
UNIVERSITY OF CALIFORNIA
SANTA CRUZ

DYNAMICS OF INVERSE MAGNETIC BILLIARDS ON
POLYGONS

A dissertation submitted in partial satisfaction of the
requirements for the degree of

DOCTOR OF PHILOSOPHY

in

MATHEMATICS

by

Andres Perico

June 2022

The Dissertation of Andres Perico
is approved:

Professor Richard Montgomery, Chair

Professor Francois Monard

Professor Longzhi Lin

Peter F. Biehl
Vice Provost and Dean of Graduate Studies



Copyright © by

Andres Perico

2022



Contents

List of Figures v

Abstract vii

Acknowledgments viii

1 Introduction 1
1.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Some History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 Results not turning corners . . . . . . . . . . . . . . . . . 4
1.3.2 Results turning corners . . . . . . . . . . . . . . . . . . . . 5

2 The Billiard Map 7
2.1 Description of dynamics on the square . . . . . . . . . . . . . . . 7
2.2 Extreme cases: B → 0, ∞. . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Jacobian of the map . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 No turning corners 18
3.1 Symbolic Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.1 Sturmian sequences for classical square billiards . . . . . . 23
3.1.2 Sturmian sequences for inverse magnetic billiards . . . . . 26

3.2 Rational slope (tan θ ∈ Q) . . . . . . . . . . . . . . . . . . . . . . 30
3.3 General slopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Numerical evidence of chaos 40
4.1 Poincaré sections . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2 Lyapunov exponent . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3 A note about Caustics . . . . . . . . . . . . . . . . . . . . . . . . 51

5 Conclusion + Next work 56

iii



Bibliography 58

iv



List of Figures

1.1 A particle on the Inverse Magnetic Billiard . . . . . . . . . . . . . 4

2.1 Initial conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 One bounce in the magnetic billiard: s0 and s2 are on entering

edges, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Going around corners . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6 B = 1

10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.7 B = 1

1000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.8 Two options for non oriented curves. . . . . . . . . . . . . . . . . 16
2.9 A portion of the trajectory if Larmor center is on a symmetry axis. 17

3.1 Example of no turning corners . . . . . . . . . . . . . . . . . . . . 18
3.2 Bouncing on the right side . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Bouncing on the top side . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Bouncing on the left side . . . . . . . . . . . . . . . . . . . . . . . 22
3.5 Case of slope m = p

q
= 2

3 . . . . . . . . . . . . . . . . . . . . . . . 23
3.6 Vertical and horizontal shifts . . . . . . . . . . . . . . . . . . . . . 27
3.7 B = 15, Slope 1/3, s0 = 0.8 . . . . . . . . . . . . . . . . . . . . . 28
3.8 Unfolded B = 15, tan θ = 1

3 . . . . . . . . . . . . . . . . . . . . . 29
3.9 Case of rational slope p

q
. . . . . . . . . . . . . . . . . . . . . . . . 30

3.10 Case of slope p
q

= 2
3 . . . . . . . . . . . . . . . . . . . . . . . . . . 33

v



3.11 Slope 9
32 , s0 = 0.7, period 8 . . . . . . . . . . . . . . . . . . . . . . 35

3.12 Slopes 7
24 , 7

25 , π
11 , s0 = 0.5, period 8 . . . . . . . . . . . . . . . . . 38

3.13 Slopes 7
24 , 7

25 , π
11 , s0 = 0.3, 0.5, 0.7, period 8 . . . . . . . . . . . . . 39

4.1 Periodic orbit turning corners. . . . . . . . . . . . . . . . . . . . . 41
4.2 Poincaré sections with r = 0.02 . . . . . . . . . . . . . . . . . . . 43
4.3 More bounces with Poincaré sections with r = 0.02 . . . . . . . . 43
4.4 Poincaré sections with r = 0.49 . . . . . . . . . . . . . . . . . . . 44
4.5 Poincaré sections with r = 0.85 . . . . . . . . . . . . . . . . . . . 45
4.6 Ratio of regular area to chaotic area . . . . . . . . . . . . . . . . . 46
4.7 Lyapunov exponent for the inverse magnetic billiard system 1.1.2 49
4.8 Lyapunov exponent for the inverse magnetic billiard system 1.1.2

with different “fiducial” trajectories. . . . . . . . . . . . . . . . . . 50
4.9 Orbit of s = 0.9, θ = 0.92, r = 10, a close-up and its Poincaré section 54
4.10 Orbit of s = 0.5, θ = π/2, r = 10, two close-ups, and its Poincaré

section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

vi



Abstract

Dynamics of Inverse Magnetic Billiards on Polygons

by

Andres Perico

We consider a polygon in a two-dimensional plane with a magnetic field orthogonal

to the plane. The field is zero inside the polygon, and a nonzero constant outside.

We study the dynamics of a particle with a negative charge moving on the plane

under the influence of the field. Outside the polygon, it moves along arcs of circles

going counterclockwise. Inside, it moves along line segments. The segments and

arcs are joined at the polygonal boundary so that the velocity varies continuously.

Problems arise because we have a boundary with corners, being this a significant

obstacle for integrability. When the table is a square, we generalize some cases

with rational velocities using symbolic dynamics. We also show numerical evi-

dence of a chaotic-like behavior with other initial conditions; specifically, we use

numerical methods to calculate the Lyapunov exponent for different settings of

the dynamical billiard. We find 4.2 a similar, yet distant, result from [VTCP03],

where the exponent heavily depends on the strength of the magnetic field. Our

main results are a partial classification of the periodic orbits (section 3.2), and a

strong numerical evidence that the map is chaotic and ergodic (section 4).

Keywords. Billiards, Magnetic, Inverse-magnetic, Chaotic, Sturmian sequences,

Lyapunov exponent. MSC2010. 37J30, 37M05, 37M25, 70H99.

vii



Acknowledgments

I have to thank first and foremost Laura and Luffy. For putting up with all

my particularities, while doing, enduring, and excelling on the same path I was

following; and for giving me a reason to keep going together every day. They are

the reason I move forward every day.

I would like to thank Professor Richard Montgomery for his wisdom in math

and life. I get smarter after every talk we have. He has guided me personally and

professionally during these years in Santa Cruz.

I am also thankful to my math peers Vic, Erman, and Deniz; my math siblings

Sean, Gabe, Steven, and Alejandro. They provided company and wisdom in my

life as a Ph.D. student.

Lastly, I would not be here if it was not for my parents and sister, who sacrificed

a lot to give me the best opportunities to succeed with my personal goals.

viii



Chapter 1

Introduction

A dynamical billiard is a dynamical system that studies a particle inside a

region Ω, when the particle hits the boundary ∂Ω, it bounces off it according to

some established rules.

The most common rules are the ones used in optics, acoustics, etc., where the

angle of incidence is the same as the angle of reflection on ∂Ω, and inside Ω, the

particle moves on straight lines; with these specific rules the dynamical system is

known as a “classical” billiard, if the boundary ∂Ω is smooth, the system is called

a “Birkhoff” billiard.

Changing some rules and conditions of the system, mathematicians have been

studying new dynamical billiards, like “magnetic” (with a magnetic field inside),

“outer” (where the particle bounces outside Ω), and recently “symplectic” [AT18].

In this manuscript, we are going to study a variant that was first studied (and

named) in physics [VTCP03], the “Inverse Magnetic” billiard. We concentrate on

the case where Ω is a polygon.

The general concept of a dynamical billiard flow has two interpretations, a con-

tinuous trajectory and a discrete map between boundary points. In this chapter,

we introduce the dynamical system 1.1.2, or continuous interpretation. In chapter
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2.1, we introduce the billiard map - something that lets us use symbolic dynamics

to study our system when the table is a square.

1.1 Setup

Consider Ω ⊂ R2 a bounded, convex region on the plane, and B a piece-wise

homogeneous magnetic field perpendicular to R2 defined by

B = B(q) =


0, q ∈ Ω

B, q /∈ Ω
(1.1.1)

Notice that inside Ω, there is no magnetic field. If we denote J :=

0 −1

1 0

 as

a rotation counterclockwise by π
2 , the ordinary differential equation that describe

the motion of the particle is

q̈ = B(q)Jq̇ (1.1.2)

or


q̇ = v

v̇ = B(q)Jv

A particle with charge e, mass m and speed |v| = |q̇| will move along circles of

‘Larmor radius’ r = m|v|
|eB| outside Ω and on straight lines with velocity v inside Ω.

The resulting dynamical system is called inverse magnetic billiard, first mentioned

in [VTCP03]. A solution to 1.1.2 is called a billiard trajectory. This gives us the

continuous interpretation of the dynamical billiard.
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We insist that the trajectory is differentiable as it travels across the boundary

∂Ω. As a result, we get a map much like the classical billiard map on the space

of pairs (point on ∂Ω, inward-pointing velocity vector), which is defined almost

everywhere. Our goal is to understand this map and its dynamic properties when

Ω is a polygon, especially when Ω is a square.

1.2 Some History

Mathematical standard billiards is a famous subject with many open problems

([Tab95] [KT91]). Magnetic billiards have been studied since 1985 ([RB85]), here,

you have a constant magnetic field inside your billiard table, and your particle has

a charge. In the next decade, this subject was explored in more detail ([BK96]).

Inverse magnetic billiards has not been studied thoroughly, as many mathe-

matical subjects, physics studied first (condensed matter) under some experiments

with pieces wise constant magnetic fields outside a set. A numerical study and

history of this type of billiards can be found in ([VTCP03]). They studied the

Bunimovich billiard [Bun07, Bun79], the famous stadium shape billiard. They

use numerical methods to find a smooth transition from chaos to integrable, de-

pending on the strength of the magnetic field B.

During the 1980s and 1990s, detecting and quantifying chaos was a favored

problem in different subjects (medicine [FLN+90], economics [Che88], physics

[RCD93]). The popularity was partially thanks to methods developed to cal-

culate Kolmogorov entropy [GP83], and Lyapunov exponents [WSSV85, SS85].

These two measures estimate the level of chaos in the dynamical system. After

the years, the calculation methods have been optimized, but the essentials remain
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the same. We follow [WSSV85] and [VTCP03] to find the Lyapunov Exponent

for the inverse magnetic case.

1.3 Main results

Our main results can be divided into two categories, depending on if the parti-

cle’s trajectory goes around a corner or not. See Figure 1.1. The methods used for

studying the first category were not suitable for studying the second. The turning

of corners appears to be the main mechanism leading to chaos in the system.

(a) Going around a corner (b) Not going around a corner

Figure 1.1: A particle on the Inverse Magnetic Billiard

1.3.1 Results not turning corners

When the particle doesn’t go around a corner, Figure 1.1b, there are only four

possible values for the slope of the trajectory inside Ω, we take advantage of this

similarity with classical billiards and use it to unfold the trajectory 3.1.
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In chapter 3 we introduce and prove some results involving Sturmian sequences

of the unfolded inverse magnetic billiard trajectory.

Section 3.2 presents the case when the particle does not turn a corner and the

initial velocity has rational slope.

The case when the initial velocity takes any given value was presented in section

3.3.

The two main results in this part are given by:

• Theorem 1: gives a partial classification of periodic orbits that don’t turn

corners. We give sufficient conditions for certain values of rational slopes,

in order to get a periodic orbit.

• Theorem 2: gives existence of periodic orbits for any given initial velocity.

This is the most surprising result that separates the inverse magnetic billiard

from the classical case: we have periodic orbits for irrational slopes, see

Figure 3.12.

At the end of this chapter, we have the most general classification of orbits 10,

where we establish that the only orbits that don’t turn corners are periodic.

1.3.2 Results turning corners

When an orbit turns a corning, in general, we can’t control the values of the

velocities. For the generic case, we could obtain a dense orbit in both variables:

s, and θ (point on ∂Ω and angle with respect ∂Ω). See for example Figure 4.3b

For this reason, we use numerical methods in chapter 4 to give evidence of several

observed behaviors:
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• Section 4.1 presents the Poincaré sections of the phase space for different con-

ditions, showing the mixing or chaotic behavior depending on the strength

of the magnetic field.

• Section 4.2 gives the Lyapunov exponent for the billiard 1.1.2 as a function

of the magnetic field B. This is the stronger numerical evidence about how

chaotic is the system. We found a jump discontinuity when B → ∞. The

biggest surprise was when B → 0, we found that the system has Lyapunov

exponent practically 0.

• Given the surprise described in the last item, we provide a conjecture about

the existence of caustics when B is small enough.
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Chapter 2

The Billiard Map

2.1 Description of dynamics on the square

Consider the dynamical system 1.1.2, the magnetic field 1.1.1, and take Ω as

the unit square:

Ω = {q = (x, y)|0 ≤ x ≤ 1, 0 ≤ y ≤ 1}.

Initial conditions q0, q̇0 for 1.1.2 can be associated with a pair

(s0, θ0) ∈ (0, L) × (0, π).

L is the length of ∂Ω, s0 represents a point on one edge of ∂Ω which we call the

“entering edge”, and θ0 is the angle formed by q̇0 and ∂Ω. For our case L = 4,

see Figures 2.1, 2.2. Following the billiard’s notation, these coordinates for initial

conditions are called Birkhoff coordinates; even if our billiard is not smooth - a

condition for “Birkhoff” billiards - we will use this denomination.

The particle moves inside Ω in straight line at angle θ0 with respect to its side
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until it hits the boundary again at (s1, θ1) ∈ (0, L) × (0, π), the “exiting point” on

some other edge, called the “exiting side” (Figure 2.2).

Figure 2.1: Initial conditions

After that, the particle moves exterior to Ω along an arc of a circle to be

described and then re-enters Ω at the next entering side at the point and direction

labeled (s2, θ2), the next “entering point”.

The dynamical map that we are studying is the concatenation (s0, θ0) 7→

(s2, θ2). To figure out the arc of the circle outside Ω along which the particle

travels, fix the particle’s charge to be −1, its mass to be m = 1, and its speed to

be |v| = |q̇| = 1; furthermore, take a positive magnitude of B for the magnetic

field. Then, outside Ω, the particle travels counterclockwise along a circle whose

Larmor radius is r = 1
B

and which is tangent to the line joining s0 to s1, that is,

to the interior part of the trajectory.

Which edge s2 lies on, depends on the location of s1 and B, since different

radii of the exterior circle will lead to different re-entry sides at (s2, θ2). The in-

termediate map (s1, θ1) → (s2, θ2) will be referred to as the magnetic bounce.
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As soon as it hits Ω again on re-entry, the particle moves in a straight line.

The line is tangent to the circle of its previous trajectory at the point of entry

(see figure 2.2).

Figure 2.2: One bounce in the magnetic billiard: s0 and s2 are on
entering edges,

The dynamics of 1.1.2, in this setting, can also be described by a map

F : Σ2 → Σ2

F (s0, θ0) = (s2, θ2)

where Σ2 = {(s, θ)|0 ≤ s ≤ 4, 0 < θ < π} = ∂Ω × (0, π) is the space of

9



directed unit vectors toward the interior of Ω with initial points on the boundary.

The map F can be decomposed as

F = F1 ◦ F2 (2.1.1)

where F2 is the exterior magnetic bounce and F1 is the “straight line” map

(s0, θ0) → (s1, θ1).

We want to study the dynamics of this billiard-type map. One of the most

challenging aspect of this investigation concerns trajectories that go around a cor-

ner, which are most of them. See figures 2.2 1.1a. The map is apparently chaotic,

and all the chaos seems to come from turning around corners.

As we said before, it helps to not only consider the discrete map (s0, θ0) →

(s2, θ2) but also the continuous trajectory γ(t) which led to it. This curve γ(t) is

a C1 - curve made of line segments inside Ω and circular arcs outside Ω and is

the solution to the (discontinuous) ODE (1.1.2) with initial conditions γ(0) ∈ ∂Ω,

γ̇(0) = (cos θ0, sin θ0). We will also refer to γ(t) as an orbit.

The main obstruction to carrying out our analysis to a complete picture of

the dynamics proved to be complications arising from orbits going around corners

(Fig 2.3).
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Figure 2.3: Going around corners

To underline this complication, we investigated a simple model of tables with

only one or two corners. We were able to show that there exist orbits that turn

the corner as many times as you like before continuing ‘to another edge’ along a

straight line.

2.2 Extreme cases: B → 0, ∞.

When the magnetic field tends to infinity, the time spent by the particle

outside the billiard table decreases. In the limiting case r = lim
B→∞

rB = lim
B→∞

1
B

,

the particle’s motion is an elastic reflection from ∂Ω, a typical bounce in the optic

sense; this describes the dynamics of classic Birkhoff billiards, so the particle is

trapped in the billiard table forever. See Figure 2.4 where B = 10000, although

11



pretty similar to the classic orbit, this orbit is different, notice how the space is

filled in Figure 2.5, where the conditions are the same but we follow the orbit for

more time.

When Ω is a square, the dynamics are well classified in terms of the slope

(tan θ) of the initial velocity vector, getting a periodic orbit if rational and a dense

one (on the billiard table) if irrational. However, the density of the orbits with

irrational slope, in terms of our space Σ2 = (0, L) × (0, π) is only on the first

component (points on the boundary). This classical orbit has only four veloci-

ties/angles values. In our case, we can have a dense orbit in both components.

Figure 2.4 Figure 2.5

Note that in the Bunomovich billiard [Bun79], the classical case is completely

chaotic, and the chaos measured by the Lyapunov exponent of the system directly

correlates with the strength of the magnetic field. When Ω is a square, the clas-

sical case is completely integrable, but we will see 4.2 that chaos does not behave

as smoothly as in the Bunimovich table.
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On the other limit, the case when r = lim
B→0

rB, the system becomes trivial,

namely, the Larmor radius goes to infinity, so the particle returns to the billiard

table after longer and longer periods. At the limit, the particle continues a straight

trajectory all the time, so the only part of the trajectory inside the square is the

initial segment. This orbit has only one exit and one entry point: the entry point

is the same starting point, and the particle gets there again after infinite time, a

completely integrable system. Figure 2.6 shows the case when B = 1
10 , and Figure

2.7 shows the first part of an orbit when B = 1
1000 .

Figure 2.6: B = 1
10 Figure 2.7: B = 1

1000

2.3 Jacobian of the map

Using the traditional change of coordinates in Birkhoff billiards u = − cos θ,

the map 2.1.1 F can be seen as (s0, u0) → (s2, u2), F : (0, L) × (−1, 1) → (0, L) ×

(−1, 1), a differentiable map of the open annulus. The Jacobian of its components

F1(s0, u0) = (s1, u1) and F2(s1, u1) = (s2, u2) (see Figure 2.2), have the following

13



properties, which were computed by working out algebraic formulae for the Fi in

terms of rational trigonometric functions (see [BK96] [Gas19]).

DF1 =

 ∂s1
∂s0

∂s1
∂u0

∂u1
∂s0

∂u1
∂u0

 =

− sin θ0
sin θ1

∂s1
∂u0

0 − sin θ1
sin θ0

 (2.3.1)

DF2 =

 ∂s2
∂s1

∂s2
∂u1

∂u2
∂s1

∂u2
∂u1

 =

− sin(ϑ−θ1)
sin θ2

∂s1
∂u0

0 − sin(ϑ−θ2)
sin θ1

 (2.3.2)

Here ϑ is twice the angle between the segment s1s2 and the tangent to the

Larmor circle at s1. This implies that det(DF1) = det(DF2) = det(DF ) = 1. Or

that our map is area preserving.

2.4 Symmetries

Suppose for a moment that our unit square Ω is centered at the origin of R2,

from Ω we inherit its symmetries, four rotations (0, π
2 , π, 3π

2 ) and four reflections

(x-axis, y-axis and two diagonals). This group of symmetries is known as D4,

the Dihedral Group of order 4. This group is generated by the two elements J

(rotation by π/2) and R =

−1 0

0 1

 (reflection about the y-axis). Here we prove

some properties of the orbits using the symmetries of our billiard table and our

dynamical system. We will use these to give a partial classification of periodic

orbits.

Lemma 1. If γ(t) is an inverse billiard orbit (solution to 1.1.2) on Ω, then Jγ(t)

and Rγ(−t) are also orbits.

14



Proof. Take γ̃(t) = Rγ(−t), then

˙̃γ(t) = −Rγ̇(−t)

¨̃γ(t) = Rγ̈(−t) = RB(γ)Jγ̇(−t)

Since RJ = −JR we get

¨̃γ(t) = −B(γ)JRγ̇(−t) = B(γ)J ˙̃γ(t)

This proves that γ̃(t) is solution of (1.1.2). For γ̂(t) = Jγ(t) we get:

˙̂γ(t) = Jγ̇(t)

¨̂γ(t) = Jγ̈(t) = JB(γ)Jγ̇(t) = B(γ)J ˙̂γ(t)

Note that the previous lemma proves that a rotation of an orbit is an orbit,

but not always the reflection is. So if γ(t) is an orbit, R(γ(t)), in general, is not.

The main reason for this is that orientation is reversed (R reverses it). Given a

fixed B and point (s, θ), the dynamical system 1.1.2 has two orbits that could

lead to the curve passing through s with slope tan θ if we do not consider the

orientation, see Figure 2.8.

Lemma 2. If γ is a solution of (1.1.2), and one of the Larmor circles has it’s

center on one of the axis of symmetry of the square, with the corresponding inter-

section points on the same edge of the square, then γ is symmetric with respect to

the same axis.

More over if there are n, k ∈ Z and T ∈ D4 such that T (sk, θk) = (sn, θn) then

15



Figure 2.8: Two options for non oriented curves.

Tγ = γ. See Figure 2.9

Proof. Every T ∈ D4 is generated by J and R, since we have symmetry with one

of the symmetry axis, the effect of R changing orientation if voided. This is, given

B, s0, θ0, we have only one option for an orbit in Figure 2.8.

Lemma 3. For every initial conditions in Σ2, for R, R2, JR, JR2 ∈ D4 there is a

magnetic field strength such that the solution satisfies (1.1.2) and Tγ = γ

Proof. Let (s0, θ0) ∈ (0, 1) × (0, π), take B = sin θ0
|s0−0.5| , the center of the Larmor

circle for the first iteration of the map, lies on the vertical axis. The center of

the Larmor circle lies on the one of the axis for R (vertical axis), RJ2 (horizontal

axis), RJ or JR (two diagonals).

16



Figure 2.9: A portion of the trajectory if Larmor center is on a symmetry axis.
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Chapter 3

No turning corners

In this chapter we concentrate on orbits that don’t turn corners, this means

that the magnetic portion of the orbit does not go around a corner on the outside

of the billiard table Ω, see Figures 1.1b 3.1. In this case, the slope of the trajectory

inside Ω can only take 4 possible values, the same ones it would take in the classical

case B = ∞.

Figure 3.1: Example of no turning corners

18



Thanks to the symmetries on a square billiard table, we can assume our ini-

tial condition (s0, θ0) on the bottom side of the unit square (0 < s0 < 1). We will

look for the returning map F (see 2.1) depending on the exiting side: right, top,

or left side. The trajectory outside Ω not going around a corner, is equivalent to

⌊sn+1⌋ = ⌊sn+2⌋, this means that the next entry point (sn+2, θn+2) is on the same

side as the exit point (sn+1, θn+1).

Figure 3.1 shows an example of this case, θ = π
4 or initial slope equal to

1, and radius small enough (depending on our initial conditions), such that the

magnetic bounce F2(sn+1, θn+1) = (sn+2, θn+2) happens on the same side of the

square. Figures 3.2 3.3 3.4 show the three possible cases in this setting. Equations

3.0.1 3.0.2 3.0.3, show the values of the billiard map for their respective instance.
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Bouncing on the right side of the square

Figure 3.2: Bouncing on the right side

sn+1 = 1+(1−sn) tan θ, sn+2 = sn+1 + 2
B

cos θ, θn+2 = π

2 −θn. (3.0.1)
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Bouncing on the top side of the square

Figure 3.3: Bouncing on the top side

sn+1 = 3 − sn − cot θ, sn+2 = sn+1 + 2
B

sin θ, θn+2 = π − θn. (3.0.2)
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Bouncing on the left side of the square

Figure 3.4: Bouncing on the left side

sn+1 = 4 + sn tan θ, sn+2 = sn+1 + 2
B

cos θ, θn+2 = 3π

2 − θn. (3.0.3)

3.1 Symbolic Dynamics

Unfolding trajectories is a common method for analyzing polygonal billiards.

(See [MT02], [Tab95].) Recall in classical square billiards, we can read off the

full dynamics by drawing an arbitrary straight line y = mx + b in the Cartesian

plane and marking where this line intersects the “grid” of horizontal and vertical

lattice lines obtained by setting either x or y to integers. See Figure 3.5. These

intersection points have the form (m, yj) or (xj, n), m, n ∈ Z. To obtain (sj, θj) ∈

T−∂Ω = Σ2 from these crossings, take sj mod 1 to equal yj or xj mod 1 and record

the angle that the line makes with the corresponding lattice edge. See figure 3.5.
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Figure 3.5: Case of slope m = p
q

= 2
3

In geometric terms, we are ‘folding’ the line y = mx + b back up to fit in the

square. In particular, only four values of θj are possible for any trajectory, since

the slope of the line is constant.

We now recall more formally the process.

3.1.1 Sturmian sequences for classical square billiards

We begin by recalling notation and facts around classical square billiards

and, in particular, the notion of the Sturmian sequence of a trajectory.

For the orbit given by the line y = m(x − s0), every point in orbit (sj, θj)

comes from a point (xj, mxj + b) with xj ∈ Z or m(xj − s0) ∈ Z, we can record a

V for the first case and a H for the second case. ‘V’ is for vertical line: the lines

x = n for n ∈ Z are vertical lines. Similarly ‘H’ is for horizontal line. The points

mark where the line y = m(x − s0) crosses the lattice lines in our ‘graph paper’.

This yields to the ’Sturmian Sequence’ of the orbit, a sequence of V ’s and H’s

that depend on s0
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...V n0Hn1V n2Hn3V n4Hn5 ..., where nj ∈ {0, 1} (3.1.1)

Example 3.1.1. For figure 3.5 the Sturmian Word is

V HV V HV HV V H = V 1H1V 1H0V 1H1V 1H1V 1H0V 1H1

so n4 = n10 = 0 and nj = 1 for j ̸= 4, 10.

Another possibility, for a different intercept but the same slope (say for the

line y = 1/3(x − 0.9)) is

V V HV HV V HV H

Note that when viewed as periodic words (e.g., written on a circle), they are

the same word: take the first VH of the first word and place it at the end of the

word to form the second word.

It is important to remark that this sequence is defined if the orbit does not hit

any lattice points (see [MH40], [DM15]). To get the Sturmian sequence, we could

get around it by shifting the line and avoiding the corners - getting a different

orbit in our dynamical system, and this is why we request our orbit not to hit

corners.

Lemma 4. If m is rational, the Sturmian sequence does not depend on the choice

of the intercept.

This lemma lets us talk about the ‘Sturmian Word’ for periodic orbits (m ∈ Q

for classical billiards).

Lemma 5. The Sturmian Sequence is periodic if and only if the trajectory is

periodic.
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When the trajectory is not periodic (m /∈ Q), the Sturmian Sequence has a

non-trivial dependency on s0, and we can not say much about it.

Let σℓ be the reflection in the plane about the line ℓ, and let

S(Ω) = {σl1 , σl2 , σl3 , σl4}

be the four reflections about the four lines making up the boundary of our square

Ω. Let A(Ω) be the group of motions of the plane generated by S(Ω) [MT02].

Every copy of Ω involved in the unfolding is the image of Ω under an element

of A(Ω). Each generator σ ∈ S(Ω) reverses the orientation of the orbit. The

composition of an even number of generators will preserve orientation.

Since we also want to keep track of directions/velocities (our θ or slopes m can

be represented by elements on S1), we take G(Ω) the subgroup of the orthogonal

group generated by reflections through the vertical and horizontal axis. When a

billiard orbit bounces on a side li of Ω, the direction θ ∈ S1 is changed by the

action of the element of G(Ω), which is the projection of σli to G(Ω). In our unit

square case, the possible directions of the orbits are just four - like we mentioned

before.

The obtained sequence of reflections {σk}k∈Z ⊂ A(Ω) in the unfolding can be

related to the sequence {(−1)k} and paired with the previous Sturmian Sequence,

to create an oriented version of the Sturmian Sequence:

{
(−1)kV n2kHn2k+1

}
k∈Z

(3.1.2)

If the orbit is periodic, to the Sturmian Word of finite length L, we can

calculate
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S =
L/2∑
k=0

(−1)kV n2kHn2k+1 (3.1.3)

This sum will result in an expression of the form aH + bV , a, b ∈ Z and does

not depend on the intercept if the orbit is periodic.

Example 3.1.2. In figure 3.5 for p/q = 2/3,

S = V − H + V − V + H − V + H − V + V − H = 0.

3.1.2 Sturmian sequences for inverse magnetic billiards

Let us now explore how much of the classical theory carries over to our

magnetic billiards.

In magnetic billiards, folding and unfolding are less valuable due to turning

corners, but they help us understand periodic orbits in certain situations. Without

turning corners, we can use the same process for classical billiards; at every bounce,

the group A(Ω) acts and changes the orientation from the previous bounce. The

direction will coincide with the direction of the classical billiard. The shift of

the orbit at every magnetic bounce makes the intercept with the lattice Z × Z

different. After unfolding, between every two points F k(s0, θ0) = (s2k, θ2k) and

F k+1(s0, θ0) the unfolded orbit has the orientation preserved if k is even.

We will now use the term “lattice edge” for any edge, vertical or horizontal,

of length one that joins two lattice points. If we ask for not turning corners, then

the entering and exiting sides are the same: (s2n, θ2n) and (s2n−1, θ2n−1) lie the

same lattice edge and moreover θ2n = σliθ2(n+1) for some i. Since the directions

(corresponding to θn) will be on the same G(Ω)-orbit, the inverse magnetic orbit

will have its segments (corresponding to the orbit inside the billiard table Ω) on

the parallel lines with equations:
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y = m(x − s0 + aĤ) + bV̂ . (3.1.4)

where a, b ∈ Z and

Ĥ = 2
B

sin θ0 = 2m

B
√

m2 + 1
V̂ = 2

B
cos θ0 = 2

B
√

m2 + 1
(3.1.5)

Ĥ and V̂ correspond to the shifts from the magnetic bounce on the same

side of Ω covered in the equations 3.0.2 3.0.1 3.0.3, see Figure 3.6. Compare to

the classical case, when the orbit corresponds to the single line y = m(x − s0).

Figure 3.6: Vertical and horizontal shifts

For this unfolded orbit, we can define the same ordered Sturmian sequence
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3.1.2. In the presence of a magnetic field, this has a better application, each ap-

pearance of a positive (negative) V means a shift of V̂ units upwards (downwards)

of the orbit, the same for each appearance of H or −H will mean a shift to the

right or the left by Ĥ units.

We can define the same sum 3.1.3, and if S = 0, this means we had the

same vertical displacements that preserved the orientation as ones that did not,

the same for the horizontal displacements.

Figure 3.7: B = 15, Slope 1/3, s0 = 0.8

Example 3.1.3. Take p/q = 1/3, the figure 3.7 shows the case when s0 = 0.8 and

B = 15, something similar will happen for all s0 ∈ (0, 1) that don’t hit or turn

corners. The unfolded orbit after eight iterations of the billiard map is shown in

3.8, in these conditions we have

S = V − V + V − H + V − V + V − H = 2V − 2H ̸= 0.

We can see the shift on the bottom side of Figure 3.7, where the two en-
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trance points are separated by a considerable distance, compared to the classical

case when they coincide. In Figure 3.8, the original inverse magnetic orbit is rep-

resented in green (web version), the classical trajectory is the dotted gray line.

Every piece of the unfolded inverse magnetic orbit is represented with a black

solid or dashed line. A dashed line represents an inversion of the orientation, a

solid one represents orientation preserved.

Figure 3.8: Unfolded B = 15, tan θ = 1
3

The values a and b in 3.1.4 are the coefficients of V and H in the partial

sums of 3.1.3. To study when the orbit is periodic, we want s2n = s0 for some n,

this will happen on one of the lines y = 2k, k ∈ Z. The orbit points on these lines

are given by (x∗, 2k) where

x∗ = 2k

m
− bV̂

m
− aĤ + s0

In order to coincide with the original piece of orbit, we need x − s0 ∈ Z, or

equivalently:
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Figure 3.9: Case of rational slope p
q

2k

m
− bV̂

m
− aĤ ∈ Z (3.1.6)

Equation 3.1.6 is a sufficient condition for our orbit to close.

3.2 Rational slope (tan θ ∈ Q)

When the slope of the orbit (tan(θ)) is a rational number p
q

with p and q

relatively prime, for classical billiards, the orbit is periodic. We would like to

say that the corresponding orbits are periodic for our inverse magnetic billiards,

but this is not always true. For example, see Figures 2.3 and 3.7. This section

investigates when rational slopes lead to periodic magnetic orbits.

The figure 3.9 shows the first bounces for the example p/q = 2/3. Every

shift has another one that cancels it out. After 2(p + q) bounces, we are at the

initial conditions again. The complete picture is shown in Figure 3.10.

One special case is when the unfolded trajectory crosses the same sides as
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the unfolded classical one. Since the slope is p
q

we will have 2(p + q) bounces. In

the inverse magnetic case, these bounces are when the particle exits and returns

from and to the billiard table. The figure 3.5 shows the case of slope 2/3, where

we have 2(2 + 3) = 10 bounces in the classical billiard.

Lemma 6. If the orbit doesn’t turn corners, tan θ ∈ Q, and 2/B < min{|s0 −

k/q|, |s0p/q −k/p| : k ∈ Z}, then the Sturmian sequence (3.1.2) doesn’t depend on

s0.

Proof. Notice that the requirement of not turning corners plus having a small

radius is equivalent to having the same Sturmian sequence as the classic billiards

linear orbit. Take tan θ = p
q
, p and q relatively prime. The Sturmian sequence

will change between two initial conditions that lead us to hit corners. The initial

conditions that do this are the multiples of 1/q. Between any two of these numbers

(k/q < s0 < (k + 1)/q), the sequence is constant since we always start on a

horizontal line, and p and q are relatively prime, the orbit will not hit lattice

points in the 2q × 2p area of the plane.

If s0 ∈ (0, 1) is on another interval of length 1/q the sequence consists of the same

finite parts (words). (see [DM15])

Lemma 7. If p + q = 2k + 1 for some k ∈ Z then S = 0.

Proof. Assuming we do not turn corners and tan θ = p
q
, the Sturmian sequence

will have a finite portion (Sturmian word) that repeats itself infinitely. In the

area, 2p × 2q, this word repeats itself twice. The first appearance of the word is

the one given in the area p × q, where the trajectory hits p + q lines of the grid

Z × Z. If p + q = 2k + 1 then (−1)2k+1 = −1, this means the second appearance

of the word will have opposite signs of the first one.
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Using the general computation done before in (3.1.6) with m = p/q, after

2(p + q) magnetic bounces we will end up on the same edge as s0, since we are

not turning corners. In the unfolded lattice, this corresponds to the line y = 2p.

The two lines, classic and inverse magnetic, will differ by

aĤ + p

q
bV̂ (3.2.1)

the lemma 7 gives us that this quantity is zero for p+ q odd. In all the cases,

this means that the shift after 2(p + q) bounces will be

a
2
B

p√
p2 + q2 + b

p

q

2
B

q√
p2 + q2 = 2

pB
√

p2 + q2

(
ap2 + bq2

)
(3.2.2)

What we want in order to have a periodic orbit is

2
pB

√
p2 + q2

(
ap2 + bq2

)
= K, K ∈ Z (3.2.3)

The unfolded lattice for the magnetic billiard with these conditions (a radius

small enough to not turn corners) is as shown in Figure 3.10.

Theorem 1. Take initial conditions (s0, θ0). If tan θ0 = p
q

∈ Q, p + q ∈ 2Z + 1,

p, q relatively primes, s0 /∈ Z/pZ and 2/B < min{|s0−k/q|, |s0p/q−k/p| : k ∈ Z},

then the orbit through (s0, θ0) is periodic. For fixed p/q, the set of s0 satisfying

these conditions form a non-empty open set.

Proof. The condition s0 ̸= Zp deletes the cases where the orbit hits corners. We

can take B > 2/ min{|s0
p
q

− 1
q
|, |s0 − 1

p
|} so we actually ensure that the radius of

the circle is small enough to stay in the same side of the square. Since 2
B

is the

diameter of the circle, with this condition, we are securing that the exiting point
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Figure 3.10: Case of slope p
q

= 2
3

(s1, θ1) is at least at one diameter distance from all the corners. This condition

on B makes the diameter of the circle smaller than all the distances between the

orbit and the points in the lattice Z × Z.

The closest that a straight line that starts at the origin with slope p
q

gets

to a point in the lattice is min{|k/q|, |k/p| : k ∈ Z}. A line that starts at (s0, 0)

will get shifted at the intersection points (with the lattice lines) by s0 to the

right on the horizontal lines, and by s0
p
q

downwards in the vertical lines. This

means that we can get as close as we want to the points in the lattice, depending

on s0. Once you fix s0, the closest you get is min{|s0 −k/q|, |s0p/q−k/p| : k ∈ Z}.

We will have 2(p + q) shifts of the classical trajectory in our setting. These

shifts can be V̂ = 2
B

cos θn or Ĥ = 2
B

sin θn, depending on the side of the square

where the magnetic bounce occurs: V̂ for a vertical side (red or orange in the grid

for the web version of this document), and Ĥ for horizontal sides (blue and green

on the grid). These numbers correspond to the formulas in the previous section

3.1.5.
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The unfolded trajectory in the plane will cross 2q vertical lattice lines and

2p horizontal lattice lines; p of those crossing correspond to the lower side of the

square, p to the upper side, q to the left side, and q to the right side. In our

notation, this means 2p shifts of Ĥ units horizontally and 2q shifts of V̂ units

vertically. Since the rotation is counter-clockwise, the shifting on the lower side

is always to the right, upwards on the right side, to the left on the top side, and

downwards on the left side. The shifting is towards opposite directions on parallel

sides. Because p + q is odd, we have that S = 0 (Lemma 7), so the orientations

are preserved. With this, we have that the shifts will cancel each other. We will

obtain (s0, θ0) = (s2(p+q), θ2(p+q)), this proves the theorem.

We’ve proved the existence and partially classified periodic orbits that have

rational slopes and do not turn corners. The classification is not complete, namely,

we don’t have conditions for a periodic orbit when the slope is p/q with p+q even

and which don’t turn corners, but we do know is that if they exist, the period is

not 2(p + q). To complete the classification, we should show that the equation

3.1.6 has solutions, but we don’t know how a and b generally behave in the case

p + q even.

The classification is also incomplete because these are not the only periodic orbits.

Depending on B we can have orbits with rational slope p
q

and period less than

2(p + q). See the example in the figure 3.11 where tan θ0 = 9
32 but the period of

the orbit is 8, not 288. See also the examples showed in Figures 3.13 3.12.

Notice that the symbolic dynamics, and the result above, can be generalized

to regular polygons that tessellate the plane: triangles and hexagons.
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Figure 3.11: Slope 9
32 , s0 = 0.7, period 8

3.3 General slopes

The symbolic dynamics we developed in chapter 3.1 are valid for any value of

the slope. The previous chapter explored when the slope was rational, so we had

a method to count or keep track of an orbit’s unfolded trajectory while traveling

through the lattice lines on our graph paper, ultimately leading to a control of

the oriented Sturmian sequence 3.1.2 and the Sturmian sum 3.1.3.

When the slope is not rational, we do not have a method to keep track of the

crossings. In classical billiards, the irrationally sloped line y = mz + v represents

a trajectory for an irrational flow on a torus. The entering points s2j’s represent

the orbit of the Poincare section of this flow. Thus, these s2j’s for the classical

problem are dense in the unit interval. We cannot use the same argument as
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before and take the minimum distance to a lattice point over a finite area (2p×2q

rectangle in the rational case).

In a generic case, we would eventually have our magnetic particle close to

a lattice point that it should turn a corner (see chapter 4). However, this is not

always the case.

Theorem 2. For every θ ∈ (0, π), there exist B and s0 such that the solution to

1.1.2 is periodic.

Proof. The equation 3.1.6 is valid for all θ ∈ (0, π).

We can rewrite the condition for periodicity as:

2k

tan θ
− b

tan θ

2
B

cos θ − a
2
B

sin θ ∈ Z

or

2k − b
2
B

1√
m2 + 1

− am
2
B

m√
m2 + 1

= Zm, Z ∈ Z

If this equation has a solution, and we take a, b, k, Z as constants, we get a

continuous function of B in terms of m:

B = 2k
√

m2 + 1 − 2b − 2am2

Zm
√

m2 + 1
. (3.3.1)

m cannot be 0 since θ ∈ (0, π) - we don’t allow initial velocities horizontal.

Z cannot be 0, since it represents the horizontal distance traveled by the orbit -

being 0 means that the orbit stayed the whole time at a single point.
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When two orbits cross the same lattice lines and get to the same lattice edge

when y = 2k, we will have a, b, k, Z constant.

For a big enough B, if we have a periodic orbit of slope m = tan θ0, and

starting point s0, there is a neighborhood U ⊂ (0, π) of θ0 where the oriented

Sturmian sequence 3.1.2 are the same, this implies that the Sturmian sum 3.1.3

is small enough, hence and a, b, k, Z do not change. Therefore, the equation 3.3.1

has a solution for every θ ∈ U .

Theorem 1 finishes the proof since the slopes m = p/q, p + q odd, are dense

on R.

Theorem 2 gives us the existence of a periodic orbit for any value of the

slope, irrational or rational, including the cases when the slope is p/q with p + q

even.

The same can be said about B. If there is a periodic orbit of 1.1.2 with initial

conditions tan θ, s, and magnetic field B without turning corners, then there is a

neighborhood (B − e, B + e) where we can find solutions to our problem.

Note that the existence of periodic orbits for B > 1 is always secure, just

taking the initial conditions (1/B, π/2), but with this remark, we have something

more substantial:

Lemma 8. For any B > 1, there exist θ and an open set (s − e, s + e) ⊂ (0, 1),

such that the initial conditions (s0, theta), s0 ∈ (s−e, s+e) yields a periodic orbit

for 1.1.2.

Lemma 9. For any θ ∈ (0, π), there exist a value of B and an open set (s−e, s+

e) ⊂ (0, 1), such that the initial conditions (s0, theta), s0 ∈ (s − e, s + e) yields a
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periodic orbit for 1.1.2.

Note that Theorem 1 and the previous results, secure the existence of infinite

2(k + 1) periodic orbits for any k ∈ N.

Example 3.3.1. As an illustration of the previous results, we show the cases

when the slopes are 7
24 , 7

25 , π
11 . All of them are close to each other. The picture

in figure 3.12 show the three cases with the same initial starting point s0 = 0.5

(different B), as theorem 2 says. The picture in figure 3.13 shows the same cases

shifted to different initial points. We could translate any of the three orbits to an

initial point in the interval (0.3, 0.8). All the orbits we obtain here are periodic.

Figure 3.12: Slopes 7
24 , 7

25 , π
11 , s0 = 0.5, period 8
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Figure 3.13: Slopes 7
24 , 7

25 , π
11 , s0 = 0.3, 0.5, 0.7, period 8

Lastly, we present a lemma that gives a full classification of these type of

orbits that do not turn corners.

Lemma 10. If an inverse magnetic billiard orbit 1.1.2 on the square doesn’t turn

a corner, it is periodic.

Proof. If not periodic, one of the sides must fill out a dense set of points. This

is because the lines 3.1.4 will be dense on a strip of the plane. Eventually one of

the lines (corresponding to a segment of an orbit) will cross one lattice edge close

enough to turn a corner, this is: there is a line 3.1.4 with distance less than 1
B

to

one of the lattice points Z × Z.
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Chapter 4

Numerical evidence of chaos

In this chapter, we give numerical evidence that our billiard map tends to be

chaotic.

After a turn of a corner the set of θ values is dense in most cases, the slope

can be rational or irrational. Even though we can have periodic orbits that turn

corners, see Figure 4.1. If the slope is rational, we are not necessarily in the con-

ditions of Theorem 1, we have violated the condition of being away from a lattice

point by the minimum established distance.

The Bunimovich stadium [Bun79] is a billiard table consisting of a square

with two half circles attached at opposite sides, forming a smooth boundary, which

is a well-known and studied problem. In the classical case, the case when B → ∞,

the Bunimovich billiard is ergodic and mixing, [VTCP03] proved that by the selec-

tion of B, we could control the chaos in this billiard system. In the same setting,

when B → ∞, square billiards are completely integrable, we were hoping to make

a similar statement as [VTCP03] for our case.
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Figure 4.1: Periodic orbit turning corners.

Some words on the methods: for visualizing the solutions of 1.1.2 we use

numerical integration of the ODE, and used the highest precision possible on the

machine, reducing the numerical noise in the code.

To get the data points on Σ2 for the map 2.1, the code was written in Python,

providing exact numbers when possible - up to 1016 decimals.

Using this data, we calculated the Lyapunov exponent for the times the gen-

erated by 1.1.2 using the method described in [WSSV85]. We also followed the

lead of [VTCP03] and used Jacobi fields to calculate the Lyapunov exponent and

the phase space volume ratio.
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4.1 Poincaré sections

Since we already studied the case when we were demanding the magnetic

bounce to occur on the same side, we now turn to the case when the charged

particle goes around at most one; this is the same as asking for

⌋s1⌊ mod4 = ⌋s2⌊+1 mod4

where F2(s1, u1) = (s2, u2).

The system fulfills the last condition if B < 1, we limit the Larmor radius

to be r = 1
B

< 1, and it will be small enough to go around at most one corner, so

the entering side is the same or adjacent to the exiting side.

The figures show the Poincaré section of the phase space, F n(s0, θ0) =

(s2n, θ2n) for different numbers of iterations. We calculate the map F : Σ2 → Σ2

with different initial conditions and radii. These are the points when the charged

particle enters our billiard table, the magnetic-field free zone, and crosses the

boundary ∂Ω at the point s ∈ (0, L) with and angle θ with respect to ∂Ω. Here

we use the Birkhoff coordinates (s, u), u = − cos θ in the depicted figures.

Example 4.1.1. We start with a small radius, r = 0.02. Taking a look at a

periodic orbit, Figure 4.2a shows something similar to Figure 3.1, a periodic orbit

of order 4, when initial velocity has slope 1.

With four different initial conditions, we get the different orbits in Figure 4.2b,

depicted with different colors (web version). Some of them turn corners, so now

we have more than one horizontal value.
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(a) A periodic orbit (b) Four orbits

Figure 4.2: Poincaré sections with r = 0.02

Figure 4.3a shows when we increase the number of iterations (1000), the

phase space start to fill up. And when we go for 10000 bounces, we can observe

in Figure 4.3b that all the phase space is virtually completely covered.

(a) 1300 bounces (b) 10000 bounces

Figure 4.3: More bounces with Poincaré sections with r = 0.02

Example 4.1.2. Trying with a bigger radius, r = 0.49 we encounter a piece-wise

linear behavior.
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(a) Chaos only (b) Regular area filled

Figure 4.4: Poincaré sections with r = 0.49

Example 4.1.3. Figure 4.5 shows the case with r = 0.85, here is more clear that

there is a piecewise linear behavior.
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(a) One orbit (b) 100 orbits

(c) 900 orbits

Figure 4.5: Poincaré sections with r = 0.85

Figure 4.5a, shows that we can fill the chaotic part with only one orbit.

The regular regions are filled with different orbits coming from different initial

conditions. Figures 4.5b and 4.5c show how we can fill the space when we go

from 100 to 900 initial conditions. These initial conditions come from a uniformly
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distributed grid on the phase space, the first case is a 10 × 10 grid, the latter is a

30 × 30, every color corresponds to one orbit (web version).

We can notice with the previous examples that as B increases, so does the

chaotic parts of the Poincaré section. When B is large enough, the system is

nearly completely chaotic. As B decreases, the Larmor radius increases and the

regular regions of the phase space start to occupy more and more area.

To make these observations formal, we calculate the ratio of the regular area

to the chaotic areas in the Poincaré section. We do this as a function of B or

r = 1
B

, using the box counting method with a 1000 × 1000 grid of the square.

As expected, this function is completely different for big and small values of B.

When B > 50 the regular areas are almost negligible, and the system is nearly

completely chaotic. However, when r > 0.5 the regular areas get bigger and

occupy significant space of the phase space.

Figure 4.6: Ratio of regular area to chaotic area
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4.2 Lyapunov exponent

There have been plenty of works on Billiards and chaos. Billiards is a play-

ground for dynamical systems, in the 1980s [Woj85] [Woj86] showed cases that

lead to non-vanishing Lyapunov exponents in a large class of billiards with convex

pieces of the boundary.

Treating a solution orbit to 1.1.2 as a time series, we follow the algorithm

described in [WSSV85] and [RCD93]. Nowadays, there are several methods to

calculate the Lyapunov exponent of a time series, we found that most of them are

pretty similar to this algorithm.

The algorithm selects an initial point s0 = γ(t0) on a “fiducial" trajectory

[WSSV85], finds it’s closest neighbor, n0(t0), and store the distance between them,

d0 = ||γ(t0)−n0(t0)||. Follow the orbit of n0(t0) until the separation is bigger than

a tolerance d′
1 = ||γ(t1) − n0(t1)|| > ϵ. Find the closest neighbor to s1 = γ(t1),

store d1 = ||γ(t1) − n1(t1)||, follow n1’s orbit until d′
2 = ||γ(t2) − n1(t2)|| > ϵ. The

biggest Lyapunov exponent is given by

λ = 1
tN − t0

M∑
1

log2
d′

i

di−1

In the process, we use Grand-Schmidt on every step to normalize the frame

{γ̇, γ̇⊥} to the “fiducial” trajectory.

We also used Jacobi fields to calculate the same Lyapunov exponent, getting

similar results. This is the same method used in [VTCP03], and previously used

in magnetic billiards on [Tas97]. For this method, we looked for the change of

the Jacobi fields along a particular trajectory. We can define the Jacobi field as
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∂γϵ(t)
∂ϵ

|ϵ=0, where γϵ is a one-parameter family of orbits, γ0 plays the role of the

correspondent “fiducial” trajectory we are studying with the previous method.

Following notation [VTCP03], to find the Lyapunov exponent we calculate

the biggest eigenvalue of the product

n−1∏
k=0

T ′
n−kEn−kTn−kPn−k

for a big n (we used n = 100000); here T ′, R, T, P are the matrices giving the

Jacobi fields at one iteration of the map 2.1. P gives the solution when the particle

is inside the table Ω (no magnetic field); E when it is outside Ω (magnetic field

B); T and T ′ when it is in the boundary transition, T for going out of Ω, T ′ for

coming back inside.

P (t) =

1 t

0 1

 , E(t) =

 cos(Bt) 1
B

sin(Bt)

−B sin(Bt) cos(Bt)

 , T (θ) =

 1 0

B arctan(θ) 1



Here θ is the corresponding angle of the particle with ∂Ω (see 2.2), and t is

the time, since we are assuming constant speed 1, t could be interpreted as the

distance traveled by the particle. Each of the matrices P, E, T are one-parameter

subgroups of SL(2,R).

Figure 4.7 shows the results of our calculations for the Lyapunov exponent

after reducing the numerical noise; we plotted the more classical version of r = 1
B

vs λ.
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Figure 4.7: Lyapunov exponent for the inverse magnetic billiard system 1.1.2

In order to check our approach, we calculated the Lyapunov exponent with

different “fiducial" trajectories with Wolf’s method [WSSV85], and with the Jacobi

Fields method. Figure 4.8 show three different cases that were used to reduce the

numerical noise in order to obtain Figure 4.7.

The figures clearly show a correlation between the Lyapunov exponent λ and

the strength of the magnetic field B. For small values of B, the value of λ is min-

imal. After r > 5, the system has a negligible Lyapunov exponent; this is because

the orbits start to become circles with the square table as a point on them, see

the Poincaré section and orbit examples in Figures 4.10 and 4.9.

Meanwhile, if B augments, so does λ. We can observe that λ grows signif-

icantly for r < 0.3 and doesn’t come back down. This was also expected as we

saw in the Poincaré sections that almost filled the whole phase space (see section
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Figure 4.8: Lyapunov exponent for the inverse magnetic billiard system 1.1.2
with different “fiducial” trajectories.
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4.1).

Notice that we have a peak at our calculations, and we do not have a smooth

function as [VTCP03] with the Bunimovich billiard. We also have a discontinuity

when B → ∞, since our billiard table is integrable in the classical case, we have

λ = 0, but in the figure we are not close to zero when B gets bigger.

We need to point out that ergodicity does not follow automatically from pos-

itive Lyapunov exponents.

Positive Lyapunov exponents for a billiard leads automatically to strong mix-

ing properties: countable number of ergodic components, positive entropy, etc.

[Woj86].

4.3 A note about Caustics

For classical billiards, if our billiard table Ω has curvature zero at some point

of ∂Ω, there exists no caustics for this problem. [Woj86] For the inverse magnetic

problem can be proved that something similar happens (we will obtain parallel

trajectories that can’t be tangent to the same curve). [Gas21]

Our case has a difference: corners – our main obstruction since the beginning.

But when the magnetic field is weak (r is big), the presence of corners have lit-

tle to do with the dynamics of the problem. Numerically, our problem on the

square behave similarly than the problem on the table consisting of a square with

rounded corners by ϵ circles; and the same as the tables x2n + y2n = 1.

Having this in mind, it is surprising to see examples that show indication of the

51



existence of “caustics", that can be seen as an empty space, or as a cluttered

hyperbolic region in the middle of the table that appear to be always tangent to

the orbit.

The conjecture, more precisely, would be that for a radius big enough, there

is an open set of initial conditions whose trajectories stay tangent to a continuous

curve in the plane. Moreover, that there exist continuous curves that the billiard

orbit is always tangent to.

We provide some examples that lead to this conjecture. This conjecture

is supported by the Poincaré sections showed in4.1, and the ratio of regular to

chaotic area showed in 4.6.

In some cases, this will lead to orbits not going through a disk at the center

of the table. To illustrate, in table 4.1, we take r ∼ 2.1, and a grid of initial con-

ditions. Each row in the table represents a different initial position, each column

a different initial velocity.

A similar result holds for radii big enough r > 2. This can be compared to

the Poincaré sections and Lyapunov exponents calculated before. For bigger radii

(small magnetic field) we have more regular space on Σ2 and the chaos decreases

– as seen in the Lyapunov exponent from before.
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s
tan θ

π − 0.2 π − 0.1 π π + 0.1 π + 0.2

0.68

0.7

0.8

0.9

0.99

Table 4.1: Empty center

End Figure 4.9, shows an example of the empty center that we described,

and it’s Poincaré sections.

Figure 4.10, shows the case when the “caustic” is hyperbolic, and all the orbits

get clustered in the center of the square.
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Figure 4.9: Orbit of s = 0.9, θ = 0.92, r = 10, a close-up and its Poincaré
section
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Figure 4.10: Orbit of s = 0.5, θ = π/2, r = 10, two close-ups, and its Poincaré
section.
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Chapter 5

Conclusion + Next work

When the magnitude of the magnetic force goes to infinity, inverse magnetic

billiard dynamics limits to classical billiards on the square, but turns out to be

much more intricate and complicated than regular billiards. Numerical experi-

ments and calculations suggest that the dynamics is ergodic for strong magnetic

fields, while it has unexplained saw-tooth type patterns in the intermediate range

of fields.

We proved the existence and partially classified periodic orbits with rational

slopes that do not turn corners. The classification is not complete. Namely, we

do not have specific conditions to get periodic orbits with slope different from p/q

and p + q odd.

We proved existence of periodic orbits for any given values of B and θ, The-

orem 2 shows a dense set of these orbits for some conditions, see Example 3.3.1.

We calculated the Lyapunov exponent of the system, and found some depen-

dence on the strength of the magnetic field. The surprise came on the jump that
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is present when B goes to infinity, gong from positive to 0 (classical case).

There is much more to prove and see. Currently, we are working on the

stability of periodic orbits - some recent work [Gas21] shows stability of a family

of tables that limit to the square.
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