2mt� 1

2c2b and py(t) =
1
2c1mt+ 1

2c1b.

The equations for the ṗi force

m = � ↵

16
µ�3/2c3

as well as

c1c3 = 64(c21 + c22)c2 and c2c3 = �64(c21 + c22)c1.

The last two equations imply c1 = c2 = 0, which in turn force px = py = 0.

Now, for any k 6= 0, the path

�(t) = (0, 0, k, 0, 0,�4↵
k2
t)

is a solution. It is easy to verify that the equations for ẋ, ẏ, ż, ṗx, and ṗy are satisfied

(all equal to zero), and we see that

� ↵
16µ

�3/2z = � ↵
16{ 1

16k
2}�3/2k

= �4↵
k2

= ṗz.

Thus, such a � is indeed a solution. Note that the momentum, surprisingly, is not

constant, and that the total energy

H = U = �4↵

|k|
is strictly negative.

Next, we explicitly integrate the equations of motion on a codimension

3 submanifold, and recover conics reminiscent of the Euclidean Kepler Problem.

Consider the smooth submanifold N = {z = pz = p✓ = 0}. This submanifold is

invariant under the dynamics, since ż = ṗz = ṗ✓ = 0 on N . The Hamiltonian is

H|N = 1
2p

2
r �

↵

r2
,
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which has the form of a classical central force problem in the plane. Fix an energy

level H|N = h. Then since pr = ṙ, we can explicitly solve for r(t) as follows.

Proposition 8 On N , r(t) traces out a hyperbola if h > 0, an ellipse if h < 0, and

a parabola if h = 0.

Proof The Hamiltonian may be rewritten as the simple ODE

1
2

⇣dr
dt

⌘2
=

↵

r2
+ h,

which we rewrite

dr =
p
2

p
↵+ r2h

r
dt.

Assume temporarily that h 6= 0. Integrating, we find

t =

Z
dt

= 1p
2

Z
rp

↵+ r2h
dr

= 1
h
p
2

p
↵+ r2h.

Inverting this equation, we find

r(t) =
q

2ht2 � ↵
h .

This equation may be rewritten

r2 � 2ht2 = �↵
h .

Since ↵ > 0, this curve in the r, t-plane is an ellipse for h < 0 and a hyperbola for

h > 0. Now, if h = 0, we find that

t = 1p
2↵

Z
rdr = 1

2
p
2↵
r2,

and thus

r2 =
p
8↵ t.

This seems like a good place to compute the constant ↵.

Proposition 9 We have ↵ = 2
⇡ .
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Proof Note that Folland uses the variable t = z/4. Consequently, our Laplacian is

(negative, by choice of convention) 4 times his Laplacian, and our constant ↵ will

be 4 times his constant, which he denotes by c1. Thus, according to [12], we have

1/c1 = 3

Z

H

r2

(r4 + t2 + 1)5/2
dvol

= 3

Z 1

0

Z 2⇡

0

Z 1

�1

r2

(r4 + t2 + 1)5/2
rdrd✓dt

= 6⇡

Z 1

0

Z 1

�1

r3

(r4 + t2 + 1)5/2
drdt

=
3⇡

2

Z 1

0

Z 1

�1

dudt

(u+ t2 + 1)5/2

= ⇡

Z 1

�1
(1 + t2)�3/2dt

= ⇡

Z ⇡/2

�⇡/2
(1 + tan2 ✓)�3/2 sec2 ✓d✓

= ⇡

Z ⇡/2

�⇡/2
cos ✓d✓ = 2⇡,

where we made the substitutions u = r4 and tan ✓ = t. Thus,

↵ = 4c1 = 2/⇡.

3.1.3 Kepler’s Third Law

Recall that in the classical (Euclidean) Kepler Problem, Kepler’s third law

says that the period T of an orbit and its size a (semi-major axis) are related by a

universal monomial relation a3 = CT 2.

Any homogeneous potential V on a Euclidean space satisfies a version of

Kepler’s third law. Homogeneity can be thought of as a scaling symmetry: if x 7! �x

then V (x) 7! V (�x) = ��V (x). We attempt to extend the symmetry to time and

velocities by a power law ansatz: (x, t, v) 7! (�x,��t,��⌫v). Balancing the resulting

scalings of potential and kinetic energies implies that ⌫ = /2. Forcing v = dx/dt

gives � = 1 + (/2). This yields the extended scaling

(x, t, v) 7! (�x,�1+/2t,��/2v).
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For curves �(t), the scaling operation is

�(t) 7! ��(t) = ��(��(1+/2)t).

One can check that �� satisfies Newton’s equation �̈ = �rV (�) if � does. The

scaling symmetry thus takes solutions of energy h to solutions of energy ��h. So, if

� is periodic of period T and size a, then �� is periodic of period ��T = �1+/2T and

size �a. This implies the generalized Kepler’s third law for homogeneous potentials

on Euclidean space: T 2 = Ca2+.

Now, on the Heisenberg group, with respect to the dilation

�� : (x, y, z) 7! (�x,�y,�2z),

the potential U is homogeneous of degree �2. That is, �� : U 7! ��2U . Following

procedure above, we find that time scales as t 7! �2t, and we can explicitly prove

our version of Kepler’s third law.

Fix a solution curve � which satisfies the equations of motion. For any

positive real number �, define a new scaled curve by

�� := ��(�(�
�2t).

It is easy to prove that �� also satisfies Hamilton’s equations.

The following result would be vacuous if there were no periodic orbits.

Luckily, they do in fact exist (see Section 3.3).

Proposition 10 (Kepler’s Third Law on the Heisenberg Group) Let � be a

periodic orbit with period T . Choosing a suitable notion of the ‘size’ a of a periodic

orbit yields the Heisenberg version of Kepler’s third law:

T 2 = Ca4. (3.1)

Proof Suppose � is periodic with period T and ‘size’ a. Then we have

��(�
2T ) = ��(�(T )) = ���(0) = ��(0),

so �� has period T� := �2T . That is, for any given periodic orbit � with period T ,

we can scale to obtain a family of periodic orbits �� with periods �2T . Now, for our

fixed �, there exists a constant C such that T 2 = Ca4. Then

T 2
� = (�2T )2 = �4(Ca4) = C(�a)4 = Ca4�.
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Figure 3.1: Projections of zero-energy orbits to the xy-plane.

So the law (3.1) holds for any orbit �� as well (with the same constant C), where its

size is a� := �a.

3.2 An Integrable Subsystem

In this section we show that our dynamics are integrable on a smooth

hypersurface, and we reduce the integration of the equations of motion there to

the problem of parametrizing a family of algebraic plane curves. Approximations

of two orbits are shown in Figures 3.1 and 3.2. Note that these orbits ‘look inte-

grable.’ Only the projections to the xy-plane are shown in Figure 3.1, while the

corresponding three-dimensional orbits appear in Figure 3.2. We have numerically

found examples of such orbits which ‘spiral in’ towards the origin, and others which

‘spiral out.’ Note the resemblance to the helical Heisenberg geodesics – the geometry

here clearly influences the dynamics. Throughout this section let {·, ·} denote the

Poisson bracket.

3.2.1 The Zero Energy Hypersurface

The following lemma shows that the subvariety {H = 0} is indeed a smooth

submanifold of T ⇤H.

Lemma 11 The only critical points of H are of the form (q, p) = (0, 0, 0, 0, 0, pz).
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Figure 3.2: Zero-energy orbits in the Heisenberg group.

Proof Suppose (q, p) = (x, y, z, px, py, pz) is a critical point of H. Then Hamilton’s

equations imply

DH(q, p) =
h
�ṗx �ṗy �ṗz ẋ ẏ ż

i
= 0.

Now, ṗz = 0 implies z = 0. Also, ẏ = 0 and ṗx = 0 together imply x = 0. Similarly,

ẋ = 0 and ṗy = 0 together imply y = 0. Then y = 0 and ẋ = 0 force px = 0, and

similarly, x = 0 and ẏ = 0 force py = 0.

Note that the value of H is undefined at these points.

Corollary 12 All level sets of H are smooth 5-dimensional submanifolds of T ⇤H.

Next, we show that the dynamics are integrable by quadratures on this

submanifold.

Proposition 13 Hamilton’s equations are integrable by quadratures on {H = 0} \
{x = y = px = py = 0}c.

Proof We invoke Theorem 5.1 from [4]. Our system, which happens to be au-

tonomous, has three functions on phase space, F1 = H,F2 = p✓, and F3 = J ,
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satisfying the relations

{F1, F2} = {F2, F3} = 0

{F1, F3} = 2F1.

Thus, our only non-zero structure constant is c113 = 2. A lengthy computation shows

that dH ^ dp✓ ^ dJ is non-zero whenever x, y, px, and py are not all zero, so that the

di↵erentials dFi are linearly independent away from the surface x = y = px = py = 0.

Next, the fact that c113 is our only non-zero structure constant implies that the

theorem will hold on the set F1 = H = 0. Finally, we note that the Lie algebra

A spanned by the Fi (with multiplication given by the Poisson bracket) is solvable

(although not nilpotent), which is evident from the bracket relations above. Theorem

5.1 then guarantees that for H = 0 and x, y, px, and py not all zero, the system

(q̇, ṗ) = I(dH)

can be integrated by quadratures, where I denotes the inverse of the vector bundle

isomorphism determined by the canonical symplectic form on T ⇤H.

Remark 1 We pause to explain the details omitted from the end of the above proof

for those unfamiliar with symplectic geometry. Like any cotangent bundle, T ⇤H is

equipped with a natural symplectic form !. This two-form induces a map

!̃ : T (T ⇤H)! T ⇤(T ⇤H)

v 7! ◆!v = !(v, ·).

The non-degeneracy of ! ensures that this map is a linear bundle isomorphism, so

we may define I = !̃�1. Then we have I(dH) = sgradH = XH , the symplectic

gradient or Hamiltonian vector field of H, so solutions to the system (q̇, ṗ) = I(dH)

are precisely the solutions to Hamilton’s equations.

3.2.2 A Change of Coordinates

Consider a new Hamiltonian

Ĥ = �K

U
= ↵

2 (P
2
X + P 2

Y )µ
1/2.
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It is easy to check that Ĥ is scale invariant; that is, �� : Ĥ 7! Ĥ. Note also that the

zero energy hypersurface is precisely the level set of Ĥ of value 1:

{H = 0} = {Ĥ = 1}.

An elementary lemma from symplectic geometry shows that the flows of H and Ĥ

are the same up to reparametrization on this hypersurface (this can be thought of

as a version of the Jacobi-Maupertuis principle). We will thus investigate the flow

of Ĥ, which we will find to be integrable.

Lemma 14 Let (M,!) be symplectic, and let f, g 2 C1(M). Suppose there exist

constants c1 and c2 and a hypersurface N such that N = f�1(c1) = g�1(c2). Suppose

further than the di↵erentials of f and g do not vanish on N . Then there is a

nonvanishing function ⇠ : N ! R such that

Xf = ⇠Xg

on N , where Xf and Xg denote the Hamiltonian vector fields of f and g, respectively.

Proof Let p 2 N . Then TpN = ker dfp = ker dgp, since N is a level set of both f

and g. Thus, there is some scalar ⇠(p) 6= 0 such that dfp = ⇠(p)dgp. Since p 2 N

was arbitrary, we have df = ⇠dg on N . But ! defines an invertible correspondence

Xf 7! !(Xf , ·) = df,

so we must have Xf = ⇠Xg on N .

Proposition 15 We have {Ĥ, J} = 0.

Proof This is a straightforward calculation:

{Ĥ, J} =
@Ĥ

@x

@J

@px
+

@Ĥ

@y

@J

@py
+

@Ĥ

@z

@J

@pz
� @Ĥ

@px

@J

@x
� @Ĥ

@py

@J

@y
� @Ĥ

@pz

@J

@z

= ↵
2

�
pzPY µ

1/2 + (P 2
X + P 2

Y )2xr
2µ�1/2

�
x

+ ↵
2

�� pzPXµ1/2 + (P 2
X + P 2

Y )2yr
2µ�1/2

�
y + ↵

16(P
2
X + P 2

Y )µ
�1/2z2

� ↵PXµ1/2px � ↵PY µ
1/2py � ↵(xPY � yPX)µ1/2pz

= �↵
2 pz(xPY � yPX)µ1/2 + ↵(P 2

X + P 2
Y )µ

1/2 � ↵(pxPX + pyPY )µ
1/2

= ↵µ1/2
�
(P 2

X + P 2
Y ) + PX(12ypz � px) + PY (�1

2xpz � py)
�

= 0.
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Note that since J generates the scaling action ��, this also implies that Ĥ is scale

invariant.

Proposition 16 We have {Ĥ, p✓} = 0.

Proof This is an easy calculation:

{Ĥ, p✓} = ↵
2

�
pzPY µ

1/2 + (P 2
X + P 2

Y )2xr
2µ�1/2

�
(�y)

+ ↵
2

�� pzPXµ1/2 + (P 2
X + P 2

Y )2yr
2µ�1/2

�
x

� ↵PXµ1/2py � ↵PY µ
1/2(�px)

= ↵
2

�� ypzPY µ
1/2

�
+ ↵

2

�� xpzPY µ
1/2

�

� ↵pyPXµ1/2 + ↵pxPY µ
1/2

= ↵µ1/2
�
PX(�py � 1

2xpz) + PY (px � 1
2ypz)

�

= 0.

These last two propositions show that both J and p✓ are conserved by the

flow of Ĥ. Thus, we have three integrals for the flow of Ĥ: J, p✓, and Ĥ itself. The

flow is therefore integrable. When Ĥ = 1, the flow corresponds to a multiple of the

flow for H on the submanifold H = 0. The first step in finding explicit solutions is

changing variables. Define the coordinate transformation

� : (✓, r, z) 7! (✓, r, v = z/r2).

We want � to be a canonical transformation, so we require �⇤⇤ = ⇤, where

⇤ denotes the canonical one-form. That is, we require

⇤ = pxdx+ pydy + pzdz

= p✓d✓ + prdr + pzdz

= p̃✓d✓ + p̃rdr + pvdv,
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where p̃✓, p̃r, pv are our new momentum coordinates. Solving, we define the new

momenta by the equations

p✓ = p̃✓

pr = p̃r � 2vpv
r

pz =
pv
r2

.

Proposition 17 In these coordinates, J = rp̃r.

Proof We have

J = rpr + 2zpz

= r(p̃r � 2vpv/r) + 2(vr2)(pv/r
2)

= rp̃r.

Note that, in this form, the function J resembles the analogous generating

function for Euclidean dilations.

Proposition 18 We have Ĥ = Ĥ(J, p✓, v, pv). More specifically,

Ĥ = 1
2↵

�
(J � 2vpv)

2 + (p✓ +
1
2pv)

2
�
(1 + 1

16v
2)1/2.

Proof We first compute the kinetic energy:

2K = p2r +
⇣p✓
r

+ 1
2rpz

⌘2

=
⇣
p̃r � 2vpv

r

⌘2
+
⇣p✓
r

+ 1
2r

pv
r2

⌘2

=
1

r2

⇣
(J � 2vpv)

2 + (p✓ +
1
2pv)

2
⌘
.

Next, we compute the potential energy:

U = �↵(r4 + 1
16z

2)�1/2

= �↵(r4 + 1
16(vr

2)2)�1/2

= � ↵

r2
(1 + 1

16v
2)�1/2.
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Figure 3.3: Curves in the v, pv-plane corresponding to J = 3, p✓ = 1 (left) and
J = 0, p✓ = .5 (right).

Thus, we find

Ĥ = �K

U

=

1
2r2

⇣
(J � 2vpv)2 + (p✓ +

1
2pv)

2
⌘

↵
r2
(1 + 1

16v
2)�1/2

= 1
2↵

�
(J � 2vpv)

2 + (p✓ +
1
2pv)

2
�
(1 + 1

16v
2)1/2.

On the submanifold {H = 0}, we have Ĥ = 1. Also, the initial conditions

determine the constants J and p✓. Thus, given initial conditions, Ĥ is a function of

v and pv only. We thus arrive at the following result.

Corollary 19 For Ĥ = 1, any solution must project to an algebraic curve in the

v, pv-plane.

In other words, the equation

1
2↵

�
(J � 2vpv)

2 + (p✓ +
1
2pv)

2
�
(1 + 1

16v
2)1/2 = 1 (3.2)

defines a two-parameter family of plane curves in the variables v and pv, parametrized

by the quantities J and p✓. Examples of these curves are shown in Figure 3.3.

Now we make a change of variables to realize these curves as algebraic

of degree 6. We first write the equation Ĥ = 1 as the zero locus of a degree 10

polynomial by squaring both sides:

�
(J � 2vpv)

2 + (p✓ +
1
2pv)

2
�2
(1 + 1

16v
2) = 4↵2. (3.3)
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Making the substitution w = vpv, one has

1 + 1
16v

2 =
16p2v + w2

16p2v
,

so that (3.3) reduces to

�
(J � 2w)2 + (p✓ +

1
2pv)

2
�2
(16p2v + w2) = 64↵2p2v. (3.4)

This defines a family of (non-homogeneous) algebraic curves of degree 6 in the vari-

ables w and pv, parametrized by J and p✓.

3.3 Existence of Periodic Solutions

In this section we prove our most important theorem: there exist periodic

orbits in the Kepler Problem on the Heisenberg group. These orbits were originally

found by numerical experiment. To prove their existence we employ the direct

method in the calculus of variations, showing the existence of an action minimizing

orbit with prescribed symmetry. We prove the existence of solutions with k-fold

rotational symmetry for any odd integer k � 3. Approximations of one such orbit,

with k = 3, are shown in Figures 3.4 and 3.5. For the reader’s benefit we first outline

the structure of the proof, then carry out the analysis.

Theorem 2 Periodic solutions exist. For any odd integer k � 3, there exists a

periodic orbit with k-fold rotational symmetry about the z-axis.

Proof of Theorem 2. We first sketch the structure of the proof, using the direct

method from the calculus of variations. For similar applications of this technique to

celestial mechanics problems, see [10] and [15].

Step 1 : Choose a nice function space Fk whose members are closed loops enjoying

the desired symmetry properties. Choose a minimizing sequence of curves in Fk

whose action approaches the infimum of the action restricted to Fk.

Step 2 : Using Arzela-Ascoli, show �n has a C0-convergent subsequence converging

to some �⇤. Using Banach-Alaoglu, show �n * �⇤ 2 Fk.

Step 3 : Show that �⇤ realizes the infimum of the action restricted to Fk. Use Fatou’s

Lemma and standard functional analysis.

Step 4 : Prove that �⇤ does not su↵er a collision. Use the Hamilton-Jacobi equation.
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Figure 3.4: Projection of a periodic orbit to xy-plane (left). The z-coordinate over
time (right).

Step 5 : Show dA(�⇤)(e) = 0 for horizontal variations e. Standard analysis gives

dA(�⇤)|Fk = 0, then use the Principal of Symmetric Criticality.

Step 6 : Show �⇤ satisfies the Euler-Lagrange equations, and consequently, Hamil-

ton’s equations. This is the Principle of Least Action.

3.3.1 The Function Space and a Minimizing Sequence

For a curve �(t) = (x(t), y(t), z(t)) in the Heisenberg group parametrized

by the interval [0, T ], let �̃ denote its projection to the xy-plane. Let k � 3 be any

odd1 positive integer. We will restrict our attention to horizontal curves satisfying

the symmetry conditions

�(t+ T/k) = R2⇡/k�(t) (S1)

z(t+ T/2) = �z(t) (S2)

where

R2⇡/k =

2

664

cos(2⇡/k) � sin(2⇡/k) 0

sin(2⇡/k) cos(2⇡/k) 0

0 0 1

3

775

1If k is even, the two symmetry conditions force z to be identically zero; such solutions are known
(Proposition 6) to su↵er collisions.
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Figure 3.5: A periodic orbit in three dimensions.

denotes rotation about the z-axis by 2⇡/k radians counterclockwise. Note that

curves satisfying condition (S1) are necessarily periodic. Also, note that the two

symmetry conditions together give the z-coordinate symmetry

z(t+mT/2k) = (�1)mz(t),

for any m 2 Z.

We will work in the function space

Fk = {� 2 H1(S1,H) | � horizontal and satisfies (S1) and (S2)},

where H1(S1,H) = W 1,2(S1,H) is the completion of the space of all absolutely

continuous paths in H whose derivative is square integrable2. The usual H1(S1,R3)

norm is

||�||H1 =

sZ T

0
(||�̇(t)||2E + ||�(t)||2E)dt,

where || · ||E denotes the usual Euclidean norm on R3. This norm endows H1(S1,R3)

with a Hilbert space structure.

2Here and in the sequel S1 denotes the interval [0, T ] with endpoints identified.
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To endow Fk with a Hilbert structure, we make the following identification:

L2([0, T ],R2)⇥H ⇠= H := {horizontal square-integrable paths in H}.

This isomorphism sends ((f, g), x0) to the horizontal curve � which solves the initial

value problem

�̇ = fX + gY, �(0) = x0.

The existence and uniqueness of the solution � is guaranteed by Theorem D.1 of [20].

This theorem also shows that this mapping is invertible for x0 in some compact set.

Thus, we can think of f, g as coordinates on the subspace of H consisting of all

paths with a fixed starting point. Consequently, Fk is equipped with a vector space

structure.

Here we will endow Fk with a norm similar to the H1 norm, but slightly

modified for our purposes:

||�||Fk :=

sZ T

0
(h�̇(t), �̇(t)i+ ||�(0)||2sRdt. (3.5)

Remark 2 Since H is a finite dimensional vector space, all norms on H are Lips-

chitz equivalent and give the same topology as that induced by the Carnot-Caratheodory

metric. Thus, a set in H is bounded in the Carnot-Caratheodory metric if and only if

it is bounded in the Euclidean metric. Moreover, our choice of norm ||�||Fk in (3.5)

will be the most convenient to work with. However, it is equivalent to the alternative

function norms:

||�|| =
sZ T

0
(h�̇(t), �̇(t)i+ ||�(t)||2sRdt (3.6)

||�| =
sZ T

0
(h�̇(t), �̇(t)i+ ||�(0)||2Edt (3.7)

||�|| =
sZ T

0
(h�̇(t), �̇(t)i+ ||�(t)||2Edt. (3.8)

Finally, note that we also have the following norms:

||p||sR = d(p, 0), p 2 H

||�̇(t)||2H = h�̇(t), �̇(t)i = (ẋ(t))2 + (ẏ(t))2 = 2K(�(t))

||�̇||2L2 =

sZ T

0
||�̇(t)||2Hdt.
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Proposition 20 (Coercivity) The squared length of �̃ is bounded above by twice

the action of �.

Proof Let �̃ denote the projection of �(t) = (r(t), ✓(t), z(t)) to the r, ✓ plane. Then

we compute

A(�) =

Z T

0
L(t, �, �̇)dt

=

Z T

0

�
1
2 ṙ

2 + 1
2r

2✓̇2 + ↵(r4 + 1
16z

2)�1/2
�
dt

�
Z T

0

�
1
2 ṙ

2 + 1
2r

2✓̇2
�
dt

= 1
2

Z T

0
(ẋ2 + ẏ2)dt

� 1
2

✓Z T

0

p
ẋ2 + ẏ2dt

◆2

= 1
2

�
l(�)

�2
,

where we used the Cauchy-Schwarz inequality in L2(R).

Now suppose {�n}n2N is a minimizing sequence in Fk. That is, suppose

lim
n!1

A(�n) = inf
�2Fk

A(�).

We may discard finitely many terms of the sequence and assume that there exists

some large M > 0 such that

A(�n) M

for all n. Note that the previous Proposition implies that the lengths l(�n) are

bounded; specifically, l(�n) 
p
2M for all n.

3.3.2 The Potential Solution

We will denote the usual Euclidean norm by || · ||E and the corresponding

Euclidean distance function by d(·, ·)E . Note that d(·, ·)E  d(·, ·) in general, but

that both the Euclidean and sub-Riemannian distances (and consequently, norms)

agree when restricted to the xy-plane.

Proposition 21 The projections �̃n are uniformly bounded.
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Proof Since �n 2 Fk, it is horizontal, so the length of �n is equal to that of �̃n.

Also, condition (S1) implies that

z(0) = z(T/k) = z(2T/k) = · · · = z((k � 1)T/k) = z(T )

and thus that the k points

�n(0) = �n(T ), �n(T/k), �n(2T/k), . . . , �n((k � 1)T/k)

form a regular k-gon in the plane z = z(0) centered at the point (0, 0, z(0)). See

Figure 3.6 for a rendering of the k = 5 case. Then we have:

l(�n) � d(�n(0), �n(
T
k )) + d(�n(

T
k ), �n(

2T
k )) + · · ·+ d(�n(

(k�1)T
k ), �n(T ))

� dE(�n(0), �n(
T
k )) + dE(�n(

T
k ), �n(

2T
k )) + · · ·+ dE(�n(

(k�1)T
k ), �n(T ))

= dE(�̃n(0), �̃n(
T
k )) + dE(�̃n(

T
k ), �̃n(

2T
k )) + · · ·+ dE(�̃n(

(k�1)T
k ), �̃n(T ))

= C||�̃n(0)||E
= C||�̃n(0)||sR,

where C = 2k sin(2⇡/k) and the penultimate equality is given by the usual perimeter

of a regular k-gon inscribed in a circle of radius ||�̃n(0)||E .
Then since l(�n) = l(�̃n), we find

||�̃n(t)||sR  ||�̃n(0)||sR + l(�̃n)

 ( 1
C + 1)l(�n)

 ( 1
C + 1)

p
2M.

Lemma 22 Suppose � : [0, S] ! H is horizontal. Suppose c, the projection of � to

the xy-plane, satisfies ||c(t)||E  R for some R > 0 and all t 2 [0, S]. Then

|z(S)� z(0)|  1
2Rl(�).

Proof Let I(v1, v2) = (v2,�v1). Note that ||I(ċ)||H = ||ċ||H. Without loss of

generality, we may assume that c has constant speed v. Then by the horizontal
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�(0) = �(T )�
�
T
5

�

�(2T5 )

�(3T5 )

�(4T5 )

�( T
10)

�
�
3T
10

�

�(T2 )
�(7T10 )

�(9T10 )

z(0)

�z(0)

Figure 3.6: Symmetries of a path in F5.

condition 1
2xẏ � 1

2yẋ = ż and the Cauchy-Schwarz inequality,

|z(S)� z(0)| = |
Z S

0
żdt|

= 1
2 |
Z S

0
(xẏ � yẋ)dt|

= 1
2 |
Z S

0
hc, I(ċ)iEdt|

 1
2

sZ S

0
||c(t)||2Edt

sZ S

0
||I(ċ(t))||2Edt

= 1
2

sZ S

0
||c(t)||2Edt

sZ S

0
||ċ(t)||2Edt

 1
2

p
R2S
p
v2S

= 1
2RvS

= 1
2Rl(�).

40



Proposition 23 The set {�n} is uniformly bounded.

Proof By Proposition 21, the curves �n satisfy the hypothesis of Lemma 22: we

can take R = ( 1
C + 1)

p
2M . Take S = T/2 and denote the z-components of the

curves �n by zn. Then the Lemma, with the fact that zn(0) = �zn(T/2), implies

|2zn(0)|  1
2Rl(�n|[0,T/2])  1

2Rl(�n).

Then we find

|zn(t)|  |zn(0)|+ l(�n)

= (14R+ 1)l(�n)

 (14R+ 1)
p
2M.

Thus, the family zn(t) is uniformly bounded. Since the projections �̃n and the

z-coordinates zn are uniformly bounded, so are the curves �n.

Lemma 24 If � 2 Fk then � is Hölder continuous with Hölder exponent 1
2 .

Proof This is a version of the Sobolev embedding theorem. Using the Cauchy-

Schwarz inequality with f =
ph�̇(t), �̇(t)i = ||�̇(t)||H and g = 1, one has

d(�(r), �(s))  l(�|[r,s])

=

Z s

r
||�̇(t)||Hdt


s

|r � s|
Z s

r
||�̇(t)||2Hdt


s

|r � s|
Z T

0
||�̇(t)||2Hdt

= |r � s|1/2 ||�̇||L2 .

This shows that � satisfies the Hölder condition with exponent 1/2 and coe�cient

||�̇||L2 .

Lemma 25 The norms ||�̇n||L2 are bounded.
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Proof We have

||�̇n||2L2 =

Z T

0
||�̇n||2Hdt

=

Z T

0
2K(�n)dt

 2

Z T

0
(K(�n) + U(�n))dt

= 2A(�n).

Thus,

||�̇n||L2 
p
2M.

Proposition 26 The family {�n} is equicontinuous.

Proof By Lemma 24, we know

d(�n(r), �n(s)) 
p
|r � s| ||�̇n||L2 .

Now choose some ✏ > 0 and let � = (✏/
p
2M)2. Then if |r � s| < �, by Lemma 25,

for all n we have

d(�n(r), �n(s)) 
p
|r � s| ||�̇n||L2

<
✏p
2M

||�̇n||L2

 ✏.

Proposition 27 There is a subsequence {�nj} converging uniformly to some �⇤.

Proof By Propositions 23 and 26, the sequence {�n} is uniformly bounded and

equicontinuous. The Arzela-Ascoli theorem guarantees the existence of such a sub-

sequence, which implies that �⇤ is continuous.

Proposition 28 There is a subsequence {�nji
} which converges weakly in Fk to

�⇤ 2 Fk.
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Proof From Proposition 23 we know that the norms ||�n(0)||sR are bounded; also,

by Lemma 25, the norms ||�̇n||L2 are bounded. Thus, the norms

||�n||2Fk
= ||�̇n||2L2 + T ||�n(0)||2sR

are bounded as well. Then the Banach-Alaoglu theorem guarantees the existence

of another subsequence which converges weakly to �⇤ so that this limiting curve is

absolutely continuous. It is clear that this curve must satisfy the horizontal and

symmetry conditions.

Remark 3 In the following we will re-index so that the sequence {�n} converges to

�⇤ both weakly and uniformly.

3.3.3 Minimization

Lemma 29 One has Z T

0
h�̇n, �̇⇤idt!

Z T

0
||�⇤||2Hdt.

Proof From Proposition 28, we know that {�n} converges weakly to �⇤:

�n * �⇤.

By definition, we have that

�(�n)! �(�⇤)

for any � 2 F⇤
k . In particular, the functional

�c(�) :=

Z T

0
h�̇(t), ċ(t)idt

is indeed an element of F⇤
k for any c 2 Fk. To see that �c is a bounded operator,

note that the Cauchy-Schwarz inequality in L2 gives

�c(�) = hċ, �̇iL2  ||ċ||L2 ||�̇||L2 = C||�̇||L2 .

We may therefore choose c = �⇤, and the Lemma follows.

Alternatively, one can see that ��⇤ is bounded on the sequence {�n} as

follows. Write

��⇤(�n) = h�̇n, �̇⇤iFk � h�n(0), �⇤(0)iE , (3.9)
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where h·, ·iE denotes the Euclidean inner product on R3. Then, considering the right

hand side of (3.9), note that one can control the first term by weak convergence,

and the second by uniform convergence.

Proposition 30 Our limiting curve �⇤ realizes the infimum of the action:

A(�⇤) = inf
�2Fk

A(�).

Proof Since

0 
Z T

0
||�̇n � �̇⇤||2Hdt =

Z T

0
(||�̇n||2H + ||�̇⇤||2H � 2h�̇n, �̇⇤i)dt,

we have Z T

0
2h�̇n, �̇⇤idt 

Z T

0
(||�̇n||2H + ||�̇⇤||2H)dt.

Taking the limit inferior of both sides and using the previous Lemma yields

Z T

0
||�̇⇤||2Hdt  lim inf

Z T

0
||�̇n||2Hdt.

We may rewrite this last inequality as

Z T

0
K(�⇤(t))dt  lim inf

Z T

0
K(�n(t))dt. (3.10)

Now, we know �n(t)! �⇤(t) uniformly. Since our potential U is continuous (except

at the origin), we have that U(�n(t)) ! U(�⇤(t)) uniformly almost everywhere.

Then Fatou’s Lemma implies

Z T

0
U(�⇤(t))dt  lim inf

Z T

0
U(�n(t))dt. (3.11)

Adding (3.10) and (3.11) gives

A(�⇤) =

Z T

0
L(�⇤(t))dt  lim inf

Z T

0
L(�n(t))dt = lim inf A(�n).

But {�n} is a minimizing sequence, and �⇤ 2 Fk so

A(�⇤) = lim inf A(�n) = inf
�2Fk

A(�).
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3.3.4 Avoiding Collision

We will show that a curve in Fk su↵ering a collision necessarily has infinite

action. Without loss of generality, we may assume the collision occurs at time t = 0.

Let Hg : T ⇤H! R denote the Hamiltonian generating geodesic flow on the

Heisenberg group (which is also our kinetic energy, K). In other words, let

Hg(q, p) =
1

2
(P 2

X + P 2
Y ) =

1

2
(p, p),

where (·, ·) is the cometric induced by the inner product h·, ·i. Then let

S(q, t) = inf

Z t

0
Lg(�(t), �̇(t))dt = inf

Z t

0

1
2 ||�̇(s)||2Hds,

where the infimum is taken over all paths � connecting 0 to q in time t. Here, the

Lagrangian Lg is related to the Hamiltonian Hg by the Legendre transform. Note

that the function S is known as Hamilton’s generating function or the action in

mechanics, and the value function in optimal control. Then the Hamilton-Jacobi

equation (see [1] or [3]) says

Hg(q, dS) = �@S

@t
(3.12)

at all points (q, t) where S is di↵erentiable. As the next Lemma shows, S is dif-

ferentiable at points (q, t) where t 6= 0 and the function f(q) = d(q, 0) is smooth

at q. The latter holds if, for the minimizing geodesic � connecting q to the origin,

� contains no conjugate or cut points. In the Heisenberg group, there are no cut

points, and the locus of points conjugate to the origin consists of the z-axis (see [8]).

Thus, the Hamilton-Jacobi equation (3.12) holds almost everywhere: for all points

(q, t) such that t 6= 0 and q does not lie on the z-axis.

Lemma 31 We can express the generating function S as

S(q, t) =
||q||2sR
2t

.

Proof Suppose � : [0, t] ! H, with �(0) = 0 and �(t) = q. Then the Cauchy-

Schwarz inequality gives

Z t

0
||�̇(s)||Hds 

sZ t

0
||�̇(s)||2Hds

sZ t

0
ds,
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with equality if and only if the speed ||�̇(s)||H is constant. We recognize the left-

hand side as the length l(�). Now suppose � has constant speed, so we may rewrite

this (in)equality as

l(�) =
p
t

sZ t

0
||�̇(s)||2Hds,

or, Z t

0

1
2 ||�̇(s)||2Hds =

l(�)2

2t
.

Finally, taking the infimum (over all such �) of both sides yields the desired result.

Lemma 32 Suppose � : [0, T ]! H is horizontal and �(0) = 0. Then

d

dt
||�(t)||sR  ||�̇(t)||H

almost everywhere.

Proof Let R(q) = ||q||sR for sake of notation. Then, by Lemma 31, we have

S(q, t) =
R2(q)

2t
,

so that

dS =
R(q)dR

t

and
@S

@t
= �R2(q)

2t2
.

Choosing (q, t) such that R(q) = t implies dS = dR and

@S

@t
= �1

2
.

Thus, the Hamilton-Jacobi equation reads3

1

2
(dR, dR) =

1

2
,

which is equivalent to

||rsRR||H = 1,

3An optimal control theoretic version of this result can be found in Chapter 1, Section 9, of [27].
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and this holds almost everywhere. Finally, we can employ the chain rule and the

Cauchy-Schwarz inequality in the Heisenberg group to obtain:

d

dt
||�(t)||sR =

d

dt
R(�(t))

 | d
dt
R(�(t))|

= |hrsRR(�(t)), �̇(t)i|
 ||rsRR(�(t))||H||�̇(t)||H
= ||�̇(t)||H

almost everywhere.

Proposition 33 Suppose � 2 Fk and �(0) = 0. Then A(�) =1.

Proof Recall that ⇢ = ((x2+y2)2+ 1
16z

2)1/4, so that U = ⇢�2. Since the Heisenberg

sphere is homeomorphic to the Euclidean sphere, the standard argument which

shows that any two norms on Rn are Lipshitz equivalent shows that ⇢ and || · ||sR
are Lipshitz equivalent: there exist positive constants c, C such that c⇢(x, y, z) <

||(x, y, z)||sR < C⇢(x, y, z) for (x, y, z) 6= 0. Then, using this fact and the general

fact that a2 + b2 � 2ab, we compute:

A(�) =

Z

�
L =

Z

�

1
2(ẋ

2 + ẏ2) + ⇢�2

�
Z T

0

⇣
1
2 ||�̇||2H +

c1
||�||2sR

⌘
dt

� c2

Z T

0

||�̇||H
||�||sR dt.

But this last integrand is non-negative, so the value of its integral decreases when

taken over a sub-interval of [0, T ]. In particular, the value of the integral is smaller
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over the interval [0, ✏] for small ✏. This fact, along with Lemma 32, implies

A(�) � c2

Z T

0

||�̇||H
||�||sR dt

� c2

Z ✏

0

||�̇||H
||�||sR dt

� c3

Z ✏

0

d
dt ||�||sR
||�||sR dt

= c3

Z u(✏)

0

du

u

= lim
a!0

c3 log u|u(✏)a

=1.

Here, we have made the substitution u(t) = ||�(t)||sR with u(0) = 0.

Corollary 34 Our curve �⇤ does not su↵er a collision.

Proof From Proposition 30, we know A(�⇤) equals the infimum of the action re-

stricted to Fk, which is finite.

3.3.5 A Critical Point of the Action

Lemma 35 The action functional A is di↵erentiable at any curve which avoids

collision.

Proof We first consider A as a functional on the space of all (su�ciently smooth)

paths in R3 ⇠= H. If A is di↵erentiable there, it then follows that A is di↵erentiable

on the (infinite codimension) subspace Fk. To this end, let c, e 2 H1([0, T ],R3), and

let h 2 R. Recall that h·, ·i denotes the sub-Riemannian inner product, which obeys

the so-called dot product rule

d

d✏
hc1(✏), c2(✏)i = h d

d✏
c1(✏), c2(✏)i+ hc1(✏), d

d✏
c2(✏)i.

(The proof is just as in R2.) Also let h·, ·iE denote the Euclidean (R3) dot product,

and r denote the Euclidean gradient operator (not to be confused with rsR, the
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sub-Riemannian gradient). Finally, we may compute

dA(c)(e) =
d

dh
A(c+ he)|h=0

=
d

dh

���
h=0

Z T

0

�
1
2hċ(t) + hė(t), ċ(t) + hė(t)i+ U(c(t) + he(t)

�
dt

=

Z T

0
hċ(t), ė(t)i+ hrU(c(t)), e(t)iEdt, (3.13)

where we used the chain rule for the composition

[0, T ]
e�! R3 U�! R.

The expression (3.13) shows that dA(c) exists and is indeed continuous, so long as

c does not pass through the origin, where U has a singularity.

Proposition 36 We have that dA(�⇤)(e) = 0 for any e 2 Fk.

Proof Computing the derivative of the functional A : Fk ! R, for any c 2 Fk we

again have

dA(c)(e) =
d

dh
A(c+ he)|h=0

Now we shall consider this derivative taken at the point �⇤ 2 Fk. Recall that,

according to Corollary 34, �⇤ does not pass through the origin, so by the previous

Lemma, dA(�⇤) exists and is continuous. Suppose for sake of contradiction that

9e 2 Fk such that dA(�⇤)(e) 6= 0. Replacing e with �e if necessary, we can assume

dA(�⇤)(e) < 0. As this is the derivative of the real-valued function f(h) = A(�⇤+he)

at h = 0, this function is initially decreasing. That is, for su�ciently small h > 0

we have A(�⇤+he) < A(�⇤). As �⇤+he is in our space Fk, this contradicts the fact

that �⇤ is a local minimum of A|Fk .

To combine the results obtained thus far, we need the following lemma,

due to R. Palais ([26]).

Lemma 37 (Principle of Symmetric Criticality) Let � be a finite group acting

on Hilbert space V and let V � denote the fixed points of this action. Suppose f : V !
R is �-invariant, and that f |V � has a critical point at x0 2 V . Then x0 is also a

critical point for f .
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Proof We know V � is an invariant subspace of V , and we can choose a metric on V

so that the group � acts orthogonally. Now, by Maschke’s theorem, V � admits a �-

invariant orthogonal complement W , so that V = V ��W . Then we can decompose

rf(x0) = u+ w,

with u 2 V � and w 2W . But x0 is a critical point of f |V � , so u = 0. Then for any

g 2 �, since x0 is fixed and f is invariant, we have

w = rf(x0) = rf(g · x0) = g ·rf(x0) = g · w.

This shows w must be fixed, but as w was in the direct sum complement of the fixed

points, w must be zero. Thus, rf(x0) = 0.

Proposition 38 We have dA(�⇤)(e) = 0 for any horizontal e 2 H1([0, T ],H).

Proof To apply this Lemma to our situation, we take V to be the space of all

horizontal paths e 2 H1([0, T ],H), with the Hilbert structure given in Section 3.3.1;

f is the action functional and x0 is the curve �⇤. We take � to be the group

Z/Z2 ⇥ Z/Zk, k � 3 an odd integer, whose action is given as follows4:

Z/Z2 ⇥ Z/Zk = h(�, ⌧) | (�2, ⌧k) = ei
� · (x(t), y(t), z(t)) = (x(t� T/2), y(t� T/2),�z(t� T/2))

⌧ · (x(t), y(t), z(t)) = R2⇡/k(x(t� T/k), y(t� T/k), z(t� T/k))

where again

R2⇡/k =

2

664

cos(2⇡/k) � sin(2⇡/k) 0

sin(2⇡/k) cos(2⇡/k) 0

0 0 1

3

775 .

Then V � is precisely the function space Fk. In other words, to say that x0 2 V � is

to say that �⇤ satisfies the symmetry assumptions (S1) and (S2). As we have shown

that the action, restricted to Fk, has a critical point at �⇤, the Principle of Symmetric

Criticality implies that �⇤ is indeed a critical point of the action functional where

admissible variations need not satisfy (S1) nor (S2).

4An additional application of this argument allows us to restrict our attention to periodic orbits,
so that the domains of these curves are well-defined.
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3.3.6 Satisfaction of the Equations of Motion

As shown in the previous section, �⇤ is a critical point of the action func-

tional restricted to horizontal variations. According to the Principal of Least Action,

�⇤ should satisfy the equations of motion. More precisely, we will employ the stan-

dard argument from the calculus of variations (see [7], [13], or [32]): invoke the

method of Lagrange multipliers, integrate by parts, then apply the fundamental

lemma of the calculus of variations. This shows that �⇤ satisfies the Euler-Lagrange

equations from Section 2.2.3, which were apparently equivalent to Hamilton’s equa-

tions.

Recall that, as in Section 2.2.3, our horizontal constraint is precisely the

zero set of the function

G(t, q, q̇) = 1
2xẏ � 1

2yẋ� ż

and our modified action functional is

A�(�) =

Z T

0
L�(t, �, �̇)dt,

where � = �(t) is a scalar and we have written L�(t, q, q̇) = L(t, q, q̇)��(t)G(t, q, q̇).

Lemma 39 (Lagrange multipliers) If c is a critical point of the action A re-

stricted to horizontal curves, then there exists some � = �(t) such that c is a critical

point of A�.

Proof This is a classical result whose various proofs may be found in, for example,

[6], Section 39 of [7], Section 12 of [13], or Volume II of [32].

Proposition 40 Our �⇤ satisfies the equation

@L�

@�⇤
� d

dt

✓
@L�

@�̇⇤

◆
= 0

for some �.

Proof According to Lemma 39, �⇤ is a critical point of A� for some � which we now

fix. Let q✏(t) = �⇤(t) + ✏⌘(t), for some ⌘ which is twice di↵erentiable and satisfies

the periodicity condition ⌘(0) = ⌘(T ). Let

A✏,� :=

Z T

0
L✏,�dt :=

Z T

0
L�(t, q✏, q̇✏)dt.
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By the chain rule

d

d✏
L✏,� =

@L✏,�

@t

dt

d✏
+

@L✏,�

@q✏

dq✏
d✏

+
@L✏,�

@q̇✏

dq̇✏
d✏

=
@L✏,�

@q✏
⌘(t) +

@L✏,�

@q̇✏
⌘̇(t),

so that
d

d✏
L✏,�

���
✏=0

=
@L�

@�⇤
⌘(t) +

@L�

@�̇⇤
⌘̇(t).

Since �⇤ is a critical point of A�, then A✏,�, considered a function of ✏, will have a

critical point when ✏ = 0. So we have

0 =
d

d✏
A✏,�

���
✏=0

=

Z T

0

✓
@L�

@�⇤
⌘(t) +

@L�

@�̇⇤
⌘̇(t)

◆
dt.

Temporarily assuming that �⇤ is twice di↵erentiable, we can integrate the second

term by parts:

Z T

0

@L�

@�̇⇤
⌘̇(t)dt =

@L�

@�̇⇤
⌘(t)

���
T

0
�
Z T

0

d

dt

@L�

@�̇⇤
⌘(t)dt

=
@L�

@�̇⇤
(T )⌘(0)� @L�

@�̇⇤
(0)⌘(0)�

Z T

0

d

dt

@L�

@�̇⇤
⌘(t)dt,

where we used the periodicity assumption on ⌘. Thus, we have

0 =

Z T

0

✓
@L�

@�⇤
⌘(t)� d

dt

@L�

@�̇⇤
⌘(t)

◆
dt+

✓
@L�

@�̇⇤
(T )� @L�

@�̇⇤
(0)

◆
⌘(0).

Then the fundamental lemma of the calculus of variations (see Section 7 of [32] for

a version which suits our needs) implies that our smoothness assumption on �⇤ was

justified, and that, choosing suitable test functions ⌘, we must have

@L�

@�⇤
� d

dt

✓
@L�

@�̇⇤

◆
= 0 (3.14)

and
@L�

@�̇⇤
(T ) =

@L�

@�̇⇤
(0). (3.15)

Then (3.14) yields the version of the Euler-Lagrange equations given in

(2.4) which were seen to be equivalent to Hamilton’s equations. Thus, �⇤ satisfies
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the equations of motion. Also, (3.15) simplifies to the three equations

px(0) = px(T )

py(0) = py(T )

pz(0) = pz(T ),

where �⇤(t) = (x(t), y(t), z(t), px(t), py(t), pz(t)). This guarantees that our curve �⇤

is periodic in all of phase space, not just in configuration space.

3.4 Open Problems

In this final section, we collect a list of future problems deserving of inves-

tigation, and questions we have failed to answer.

(i) Is the Kepler-Heisenberg problem an integrable system? More specifically, are

the dynamics integrable for the non-restricted (H 6= 0) system?

(ii) Can we explicitly integrate the equations of motion for the restricted (H = 0)

system? Can we parametrize the family of curves presented in Section 3.2.2?

(iii) According to the proof of Theorem 2, there exist periodic solutions with k-fold

rotational symmetry for any odd integer k � 3. Can we find them numerically?

What do they look like?

(iv) We know that orbits with negative energy are bounded but not periodic. Do

they always tend towards collision? Similarly, we know that orbits with pos-

itive energy are unbounded in phase space. Are they always asymptotic to

Heisenberg geodesics? Is there an open set of initial conditions whose orbits

are asymptotic to Heisenberg geodesics? Numerical experiment suggests that

the answers to these questions are a�rmative.

(v) Is there a sub-Riemannian “Newton’s equation” analogous to the famous equa-

tion �̈ = �rU(�)? Presumably the Euclidean gradient would be replaced by

the sub-Riemannian gradient. Is there a natural connection whereby the left

hand side could be replaced by r�̇ �̇ or something similar?
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Part II

The Puiseux Characteristic of a

Goursat Germ
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Chapter 4

Introduction

4.1 History and Motivation

In this part we give a formula for the Puiseux characteristic of an analytic

plane curve germ which represents a Goursat distribution germ with prescribed

small growth vector. It has been shown earlier that the Puiseux characteristic and

the small growth vector are equivalent data, as both are equivalent to a geometric

stratification of Goursat germs known as RVT coding. (Puiseux characteristics do

not cover the entire RVT stratification, but the di↵erence is secondary.) However, the

existing algorithms for calculating one from another are cumbersome and recursive.

Here, we e↵ectively compose two known algorithms and derive a tidy formula which

greatly simplifies the existing methods. In addition, the Puiseux characteristic is a

much more compact labelling than the small growth vector or the RVT code, and

our formula allows for a quick conversion to this more convenient labelling. The

problem solved herein was first proposed in [21] as Question 9.19, part 3, and was

asked again in [25] in the Afterword. An earlier version of this work can be found

in [29].

Goursat distributions are located in the antipodes of integrable distribu-

tions, as they are bracket-generating. Cartan ([9]) studied the model of the canonical

contact distribution on the jet space Jk(R,R). All Goursat distributions were be-

lieved to be equivalent to Cartan’s until Giaro, Kumpera, and Ruiz discovered the

first singularity in 1978 ([14]).

Jean ([17]) studied the kinematic model of a car pulling N trailers, a system
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which is locally universal for Goursat distributions of corank N +1. He developed a

geometric stratification given by regions in the configuration space of the model in

terms of critical angles. He also derived recurrence relations enabling one to compute

the small growth vector of a Goursat germ from these geometric strata. Montgomery

and Zhitomirskii ([22]) introduced the Monster tower, a sequence of manifolds with

distributions in which every Goursat germ occurs, as well as the Sandwich Lemma,

allowing for Jean’s strata to be recast in terms of positions of members of a canonical

subflag of the Goursat flag. Mormul ([24]) labelled the strata from [22] by words in

the letters GST, which became the RVT code in [21]. He solved Jean’s relations in

terms of the derived vector of the small growth vector, allowing for the calculation of

the RVT code from the small growth vector. In [21], Montgomery and Zhitomirskii

showed that Goursat germs correspond to finite jets of Legendrian curve germs, and

that the RVT coding corresponds to the classical invariant in the singularity theory

of planar curves: the Puiseux characteristic (see Section 4.2.3 below). They gave a

recursive algorithm for computing the Puiseux characteristic from the RVT code.

In short, the present contribution provides the dashed arrow in the following

diagram:

{SGV} {RVT}

{PC}

Here, the arrow {RVT} ! {PC} was given in [21], and the arrow {SGV}
�! {RVT} was given in [24]. The arrow {RVT} �! {SGV} was given recursively

in [17], and later explicitly in [24].

It is worth noting that now, with both mappings {RVT} �! {SGV} and

{SGV} 99K {PC} having explicit presentations, the recursive mapping Pc of [21]

(see Section 4.2.4) has become explicit as well.
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4.2 Background

4.2.1 Goursat distributions and small growth vectors

Let M be a smooth manifold and let D ⇢ TM be any smooth distribution

(subbundle). Let [D,D] +D be called the Lie square of D. Iterate this squaring to

obtain a chain, which we write as

Ds ✓ Ds�1 ✓ · · · ✓ Di ✓ Di�1 ✓ · · ·

where Ds = D and Di�1 is the Lie square of Di. Note that Di may not, in general,

have constant rank, and thus fail to be a distribution on M .

A rank 2 distribution D on a manifold M of real dimension n = s + 2 �
4 is called Goursat if corank Di = i for i = 0, . . . , s. In this case, one has a

Goursat flag F :

Ds ⇢ Ds�1 ⇢ · · · ⇢ D1 ⇢ D0 = TM.

Note that when D is Goursat, each member Di of the flag is itself a distribution,

and a hyperplane in Di�1.

Given a Goursat distribution D, one can alternatively form the sequence

Di = [D,Di�1] + Di�1, where D1 = D and i � 1. It is not hard to show that

this sequence will also eventually terminate. That is, there exists an r such that

Dr = TM . Thus, Goursat distributions are completely nonholonomic. For any

p 2 M , the least r such that Dr(p) = TpM is called the degree of nonholonomy of

D at p. Note that for a general completely nonholonomic distribution, the degree

of nonholonomy depends on the base point p, and so it happens for the Goursat

distributions. For each p 2 M , we define the small growth vector at p to be the

integer valued vector

sgv(p) =
�
dimD1(p), dimD2(p), . . . , dimDr(p)(p) = n

�
.

In the following we shall only be concerned with germs of Goursat distributions.

While the small growth vector is the traditional object of interest, for

completely nonholonomic distributions it is equivalent to the derived vector, which

will be more convenient for us to work with.
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Definition 4 ([24]) The derived vector of a completely nonholonomic distribution

germ consists of the multiplicities of the entries in the small growth vector at the

reference point.

For a Goursat distribution, the dimensions of the sequence Di grow by at most one

at a time, so the multiplicities (the entries in the derived vector) are nonzero. By

convention, we omit the last multiplicity 1 from the derived vector. For example, if

we are given a small growth vector (2, 3, 4, 4, 5), then the corresponding derived

vector is (1, 1, 2). Similarly, given a derived vector (1, 1, 1, 3, 3), the corresponding

small growth vector is (2, 3, 4, 5, 5, 5, 6, 6, 6, 7). While it is not obvious, for Goursat

distributions the derived vector is always non-decreasing (see Section 2 of [24]).

4.2.2 Construction of the RVT code

An RVT code is a word in the letters R,V,T satisfying one spelling rule: the

letter T cannot follow the letter R. An RVT code represents an equivalence class of

Goursat germs. The construction of a Goursat germ’s RVT code was implicit in [22],

and made explicit in [24], where the letters G,S,T were used instead of R,V,T. Begin-

ning with a Goursat germ, one forms the Goursat flag, which possesses a canonical

integrable subflag called the characteristic foliation or Cauchy characteristic. The

geometric relationship between the members of the two flags can be characterized

as Regular, Vertical, or Tangent (or, alternatively, Generic, Singular, or Tangent)

and one encodes this information into a word called the RVT code. See Section 1.2

of [24] for details.

In [21], a parallel definition of the RVT codes for Goursat germs was pro-

posed using a tower of manifolds called the “Monster Tower.” This tower is Goursat

universal: every Goursat germ occurs somewhere within the Monster. Each point

in the Monster Tower is assigned an RVT code, and the code of a Goursat germ at

a reference point p is that of p itself.

The tower is constructed through a series of Cartan prolongations. Begin

with the manifold M0 = R2 and the distribution �0 = TR2. The first prolongation

is the fiber bundle

M1 =
[

p2R2

P�0
p,
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whose elements have the form (p, l), where p is a point in R2 and l is a line in the

tangent space TpR2. The distribution on M1 is given by

�1
(p,l) = (d⇡1

0)
�1(l)

where ⇡1
0 : M

1 !M0 is the bundle projection.

Iterating the prolongation procedure gives a sequence of manifolds

M i =
[

p2M i�1

P�i�1
p .

Every point in M i has the form (p, l), where p is a point in M i�1 and l is a line

in the distribution plane �i�1
p . The dimension of M i is thus i + 2. The bundle

projection map ⇡i
i�1 : M

i ! M i�1 has fibers di↵eomorphic to P�i�1
p
⇠= RP1 ⇠= S1.

The distribution on M i is given by

�i
(p,l) = (d⇡i

i�1)
�1(l).

One verifies that each distribution �i is rank 2 and Goursat. The Monster Tower

is thus the sequence of circle bundles

· · ·!M i !M i�1 ! · · ·!M1 !M0 = R2

equipped with a Goursat distribution at each level.

By composing the projection maps ⇡k
k�1, ⇡k�1

k�2, . . . ,⇡
i+1
i we obtain projec-

tions ⇡k
i : Mk !M i, i < k. The horizontal curves at level i naturally prolong (i.e.,

lift) to horizontal curves at level k. However, the curves coinciding with fibers of

⇡i+1
i , i � 1, are special – they project down to points and are not prolongations

of curves from below. They are called vertical and can themselves be prolonged

to (first order) tangency curves, then prolonged again to (second order) tangency

curves, and so on. Vertical curves and their prolongations are called critical. Thus,

at each level i � 2 there are vertical directions, and, in addition, at each level i � 3

there are tangency directions di↵erent from the vertical direction. At any level, all

the remaining (non-critical) horizontal directions are called regular.

Recall that a point p at level i has the form (q, l) where q 2M i�1 and l is

a line in �i�1. We call p a regular, vertical, or tangency point if the direction of l is

regular, vertical, or tangency, respectively. Points which are vertical or tangency are
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called critical. Therefore, at each level i � 3 there are regular and vertical points,

and at each level i � 4 there are regular, vertical, and tangency points.

Now, the RVT code of a point p at level k � 3 is a word (!3!4 . . .!k) in

the letters R, V, T satisfying

!i =

8
>>>><

>>>>:

R if ⇡k
i (p) is a regular point,

V if ⇡k
i (p) is a vertical point,

T if ⇡k
i (p) is a tangency point.

It follows that the only spelling rule for the codes of points is the absence

of the sequence ‘RT’ in the codes; all other codes are realizable. Thus, the general

form of an RVT code of a point is Rk�2 (not dealt with in the present paper), or

else

Rrv+1V T tvRrv · · ·V T t2Rr2V T t1Rr1 . (4.1)

Let us pause momentarily to explain the notation in (4.1). Here, v is the number

of letters V in the RVT code. We have thus partitioned our code into v + 1 pieces

separated by the letters V. We write that the last letter V in the code is followed by

t1 many letters T, and then r1 many letters R. We continue for 1  i  v letting ti

denote the number of letters T following the ith V from the right, and ri denote the

number of letters R following those letters T. Let rv+1 denote the number of letters

R preceding1 the first letter V. Finally, superscripts in (4.1) denote multiplicities.

The germ of a horizontal curve passing through a reference point p is called

regular when it is immersed and tangent neither to the vertical nor tangency direction

at p. It is a central and deep fact in [21] that each germ of a non-constant well-

parametrized analytic plane curve becomes regular after finitely many prolongations

and stays regular in subsequent prolongations. The least number of prolongations

needed to regularize the curve is called the regularization level k, and the k-fold

prolongation of the original curve � is called the regularization of �. This result

bridges two seemingly distant areas: Goursat geometry and the singularity theory

of plane curves. In [21], the first of two proofs of this deep fact is based on the Puiseux

characteristic of a singular plane curve. It is worth noting that the reference point

at level k, hit by the regularized curve, is still critical. Only its ‘daughter’ at level

1Note that here, as in [21], we allow rv+1 � 0. In [24], where the letters R,V,T are replaced by
G,S,T, respectively, the code always begins with two letters G. Thus, the GST codes in [24] are two
letters longer than the RVT codes here and in [21].
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k+1 (hit by the prolongation of the newly regularized curve) and her daughters will

be regular.

Now the germ of a plane curve � with regularization level k � 3 is assigned

an RVT code as well: it is the code of the (critical) reference point hit by the

regularization of �. Therefore, the codes of plane curves always end with V or T;

such codes are called critical (codes consisting solely of letters V and T are called

entirely critical). That is, in the notation from (4.1), the equation r1 = 0 holds for

the codes of curves. The mapping Pc of [21], one of the key players in the present

work, acts precisely on the critical codes.

Lastly, note that if the original curve germ, or its first prolongation, is

already immersed, then the curve’s code is undefined. The further prolongations of

such curves hit (and completely exhaust) the simplest points of the Monster: the

so-called Cartan points, or jet-like points (see Section 4). At each level k � 2 these

points populate the only open dense stratum Rk�2 (the entire M2 when k = 2)

which remains outside the field of interest of the present paper.

We now recall the construction of the RVT code from the derived vector

(see [24]). Suppose we are given a Goursat germ whose derived vector (see Definition

4) is

der = (M1, M1, . . . ,M1| {z }
m1

, M2, M2, . . . ,M2| {z }
m2

, . . . ,Mv+1, Mv+1, . . . ,Mv+1| {z }
mv+1

),

with M1 < M2 < · · · < Mv < Mv+1.

Then v turns out to be the number of letters V in the RVT code of this

germ, which, therefore, has the form of (4.1):

Rrv+1V T tvRrv · · ·V T t2Rr2V T t1Rr1 .

Mormul derived the following relations for ascertaining the multiplicities ri and ti.

See Theorem 3.5 in [24]. One has:

rv+1 = mv+1 � 1

t1 = M2 � 2

r1 = m1 �M2 � 0.

For 2  i  v we have:
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Case 1: Mi divides Mi+1. Then

ti =
Mi+1

Mi
� 2 (4.2)

ri = mi � ti � 1 > 0. (4.3)

Case 2: Mi does not divide Mi+1. Then

ti = mi � 1 (4.4)

ri = 0. (4.5)

4.2.3 The Puiseux characteristic

Suppose � : (R, 0) ! R2 is the parametrization of an analytic plane curve

germ. We say � is badly-parametrized if there exist analytic germs µ : (R, 0) ! R2

and � : (R, 0)! (R, 0) such that d�/dt(0) = 0 and � = µ � �. Otherwise, � is called

well-parametrized. If � is well-parameterized and not immersed then we may define

its Puiseux characteristic, an invariant with respect to the RL-equivalence of curve

germs. Up to RL-equivalence, � has the form

�(t) =
⇣
tm,

X

k�m

akt
k
⌘

where m � 2.

The definition of the Puiseux characteristic is the following. Let �0 = e0 =

m. Then define inductively for j � 0

�j+1 = min{k | ak 6= 0, ej - k}, ej+1 = gcd(ej ,�j+1)

until we first obtain a g with eg = 1. Then the vector [�0;�1, . . . ,�g] is called the

Puiseux characteristic of �.

The Puiseux characteristic is the fundamental invariant in the singularity

theory of plane curves. In [31], Proposition 4.3.8 shows that it is equivalent to at

least seven other classical invariants.

Here, as in [21], we restrict our attention to Puiseux characteristics satis-

fying

�1 > 2�0. (4.6)
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This is a normalization condition, and no equivalence classes of Legendrian curves are

excluded by its imposition. The Puiseux characteristic is an invariant with respect

to RL-equivalence, but not a complete invariant. For example, (t2, t5) and (t3, t5)

have di↵erent Puiseux characteristics, but their first prolongations are equivalent

Legendrian curves. The restriction (4.6) resolves this ambiguity.

4.2.4 The map Pc

Here we recall the definition of the map Pc constructed in Section 3.8.4 of

[21]. Given a critical RVT code (↵), this map yields a Puiseux characteristic Pc(↵)

satisfying (4.6). The relationship between (↵) and Pc(↵) is given in Theorem 3.23

of [21]. The map is constructed recursively as follows.

First define the two maps

ET : (n1, n2) 7! (n1, n1 + n2)

EV : (n1, n2) 7! (n2, n1 + n2).

Then, for an entirely critical code

(!) = (!1, . . . ,!m), !i 2 {V, T}

define E! to be the composition

E! = E!1 � E!2 � · · · � E!m .

Next, we note that any critical RVT code (↵) has one of the two following forms:

A. (↵) = (Rs!), where s � 0 and (!) is an entirely critical RVT code;

B. (↵) = (�Rs!), where s � 1, (�) is a critical RVT code, and (!) is an

entirely critical RVT code.

In case A, let (a, b) = E!(1, 2). Then

Pc(↵) = [�0;�1], �0 = a, �1 = sa+ a+ b.

In case B, let (a, b) = E!(1, 2) and Pc(�) = [�̃0; �̃1, . . . , �̃g�1]. Then

Pc(↵) = [�0;�1, . . . ,�g],
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where

�i = a�̃i for 0  i  g � 1

�g = a(�̃g�1 + s� 1) + b� a.

Equipped with the tools developed in this section, we are now prepared to state and

prove our formula.
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Chapter 5

Main Result

As explained in Section 1, here we compose the formulas presented in [24]

and the algorithm in [21], yielding a formula for the Puiseux characteristic of the

plane curve corresponding to a Goursat germ with given small growth vector. This

formula turns out to be simpler than either of the two from which it was derived,

suggesting a deeper geometric link between singularities of plane curves and singular

Goursat distributions. The problem solved herein was first proposed in [21] as

Question 9.19, part 3, and was asked again in [25] in the Afterword.

5.1 Main Theorem

Suppose we are given a Goursat germ whose derived vector (see Definition

4) is

der = (M1, M1, . . . ,M1| {z }
m1

, M2, M2, . . . ,M2| {z }
m2

, . . . ,Mv+1, Mv+1, . . . ,Mv+1| {z }
mv+1

),

with M1 < M2 < · · · < Mv < Mv+1. Consider the set S = {Mi| Mi�1 divides Mi}.
Let g = |S|. For 1  j  g, let N1, N2, . . . , Ng denote the elements of S in decreasing

order. We always have Ng = M2, since M1 = 1. For 1  j  g let Mkj = Nj .

Theorem 3 The corresponding Puiseux characteristic is

[�0;�1, . . . ,�g]
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where

�0 = Mv+1 (5.1)

�j =
X

i�kj

miMi +Mkj +Mkj�1 (5.2)

for 1  j  g.

Example 1 Suppose der = (1, 1, 2, 2, 2, 2, 2, 2, 4, 6, 6, 6, 18, 24, 24). The associated

RVT code is RV V TRV V RRRRRV . Note that �0 = Mv+1 = M6 = 24. We

also have S = {18, 4, 2}, and therefore g = 3. Then write S = {18, 4, 2} =

{N1, N2, N3} = {M5,M3,M2} so that k1 = 5, k2 = 3, and k3 = 2. Finally, we

compute

�1 =
X

i�5

miMi +M5 +M4 = 90

�2 =
X

i�3

miMi +M3 +M2 = 94

�3 =
X

i�2

miMi +M2 +M1 = 103.

The Puiseux characteristic is thus

[24; 90, 94, 103].

Example 2 This example is very similar to the previous, and the subtle di↵erences

should provide room for comparison. It appears in [21] as Example 3.28.

Suppose der = (1, 1, 2, 2, 2, 2, 2, 2, 4, 6, 6, 6, 6, 18, 24, 24). The associated RVT

code is RV V TRRV V RRRRRV . Note that we have the same values of g, Nj , kj ,

and M1,M2, . . . ,Mv+1 as in the previous example. Thus, we compute

�1 =
X

i�5

miMi +M5 +M4 = 90

�2 =
X

i�3

miMi +M3 +M2 = 100

�3 =
X

i�2

miMi +M2 +M1 = 109.
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The Puiseux characteristic is thus

[24; 90, 100, 109].

Remark 4 We are implicitly assuming that the underlying RVT class is critical

(ends with V or T). Then the associated planar curve germ is necessarily non-

immersed. We only discuss the Puiseux characteristic for these singular planar

curve germs, since any immersed planar curve germ has normal form (t, 0). This

restriction agrees with the domain of the map Pc given in Section 4.2.4. In terms

of the derived vector, according to Section 4.2.2, we must assume that m1 = M2.

5.2 Proof of Theorem

The theorem is proved by induction on g. For readability, we break the

proof into three subsections. In the first, we prove a useful lemma. In the second,

we verify the base case g = 1. In the third, we complete the inductive step.

5.2.1 Lemma

The following lemma makes use of the basic bricks Ai constructed in Section

3.1 of [24]. These are integers from which the entries Mi in the derived vector are

built, and the two actually coincide in some cases – for the precise relationship, see

Theorems 3.3 and 3.4 in [24]. The Ai (and subsequently the Mi) depend only on the

parameters t1, t2, . . . , tv; the multiplicity mi depends on both ti and ri. The bricks

are constructed as follows:

A1 = 1

A2 = 2 + t1

Ai = Ai�2 +Ai�1(1 + ti�1) for 3  i  v + 1.

Lemma 41 Let (!) = V T tN · · ·V T t2V T t1 for N � 2. Let (a, b) = E!(1, 2). Then

a = AN+1

b = A1 +A2 +
NX

i=2

(1 + ti)Ai.
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Proof The lemma follows from the following two observations:

A1 +A2 +
NX

i=2

(1 + ti)Ai = AN +AN+1 (5.3)

and

EV EtN
T · · ·EV Et2

T EV Et1
T (1, 2) = (AN+1, AN +AN+1). (5.4)

Both observations can be easily verified for N = 2. Assuming Equation (5.3) holds

for N , we find

A1 +A2 +
N+1X

i=2

(1 + ti)Ai = A1 +A2 +
NX

i=2

(1 + ti)Ai + (1 + tN+1)AN+1

= AN +AN+1 + (1 + tN+1)AN+1

= AN+1 +AN+2,

so (5.3) is proved by induction. Similarly, assuming Equation (5.4) holds for N , we

find

EV E
tN+1

T EV EtN
T · · ·EV Et2

T EV Et1
T (1, 2) = EV E

tN+1

T (AN+1, AN +AN+1)

= EV (AN+1, tN+1AN+1 +AN +AN+1)

= EV (AN+1, AN+2)

= (AN+2, AN+1 +AN+2),

so (5.4) is proved by induction. This completes the proof of the lemma.

5.2.2 Base case of the induction

For the base case, assume g = 1. Note that k1 = kg = 2. Now, according

to Section 4.2.2 we have ri = 0 for i = 2, . . . , v, so the associated RVT code is

of the form Rs!, with (!) entirely critical (containing no letters R). We also have

mv+1 = s+ 1 and mi = 1 + ti for i = 2, . . . , v. Then Lemma 41, with N = v, gives

a = Av+1

b = A1 +A2 +
vX

i=2

(1 + ti)Ai

= A1 +A2 +
vX

i=2

miAi.
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Then, according to Section 4.2.4, we have that the Puiseux characteristic is [�0;�1],

with

�0 = a = Av+1

�1 = sa+ a+ b

= (mv+1 � 1)Av+1 +Av+1 +A1 +A2 +
vX

i=2

miAi

= A1 +A2 +
v+1X

i=2

miAi.

However, according to Theorem 3.3 from [24], in the case g = 1 we have that Ai = Mi

for all i. Thus, the Puiseux characteristic is [�0;�1] with

�0 = Mv+1

�1 = M1 +M2 +
v+1X

i=2

miMi

as desired.

5.2.3 Inductive step

We now assume Theorem 3 for derived vectors satisfying |S| < g, and prove

that the result must hold for derived vectors with |S| = g. We may assume g > 1.

Begin with an arbitrary derived vector

der = (M1, M1, . . . ,M1| {z }
m1

, M2, M2, . . . ,M2| {z }
m2

, . . . ,Mv+1, Mv+1, . . . ,Mv+1| {z }
mv+1

)

for which |S| = g. The idea is to truncate the associated RVT code (↵) after the last

occurring letter R. Our inductive hypothesis will then apply to the derived vector

associated to the truncated code, and we can reconstruct the Puiseux characteristic

of the original derived vector from here.

To this end, we must give special attention to the entry Ng�1 = Mkg�1 in

der. For notational purposes, we set q = kg�1. Then by assumption we have that

Mq�1 divides Mq, and Mq�1 is the smallest such entry (besides M1 = 1).

The relations in Section 4.2.2 imply that we can write

(↵) = (�Rs!)
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with

s > 0

! = enitrely critical RVT string

� = critical RVT code.

More explicitly, we write

(↵) = Rrv+1V T tvRrv · · ·V T tq�1
| {z }

�

Rrq�1 V T tq�2V T tq�3 · · ·V T t1
| {z }

!

and note that s = rq�1 = mq�1 � Mq

Mq�1
+ 1, by Equations (4.2) and (4.3).

Now, � is our truncated code and we will adorn all data concerning (�) with

tildes to distinguish them from those of (↵). In particular, we write [�̃0; �̃1, . . . , �̃g�1]

for the Puiseux characteristic of (�) and

(M̃ m̃1
1 , M̃ m̃2

2 , . . . , M̃
m̃ṽ+1
ṽ+1 )

for the derived vector. Note that g̃ is indeed equal to g�1 by virtue of the recursive

description of the mapping Pc in [21] (see Section 4.2.4).

With this setup, we begin the calculations. Applying Lemma 41 with

N = q � 2 we find that (a, b) = E! is given by

a = Aq�1

b = A1 +A2 +
q�2X

i=2

(1 + ti)Ai.

But according to Theorem 3.4 in [24], we have1 Ai = Mi for 1  i  q� 1. Also, by

Equations (4.3)-(4.5), we have mi = 1 + ti + ri for all i � 2. But r1 = r2 = · · · =
rq�2 = 0, so for 2  i  q � 2 we have 1 + ti = mi. Thus,

a = Mq�1

b = M1 +M2 +
q�2X

i=2

miMi.

1In [24], the quantity n1 tells us the position of the last occurring letter R in a critical RVT
code. Here, we have n1 = q � 2, which means rq�1 6= 0 and ri = 0 for i < q � 1; in other words, !
is the largest entirely critical string at the tail of (↵).
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Next, we need to relate the derived vector of (↵) to that of (�). Proposition

1 from [25] gives the following relations:

m̃1 =
Mq

Mq�1

m̃i = mq�2+i for 2  i  ṽ + 1

M̃i =
Mq�2+i

Mq�1
for 1  i  ṽ + 1

ṽ = v � q + 2.

Also, according to Section 4.2.4, we know how to compute the Puiseux characteristic

of (↵) from that of (�):

�j = a�̃j for 0  j  g � 1

�g = a(�̃g�1 + s� 1) + b� a.

But by induction we may assume

�̃0 = M̃ṽ+1

�̃j =
X

i�k̃j

m̃iM̃i + M̃k̃j
+ M̃k̃j�1 for 1  j  g � 1.

Putting this all together, we now compute the desired Puiseux characteris-

tic of der = der(↵) in three stages. First we compute �0, then �j for 1  j  g � 1,

then finally �g.

First, we easily find

�0 = a�̃0

= Mq�1
Mq+ṽ�1

Mq�1

= Mv+1.
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Next, for 1  j  g � 1 we have

�j = a�̃j

= Mq�1

⇣X

i�k̃j

m̃iM̃i + M̃k̃j
+ M̃k̃j�1

⌘

=
X

i�k̃j

mq�2+iMq�2+i +Mq+k̃j�2 +Mq+k̃j�3

=
X

i�q+k̃j�2

miMi +Mq+k̃j�2 +Mq+k̃j�3

=
X

i�kj

miMi +Mkj +Mkj�1.

The last equality comes from the general fact that for 1  j  g � 1 we have

q + k̃j � 2 = kj . (5.5)

To see this, recall that kj is defined so that Nj = Mkj is the jth smallest entry in

der which is divisible by the preceding entry. Since this observation applies to the

derived vectors of both (↵) and (�), we find that

M̃k̃j�1 divides M̃k̃j
,

Mq+k̃j�3

Mq�1
divides

Mq+k̃j�2

Mq�1

)Mq+k̃j�3 divides Mq+k̃j�2

)Mq+k̃j�2 = Mkj

) q + k̃j � 2 = kj .

Lastly, we compute �g. From above, we know

a�̃g�1 = �g�1 =
X

i�kg�1

miMi +Mkg�1 +Mkg�1�1

=
X

i�q

miMi +Mq +Mq�1.

Whence

�g = a(�̃g�1 + s� 1) + b� a

=
⇣X

i�q

miMi +Mq +Mq�1 +mq�1Mq�1 �Mq

⌘
+
⇣
M1 +M2 +

q�2X

i=2

miMi

⌘
�Mq�1

= M1 +M2 +
X

i�2

miMi.
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Since we always have kg = 2, this is the desired result.

⌅
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