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Abstract

The Hamiltonian Dynamics of Magnetic Confinement and Instances of Quantum

Tunneling

by

Gabriel Martins

We consider a class of magnetic fields defined over the interior of a manifold M which go to

infinity at its boundary and whose direction near the boundary of M is controlled by a closed

1-form σ∞ ∈ Ω1(∂M). We are able to show that charged particles in the interior of M under

the influence of such fields can only escape the manifold through the zero locus of σ∞. In

particular in the case where the 1-form is nowhere vanishing we conclude that the particles

become confined to its interior for all time. We also describe a class of magnetic fields defined

on the unit disc which is strong enough to confine classical charged particles to the inside of the

disc but fails to confine quantum particles, which provides evidence for the presence of quantum

tunneling for such systems.
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Introduction
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Chapter 1

Magnetic dynamics

1.1 Preliminaries

We study the global asymptotics of the motion of a charged particle inside a manifold

with boundary under the influence of a magnetic field B defined over its interior. We show

that if the magnetic field goes to infinity fast enough at the boundary with a controlled nonzero

direction which is tangent to the boundary, then every particle in its interior becomes confined

for all time.

The understanding of magnetic confinement is incredibly valuable, most prominently

because of its current usage in the construction of Tokamaks, which are torus-shaped devices

used in fusion power generators. Our approximation excludes the possibility of collision of the

interior particles with the Tokamak (represented here by the boundary of the manifold).

Our work is motivated by [6] where Colin de Verdière and Truc proved that a charged

quantum particle becomes confined to the interior of a compact oriented manifold provided
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that the magnetic field goes to infinity fast enough at its boundary. In their work they pose the

question of whether a classical analogue of their results would hold, which is the problem we

address here.

Much work has been done on the analysis of the global behavior of solutions to

Lorentz equations and related problems. In [11] Truc analyzes axially symmetric linear mag-

netic fields in R3 and finds an open set of initial conditions for which the solutions are bounded.

In [3] Braun studies the Earth’s magnetic field and establishes the existence of almost-periodic

solutions. In [4] Castilho analyzes magnetic fields on Riemannian surfaces and finds conditions

for trapping particles with large enough charge around level sets of the magnetic field. In [9]

working in a quantum context, Montgomery shows that if a magnetic field in 2 dimensions van-

ishes nondegenerately along a closed curve, then its ground state concentrates along this curve

as the ratio e/h of the charge over Planck’s constant tends to infinity.

Most of the previous results concerning the classical system are based on a pertur-

bative approach and are proven by applications of Moser’s twist theorem for perturbations of

integrable systems. Our strategy in this problem is different but not unrelated, by controlling

the way the magnetic field tends to infinity at the boundary we’re able to obtain a system of co-

ordinates that shares enough of the properties of the action-angle coordinates in the integrable

case and by taking advantage of conservation of energy we’re able to establish confinement.

A magnetic field on a Riemannian manifold (M,g) is modeled by a closed 2-form

B ∈ Γ

(∧2T ∗M
)

. This form induces an antisymmetric endomorphism Y : T M→ T M via the

relation B(·, ·) = g(·,Y (·)). The corresponding equation of motion, called the Lorentz equation,
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for a particle of charge e and mass m moving in M under the influence of B is:

m∇q̇q̇ = eYq(q̇) (1.1)

where we denote by Yq : TqM→ TqM the fiber-wise linear map to make the dependence of Y on

the base point q explicit.

Definition 1. We will call a solution q(t) of equation 1.1 a B-geodesic.

Because Y is antisymmetric, the quantity |q̇|2 is an integral of motion of this system,

since:

d|q̇|2

dt
= 2g(∇q̇q̇, q̇) = (2e/m)g(Y q̇, q̇) = 0

Thus every solution has constant speed. However, unlike the geodesic flow, the dy-

namics on each level set {|q̇|2 = c} are not simple reparametrizations of each other.

As an example, on R3 if ~B is a vector field we are able to encode it as the 2-form

B = 〈·, · ×~B〉 where 〈·, ·〉 denotes the Euclidian inner product. The closed condition dB = 0

for the 2-form is equivalent to the divergence-free condition ∇ ·~B = 0 for the vector field. The

endomorphism Y above is simply Y v = v×~B and equation (1.1) in this case takes the familiar

form:

mq̈ = eq̇×~B

For the 2 dimensional picture one may consider a magnetic field of the form ~B =

(0,0,B(x,y)). This assumption forces particles in the xy-plane whose initial velocities are tan-

gent to the plane to stay in this same plane for all time. The equation of a charged particle under

the influence of this field is:

mq̈ =−eB(q)Jq̇ (1.2)
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where J =
(

0 −1
1 0

)
is the standard complex structure on R2.

If we consider a planar system with configuration space given by a bounded planar

domain Ω⊂ R2 endowed with the standard Euclidian metric, and having smooth boundary ∂Ω

and consider a magnetic field B(q) = B(q)dx∧ dy, then equation (1.1) for a charged particle

moving in Ω under the influence of B reduces precisely to equation (1.2).

1.2 The Hamiltonian structure

In this section we describe how to lift the second order differential equation (1.1) on

M to a Hamiltonian system on T ∗M. The Hamiltonian vector field however will not preserve

the standard symplectic form on T ∗M, but a twisted version obtained by adding an appropriate

multiple of the magnetic field.

We will first present this global formulation, then we will see that in the case where we

can find a primitive 1-form (a magnetic potential) for B, we may find a different Hamiltonian

vector field which also lifts the Lorentz equation and that will indeed preserve the standard

symplectic form on T ∗M. This formulation will be useful for the momentum estimates used in

our proofs.

Recall that on T ∗M we may define the tautological 1-form α ∈ Γ(T ∗(T ∗M)) by:

αp(ξ) = p(dπp(ξ)), ξ ∈ Tp(T ∗M)

where π : T ∗M→M is the base-point projection and dπ : T (T ∗M)→ T M is its derivative. The

canonical symplectic form on T ∗M is then:

ω0 = dα
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On a trivialization (q, p) induced by coordinates on M the standard symplectic form

has the simple expression ω0 = d pi∧dqi.

The twisted symplectic form is:

ωB = ω0 + eπ
∗B

We then define the Hamiltonian H : T ∗M→ R:

H(q, p) =
|p|2g
2m

where | · |g is the natural norm induced on T ∗M by the metric g. Given the Hamiltonian we may

use the symplectic form to define the Hamiltonian vector field XB by:

ωB(XB, ·) =−dH

Definition 2. We call the flow of XB the magnetic flow of B.

A straightforward computation allows us to see that the integral curves of XB are

related to B-geodesics in M.

Proposition 1. Let γ : [a,b]→ T ∗M be an integral curve of XB. Then the curve c : [a,b]→M

given by c = π◦ γ is a B-geodesic. Conversely, every B-geodesic c : [a,b]→M is the projection

to M of some integral curve γ : [a,b]→ T ∗M of XB.

Now suppose that we are in the special case where there is a 1-form A satisfying

dA = B, we call A a magnetic potential for B (notice that A always exists locally since dB = 0).

In this case we may describe an alternative Hamiltonian structure for this system in a simpler

way by using the magnetic potential. We define the Hamiltonian HA : T ∗M→ R by:

HA(q, p) =
1

2m
|p− eA(q)|2g (1.3)

6



We then use the standard symplectic form to define the Hamiltonian vector field XA

on T ∗M by:

ω0(XA, ·) =−dHA

In natural coordinates since ω0 = d pi∧dqi we may write the Hamiltonian vector field

as:

XA = (∂piHA)∂qi− (∂qiHA)∂pi

The equation for the magnetic flow takes the simple form of Hamilton’s equations:

q̇i = ∂piHA

ṗi = −∂qiHA

(1.4)

The same result of proposition 1 holds for integral curves of XA: they are all lifts of

B-geodesics in M.

The disadvantage of this alternative approach is that if the magnetic field is not exact

it can only be applied locally, additionally this alternative Hamiltonian vector field will be de-

pendent on the choice of magnetic potential, which means that if the magnetic field is not exact,

we may not use it to define a global Hamiltonian vector field on T ∗M.

Remark: The first of Hamilton’s equations expresses the Lengendrian transform re-

lating momentum and velocity. In this case we obtain:

mq̇ = (p− eA)#
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Part II

Planar results
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Chapter 2

Magnetic confinement on planar regions

2.1 Set up and main results

Let Ω⊂R2 be an open bounded region with smooth boundary and let B∈Γ

(∧2T ∗Ω
)

satisfying dB= 0 be a magnetifc field. We will show that if B grows fast enough as it approaches

the boundary, then a particle in Ω never reaches the boundary of the region in finite time. This

implies in particular that the magnetic flow on T ∗Ω is complete. In order to phrase our condition

more precisely we introduce normal coordinates on a neighborhood of ∂Ω.

Let C be a connected component of ∂Ω, let L be its length and γ : R/LZ→ C be an

arc length parametrization of this curve. Denote by ν(s) the inward-pointing normal vector of C

and define the curvature κ(s) by γ̈(s) = κ(s)ν(s). In this way we may define normal coordinates

x : (0,ε)×R/LZ→Ω by

x(n,s) = γ(s)+nν(s) (2.1)

For a small enough choice of ε > 0 the map x is a diffeomorphism, we denote its
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Figure 2.1: Normal coordinates on a neighborhood of one of the boundary components.

image by ΩC (ε) ⊂ Ω, which is a collar neighborhood for the boundary curve C . We can now

state our main theorem:

Theorem 1. For every connected component C of ∂Ω, write the magnetic field over ΩC (ε) as

B = B(n,s)dn∧ds using normal coordinates. Suppose that B is smooth and that for every C we

have:

lim
n→0

∣∣∣∣∫ ε

n
B(m,s)dm

∣∣∣∣= ∞, ∀s ∈ R/LZ. (2.2)

Furthermore suppose that for all C , there is a constant DC such that:

sup
s

∫
ε

0

∣∣∣∣∂B
∂s

(m,s)
∣∣∣∣dm < DC (2.3)

Then, no B-geodesic starting in Ω reaches the boundary ∂Ω in finite time.

Since the second cohomology of Ω vanishes (notice that Ω is homotopic to a bouquet

of circles) the magnetic field B in this setting always possesses a globally defined potential A.
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This means we can freely use either of the descriptions given for the Hamiltonian structure of

this system. Using the theorem above we obtain the following corollary:

Corollary 1. Under the assumptions of Theorem 1 the Hamiltonian flow of XB on T ∗Ω is com-

plete, moreover given any potential A of B, the Hamiltonian flow of XA is also complete.

Proof. Let X denote either XB or XA and H : T ∗Ω→ R denote the corresponding Hamiltonian.

Let γ : I → T ∗Ω be an integral curve of X with I ⊂ R its maximal domain of definition, let

π : T ∗Ω→ Ω be the base point projection, let H0 = H(γ(0)) = H(γ(t)) be the energy of γ and

consider c = π◦ γ the B-geodesic obtained from projecting γ down to Ω.

If c is contained in a compact subset K of Ω then γ is contained in the compact subset

π−1(K)∩H−1(H0) of T ∗Ω, hence γ must be defined for all time, that is I = R. Otherwise, c

must approach the boundary, and by the previous theorem it must take infinite time to do so, in

particular it must be defined for all time and therefore γ is defined for all time.

By restricting the form of the magnetic field we may give a more quantitative descrip-

tion of the boundary behavior of the charged particle. Denote the cotangent coordinates induced

by the normal coordinates by (n,s, pn, ps). In the next result we give an explicit lower bound

for the distance a particle in ΩC (ε) must keep from the boundary in any finite amount of time.

Theorem 2. Let C be a component of ∂Ω, let K = sups|κ(s)| be the maximum curvature of C ,

let K′ = sups|κ′(s)| and let ε > 0 be small so that we can define normal coordinates on ΩC (ε)

and such that ε < δ/K, for some 0 < δ < 1. Suppose the magnetic field has the form:

B(n,s) =
M
nα

+ f (n,s), α≥ 1 (2.4)
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with | f | ≤C f a bounded smooth function with integrable s-partial

sup
s

∫
ε

0

∣∣∣∣∂ f
∂s

(m,s)
∣∣∣∣dm≤ DC (2.5)

Let q(t) be a B-geodesic contained in ΩC (ε) for 0≤ t ≤ T with energy H0. Then:

dist(q(t),C )≥


(ε−(α−1)+(α−1)`(T ))−

1
α−1 if α > 1

εe−`(T ) if α = 1

(2.6)

where:

`(T ) = D0 +D1T (2.7)

with constants given by:

D0 =
C f ε

|M|
+
|ps(0)|+

√
2mH0(1+δ)

e|M|

D1 =

√
2H0

m
· DC
|M|(1−δ)

+
2H0K′ε

e|M|(1−δ)

(2.8)

2.2 Comparison to previous results

We now compare the conditions of Theorem 1 to the ones in [6]. To this purpose

we will take Ω to be the unit disc for simplicity, we’ll parametrize the boundary by γ(s) =

(cos(s),sin(s)), let r =
√

x2 + y2, n = 1− r and set e = m = 1. We use both cartesian and

normal coordinates to express the magnetic field:

B = B(x,y)dx∧dy = B̃(n,s)dn∧ds (2.9)

with this notation we have B̃(n,s) = (n− 1)B(x,y), since dx∧ dy = (n− 1)dn∧ ds. The con-

ditions we impose on the magnetic field in order to guarantee completeness are not stronger
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or weaker than the ones in [6]. One major difference is that we suppose the boundary of our

domain to be smooth, while [6] works with more general domains. Aside from that, using the

above notation, their condition amounts to:

|B(x,y)| ≥ 1
n2 (2.10)

To begin the comparison with the hypothesis of Theorem 1, we consider magnetic

fields of the form:

B̃(n,s) =
M
nα

(2.11)

in cartesian coordinates we have:

B(x,y) =
M

(n−1)nα
∼ M

nα
(2.12)

asymptotically as n→ 0. For this type of magnetic field, while the conditions from [6] require

|M| ≥ 1 and α≥ 2, our result is more flexible and only requires M 6= 0 and α≥ 1.

On the other hand, the results from [6] do not require any control on the dependence

of B on the variable s, while Theorem 1 assumes that the s-partial derivative of B is not too wild

(i.e. condition (2.3) in Theorem 1). For example the magnetic field

B(x,y) =
2+ sin(s)

n2 =
2n+ y

n3 (2.13)

satisfies their hypothesis but not ours, since ∂B/∂s is not integrable along normal rays. A

very interesting problem is whether or not one might be able to remove hypothesis (2.3) from

Theorem 1.
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2.3 Examples

Here are some examples of regions Ω and magnetic fields B that satisfy our hypothe-

sis. Again we denote r =
√

x2 + y2.

1. We take Ω = {q ∈ R2, |q|< R}, the disc of radius R with a magnetic field

B(x,y) =
M

(R− r)α
+ f (x,y) (2.14)

with f a smooth bounded function on the closed disc, α≥ 1 and M 6= 0.

2. Take the domain to be an annulus Ω= {q∈R2,R1 < |q|< R2}with magnetic field:

B(x,y) =
M2

(R2− r)α2
+

M1

(r−R1)α1
+ f (x,y) (2.15)

with similar assumptions as before on f and the constants Mi, Ri and αi.

Figure 2.2: B(x,y) = 1
1−r
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We experimented numerically with many examples in the unit disc. We can see in

Figure 2.2 a couple of trajectories of charged particles in a magnetic field that depends only

on r = |q|. The dynamics in this case is totally integrable. In Figure 2.3 we can see a couple

of additional examples of magnetic fields satisfying our hypothesis, notice how the particles

always bounce back from the boundary.

(a) B = 1
1−r +7y+5x2 (b) B = 1

1−r +10x−2x2−10y3

Figure 2.3: More examples in the unit disc

Finally Figure 2.4 shows three different trajectories of particles under a magnetic field

which is integrable as |q| → 1, this is an example that doesn’t fit our hypothesis. One of the

trajectories exhibits a similar behavior to the trajectories in Figure 2.2 and it is confined inside

the disc, while the two other trajectories look like arcs with cuspidal endpoints at the boundary,

it seems like the magnetic field is not strong enough to push these two trajectories away from

the boundary curve.

When experimenting numerically with non integrable magnetic fields, we could not

15



Figure 2.4: B(x,y) = 1√
1−r

find trajectories that approach the boundary as the “cusp-like” trajectories in Figure 2.4, which

is a good confirmation of our result, but a relevant point is that our experiments suggest these

“cusp-like” orbits might still take infinite time to reach the boundary.

The equations were solved numerically by using the odeint integrator in the SciPy

library for Python, which itself is an implementation of the LSODA integrator from the FOR-

TRAN library ODEPACK. The figures were created with the matplotlib library for Python.

2.4 Proofs of main results

As a first step we establish an estimate for the growth of the magnetic potential along

a solution q(t). We then apply this result in the proof of both Theorems 1 and 2.

We start by using normal coordinates to find a convenient potential for the magnetic

16



field B = B(n,s)dn∧ds, let us define A = A(n,s)ds where

A(n,s) =−
∫

ε

n
B(m,s)dm. (2.16)

Since ∂A/∂n = B we have the desired identity dA = B. Notice that the Euclidian

metric can be written in normal coordinates as dn2+(1−κ(s)n)2ds2, where again κ(s) denotes

the curvature of C , so that the Hamiltonian in these coordinates reads:

HA(q, p) =
p2

n

2m
+

(ps− eA(n,s))2

2m(1−κ(s)n)2 (2.17)

The strategy of our proof is to show that the potential A(n,s) must remain bounded

along a magnetic trajectory that stays close to the boundary. This in turn implies that the particle

cannot approach the boundary since the non integrability condition (2.2) in the theorem can be

expressed in terms of the potential as:

lim
n→0
|A(n,s)|= ∞ (2.18)

Our results are based on the following:

Proposition 2. Assume that the magnetic field B satisfies the hypothesis of Theorem 1. Let K =

sups |κ(s)|, K′ = sups |κ′(s)| and fix δ satisfying 0 < δ < 1. Furthermore choose ε small enough

so that we may define normal coordinates on ΩC (ε) and such that ε < δ/K. If q(t)⊂ΩC (ε) is

a trajectory with energy H0, then:

|A(q(t))| ≤C0 +C1|t| (2.19)

where C0,C1 > 0 are the following explicit constants:

C0 =
|ps(0)|+

√
2mH0(1+δ)

e
, C1 =

√
2H0

m
· DC

1−δ
+

2H0K′ε
e(1−δ)

(2.20)
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Proof. Notice that by equation (2.17), a particle with energy H0 must satisfy:

(ps− eA(n,s))2

2m(1−κ(s)n)2 ≤ H0 (2.21)

By our assumptions we have the following bound:

|ps− eA(n,s)| ≤
√

2mH0(1−κ(s)n)≤
√

2mH0(1+δ) (2.22)

which shows that we can bound A(n,s) by finding a bound for ps instead. In order to do that,

we use Hamilton’s equation:

ṗs =−
∂H
∂s

=
(ps− eA(n,s))
m(1−κ(s)n)2 · e

∂A
∂s
− (ps− eA(n,s))2

m(1−κ(s)n)3 ·κ
′(s)n (2.23)

Now, notice that |∂A/∂s|< DC since:∣∣∣∣∂A
∂s

(n,s)
∣∣∣∣= ∣∣∣∣∫ ε

n

∂B
∂s

(m,s)dm
∣∣∣∣

≤
∫

ε

n

∣∣∣∣∂B
∂s

(m,s)
∣∣∣∣dm

≤
∫

ε

0

∣∣∣∣∂B
∂s

(m,s)
∣∣∣∣dm

≤ sup
s

∫
ε

0

∣∣∣∣∂B
∂s

(m,s)
∣∣∣∣dm

= DC

so we obtain the following bound along q(t):

|ṗs| ≤
√

2H0

m
· eDC

1−δ
+

2H0K′ε
1−δ

= eC1 (2.24)

Integrating inequality (2.24) from time 0 to time t we obtain the following:

|ps(t)| ≤ |ps(0)|+ eC1|t| (2.25)
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We deduce now from (2.22):

|A(q(t))| ≤ |ps(t)− eA(q(t)|
e

+
|ps(t)|

e

≤
√

2mH0(1+δ)

e
+
|ps(0)|

e
+C1|t|

=C0 +C1|t|

(2.26)

which is the estimate we wanted.

We move on to the proof of the main theorem:

Proof. (of Theorem 1): Suppose that a B-geodesic q : [0,T ]→ Ω reaches the boundary at time

T at a connected component C . By the first condition in our theorem, i.e. equation (2.2), we

must have:

lim
t→T

A(q(t)) = ∞ (2.27)

we may suppose further,without loss of generality, that q(t) lies in ΩC (ε) for all t ∈ [0,T ] for

some ε that satisfies the hypothesis of propostion 2. We have then:

|A(q(t))| ≤C0 +C1T (2.28)

Hence we conclude that A is bounded along the trajectory, which contradicts (2.27)

so that no such B-geodesic may exist.

Finally, in order to prove Theorem 2 we express the distance from a particle q(t) to

the boundary component C using normal coordinates.
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Proof. (of Theorem 2): Notice that if q(t) is in ΩC (ε) and is given in normal coordinates by

(n(t),s(t)), we have:

dist(q(t),C ) = n(t) (2.29)

since n(t) is the length of the line segment perpendicular to C connecting q(t) to C .

In order to obtain a lower bound for the distance between q(t) and the boundary we

use proposition 2 to obtain such a bound for n(t) instead.

Given the form of the magnetic field B(n,s) we obtain the following estimate for

A(q(t)):

|A(q(t))|=
∣∣∣∣−∫

ε

n(t)

M
mα

+ f (m,s)dm
∣∣∣∣

≥
∣∣∣∣∫ ε

n(t)

M
mα

dm
∣∣∣∣−NC f

(2.30)

Moreover, since the magnetic field B satisfies the conditions of Proposition 2, we also

have:

|A(q(t))| ≤C0 +C1|t| ≤C0 +C1T (2.31)

Putting these two estimates together we obtain:

∣∣∣∣∫ ε

n(t)

1
mα

dm
∣∣∣∣≤ `(T ) (2.32)

Evaluating the integral on the left hand side of (2.32) explicitly we arrive at the result

of Theorem 2.
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Chapter 3

Evidence of quantum tunneling

3.1 Relations to Quantum Systems

We discuss in this section an example that illustrates an interesting dichotomy be-

tween the behavior of a classical system and its quantization. To be more precise, we will

describe a family of magnetic fields Bα defined over the unit disc for which the Hamiltonian

dynamics of a classical particle under the influence of Bα is complete, but the dynamics of a

quantum particle under the influence of the same field is not.

From now on denote by Ω the unit disc in R2

Ω = {(x,y) ∈ R2 | x2 + y2 = r2 < 1} (3.1)

Given a constant α > 0 consider the magnetic field:

Bα(x,y) = α
r−2

(r−1)2 dx∧dy (3.2)

If we choose a potential 1-form A = Axdx+Aydy for Bα, we may define the magnetic
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Schrödinger operator ĤA as the quantization of the classical Hamiltonian defined in equation

(1.3), i.e.:

ĤA =−(∂x− ieAx)
2− (∂y− ieAy)

2 (3.3)

Where we set ~= 1 for convenience, which can be accomplished by choosing appropriate units.

A quantum particle inside Ω is modeled by a function ψ0(x) in L2(Ω), with |ψ0|L2(Ω)=

1 and the corresponding system is governed by Schrödinger’s equation:

i
∂ψ

∂t
=

1
2m

ĤAψ (3.4)

Definition 3. We say that the quantum system is complete or that the quantum particle is con-

fined by the magnetic field B if the operator ĤA with domain C∞
0 (Ω) of smooth functions com-

pactly supported in Ω is essentially self-adjoint (this property does not depend on the choice of

potential A, see [6]).

Since the unitary maps between the deficiency spaces of the operator ĤA can be inter-

preted as boundary conditions for Schrödinger’s equation 3.4, we observe that an operator that

is essentially self-adjoint can be interpreted as a Hamiltonian for which Schrödinger’s equation

can be solved without need for boundary conditions. If ĤA is essentially self-adjoint, there

is a unique self-adjoint extension of ĤA and by Stone’s theorem a unique strongly continuous

unitary one-parameter subgroup (Ut)t∈R so that ψ(t,x) =Utψ0(x) is a solution to equation (3.4).

Notice that the solutions to this equation are truly confined. Since the operators Ut

are unitary we have

|ψt |L2(Ω) = |Utψ0|L2(Ω) = |ψ0|L2(Ω) = 1 (3.5)
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which means that for any time t, the particle is observed inside of Ω with probability 1, since

|ψt |2 is the probability density for the position operators.

In [6] Colin de Verdière and Truc notice that while the operator ĤA associated to Bα

is essentially self-adjoint for α >
√

3/2, for values of α in the range 0 < α <
√

3/2 the operator

is not essentially self-adjoint in C∞
0 (Ω). So that in the latter case, in order to solve Schrödinger’s

equation we must impose boundary conditions on the solutons of equation 3.4 (or equivalently

choose a self-adjoint extension of the symmetric operator ĤA). This means that as time evolves

certain wave functions will interact with the boundary, so not all quantum particles are confined

to Ω. In this sense we’ll say the quantum dynamics is not complete

On the other hand by parametrizing the boundary by arclength through γ(s)= (cos(s),sin(s)),

using normal coordinates (n,s) we can express the magnetic field by (notice n = 1− r):

Bα = α

(
1
n2 −1

)
dn∧ds (3.6)

Which fits the hypothesis of Theorem 1 as long as α 6= 0 and hence for a classical particle, the

dynamics is complete.

One interesting remaining question is to prove that for magnetic fields Bα for which

the corresponding Hamiltonian operator is not essentially self-adjoint in C∞
0 (Ω), there are self-

adjoint extensions of the Hamiltonian that yield solutions ψt in L2(R2) for which the norm

restricted to Ω decreases with time, so that some particles would in fact “leak” through the

boundary walls, which would confirm the phenomenon of quantum tunneling for these systems.
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Part III

Higher dimensional results
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Chapter 4

Magnetic confinement on manifolds

4.1 Magnetic fields with σ∞-blow up

In this section we describe the class of magnetic fields whose magnetic flow we shall

analyze. What we require from these fields is that they diverge to infinity at the boundary at a

fast enough rate and that on a neighborhood of ∂M, they are controlled by a closed 1-form σ∞

defined on the boundary. To precisely phrase this condition we must first fix normal coordinates

at a neighborhood of ∂M as in the planar case.

Let D = M \∂M. Notice that for ε > 0 small enough the neighborhood

Ωε = {q ∈ D | dist(q,∂M)< ε}

is a collar neighborhood of the boundary and possesses normal coordinates

φ : (0,ε)×∂M → Ωε

(n,x) 7→ expx(nν(x))

where ν(x) denotes the unit inward normal vector to the boundary.
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We denote by π∂M : Ωε → ∂M and πν : Ωε → (0,ε) the natural projections π∂M =

pr2 ◦ φ−1 and πν = pr1 ◦ φ−1. Using these coordinates we also obtain that over Ωε the metric

looks like a warped product:

g = dn2 +g∂M(n)

where g∂M(n) is a Riemannian metric on the fibers π−1
ν (n). Additionally, the distance function

from the boundary is smooth over this neighborhood, since it is given by:

dist(p,∂M) = n(p) = πν(p) (4.1)

The normal coordinates φ also induce a splitting over Ωε of the tangent and cotangent

bundles. For ease of notation denote Tε∂M := π∗
∂MT ∂M the subbundle of vectors tangent to the

fibers π−1
ν (n), similarly denote T ∗ε ∂M := π∗

∂MT ∗∂M. We then obtain orthogonal splittings:

T Ωε
∼= R∂n⊕Tε∂M, T ∗Ωε

∼= Rdn⊕T ∗ε ∂M,

Consider now the Hodge star operator ∗ :
∧kT ∗M→

∧n−kT ∗M and the natural map

induced by the Riemannian metric G : T M→ T ∗M given by Gv = g(v, ·). We define the mag-

netic (n−2)-vector field by:

B=
(∧n−2G−1

)
∗B ∈ Γ

(∧n−2T M
)

We now give some definitions in order to build a simple model for a confining mag-

netic field in D, later we shall define a class of admissible perturbations that will not affect the

confining property of such fields.
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Definition 4. We will say that a magnetic field B defined over Ωε is ∂M-tangent if the corre-

sponding magnetic (n−2)-vector field B is tangent to the fibers π−1
ν (n) that is:

B ∈ Γ(
∧n−2Tε∂M)

In dimension n = 3, B= ~B is an actual vector field and it corresponds to the classical

notion of magnetic field in R3. In this case the magnetic field B is ∂M-tangent if and only if the

vector field ~B is tangent to the fibers π−1
ν (n).

Since Tε∂M is a vector bundle of rank n−1, we can see that over points q ∈Ωε where

Bq 6= 0 we have that B is in fact an (n−2)-blade of this bundle (that is, a homogeneous tensor

in the space
∧n−2Tε∂M) and it represents a field of hyperplanes inside the fibers of Tε∂M, in

fact these hyperplanes are exactly kerBq.

Notice that if B is ∂M-tangent, there is a unique 1-form σ ∈ Γ(T ∗ε ∂M) such that B =

dn∧σ. Since B must be closed, the 1-form σ should satisfy:

dσ∧dn =−dB = 0

Furthermore we have whenever Bq 6= 0

kerB = ker
(

σ|Tε∂M

)
Definition 5. Given a ∂M-tangent magnetic field B = dn∧σ, with σ∈ Γ(T ∗ε ∂M). Let S = G−1σ

and if Bq 6= 0 define Sq = Sq/|Sq|. We call Sq the direction of B.

Next we provide a description of the magnetic force of a ∂M-tangent magnetic field.

Proposition 3. Let B = dn∧σ be a ∂M-tangent magnetic field. Given a point q ∈Ωε, if Bq = 0
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the magnetic force Yqq̇ is zero for all q̇ ∈ TqM. If σq 6= 0, then:

Yq∂n =−|σq|Sq, YqSq = |σq|∂n, YqW = 0 for W ∈ kerB

That is, the force is zero on particles with velocity q̇ tangent to the (n− 2)-planes

kerB, and it acts by a 90 degrees rotation composed with a scaling by a factor of |σ| for veloci-

ties in span(∂n,S).

Proof. We simply notice that since B = dn⊗σ−σ⊗dn we have:

g(∂n,YqS) = Bq(∂n,S) = |σ|

and that for U ∈ TqM,W ∈ kerBq we obtain:

g(U,YqW ) = Bq(U,W ) = 0

This description makes it plausible that if |σ| approaches infinity at the boundary then

particles that try to exit the region (which inevitably would have some nontrivial ∂n-component

in their velocity) will be pushed sideways in the direction S by a very strong magnetic force and

would not be able to leave the region.

Definition 6. We say that a magnetic field B∞ is ∂M-regular if there is a 1-form σ∞ ∈ Ω1(∂M)

on the boundary of M and a function f : [0,ε]→ R such that writing σε := π∗
∂Mσ∞ over Ωε we

have:

B = f (n)dn∧σε

We call σ∞ the asymptotic 1-form of B∞.
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Remark 1: Notice that this condition is equivalent to requiring that the direction S

is constant along the normal rays expx(nν(x)) (whenever Bq 6= 0) and that if Bq = 0 for some

q ∈Ωε then B = 0 along the normal ray going through q .

Remark 2: Denote by S∞ =G−1σ∞. Notice that if f is nowhere zero on (0,ε] in order

for B to be closed we must have dσ∞ = 0 which in terms of the vector field S∞ reads ∇g×S∞ = 0.

Here we compute the curl using the metric g restricted to ∂M and using the general formula for

a Riemannian manifold M and vector field V ∈ Γ(T M):

∇g×V =
(∧n−2G−1

)
∗dGV ∈ Γ(

∧n−2T M)

We will study magnetic fields that are perturbations of ∂M-regular fields. In the next

definition we state which are the admissible perturbations. Given a k-form ω and a vector V we

denote the contraction with V by ιV ω, that is:

ιV ω(W1, . . . ,Wk−1) = ω(V,W1, . . . ,Wk−1)

We also denote by LV ω the Lie derivative along V .

Definition 7. Given a 1-form σ∞ ∈ Ω1(∂M), let σε = π∗
∂Mσ∞ and Sε = G−1σε. We say that a

magnetic field Bper is a σ∞-perturbation if ιSε
Bper and LSε

Bper are bounded on Ωε and there is

a function h : (0,ε]→ R satisfying
∫

ε

0 nh(n)dn < ∞ such that |Bper|q, |∇Bper|q ≤ h(n(q)).

Remark 1: The function h in the above definition should have a growth rate of the

form h(n)∼ 1/n2−δ for some δ > 0.

Remark 2: If a magnetic field B is C1-bounded, that is if |B| and |∇B| are both

bounded on D, then it is automatically a σ∞-perturbation for any choice of σ∞ ∈Ω1(∂M).
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We now provide the definition for the class of magnetic fields we shall study. These

are fields defined on the interior D = M \∂M which go to infinity with asymptotic direction S∞

in a controlled way.

Definition 8. Given a closed 1-form σ∞ ∈ Ω1(∂M), a magnetic field B defined over D has

σ∞-blow up if there is a ∂M-regular magnetic field B∞ = f (n)dn∧σε with σε = π∗
∂Mσ∞ and

f (n) : (0,ε]→ R satisfying
∫

ε

0 f (n)dn =±∞, and a σ∞-perturbation Bper such that over Ωε we

have B = B∞ +Bper.

In preparation for the main theorem we will need the following small lemma:

Lemma 1. Let c : I→D be a B-geodesic with I ⊂R its maximal domain of definition. Suppose

T ∞ = sup(I) 6= ∞, then the limit x∞ = limt↗T ∞ c(t) exists and it belongs to ∂M. Similarly, if

T−∞ = inf(I) 6=−∞, the limit x−∞ = limt↘T−∞ c(t) exists and it belongs to ∂M.

Proof. First notice that by the same argument used in corollary 1 if either of the limits x±∞

exist then they must belong to ∂M, since for example if T ∞ 6= ∞ and x∞ /∈ ∂M then the future of

the B-geodesic would be contained in a compact subset of D and therefore it would have to be

defined for all future time, contradicting T ∞ 6= ∞.

Now, since |ċ(t)| is constant, the curve c is Lipschitz which means that the sequence

(c(T ∞− 1/n))n∈N is Cauchy and hence must converge to some x∞ which clearly must be the

desired limit.

Given σ∞ ∈Ω1(∂M), we denote its zero locus by:

Z(σ∞) = {x ∈ ∂M | (σ∞)x = 0}
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We may now state our theorem:

Theorem 3. Let B be a magnetic field defined on D with σ∞-blow up. If a B-geodesic c(t) in

D reaches the boundary in finite time in the future, then x∞ ∈ Z(σ∞), similarly if it approaches

∂M in finite time in the past then x−∞ ∈ Z(σ∞).

Finally, as a consequence of theorem 3 we obtain the following:

Theorem 4. Let σ∞ be a non-vanishing 1-form on ∂M. Let B be a magnetic field on D=M\∂M

with σ∞-blow up, then every B-geodesic in D is defined for all time. In particular any B-

geodesic must take infinite time to approach the boundary.

As before we obtain completeness of the magnetic flow as a corollary of theorem 4

Corollary 2. Let B be a magnetic field satisfying the hypothesis of Theorem 4. Then, the

Hamiltonian flow of XB on T ∗D is complete.

Proposition 4. For any closed 1-form σ∞ ∈Ω1(∂M), the space of magnetic fields with σ∞-blow

up is a nontrivial open set in the space of closed 2-forms on D with the uniform C1 topology.

Proof. It is clear from the second remark after definition 7 that this set is open in the uniform

C1 topology it is only necessary to show that it is nontrivial.

For that, given a closed 1-form σ∞ ∈ Ω1(∂M), again let σε = π∗
∂Mσ∞ and choose any

smooth function f (n) : (0,ε]→ R with the property that
∫

ε

0 f (n)dn =±∞ and such that there is

some 0 < δ < ε so that for n > δ, f (n) = 0. Define the 2-form

B = f (n)dn∧σε
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This form is closed, since:

dB = d( f (n)dn)∧σε− f (n)dn∧d(σε) = 0

and it extends naturally to a closed 2-form defined on the whole M which has σ∞-blow up.

4.2 Toroidal Domains

In order to confine every particle to the interior of our manifold using a magnetic

force we see from theorem 3 that it is sufficient to find a nowhere vanishing closed 1-form over

the boundary ∂M. This of course imposes a topological constraint on the manifold M.

Definition 9. We call M a toroidal domain if its boundary ∂M carries a nowhere vanishing

closed 1-form.

Our goal now will be to describe the toroidal condition in a more geometric way. We

will say that ∂M is fibered over the circle if there is a submersion s : ∂M→ S1. Notice that in

this case ∂M carries a non-vanishing closed 1-form, simply by considering the pullback s∗dθ of

any non-vanishing 1-form dθ on the circle. Conversely, we have the following:

Proposition 5. A manifold M is a toroidal domain, if and only if its boundary is fibered over

the circle.

Proof. Let σ∞ be a nowhere vanishing 1-form on ∂M, we want to construct a submersion from

∂M to S1. Let H1(∂M,Z) be the first singular homology group of ∂M, which is finitely generated

since ∂M is compact.
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Let Tor(H1(∂M,Z)) be its subgroup of torsion elements and denote

H f
1 (∂M,Z) = H1(∂M,Z)/Tor(H1(∂M,Z)).

This is a free Z-module and so we may choose a collection c1, . . . ,ck of closed 1-

cycles that form a Z-basis for it. Choose then a collection of closed 1-forms ω1, . . . ,ωk dual to

the ci’s so that: ∫
ci

ω
j = δ

j
i

where δ
j
i denotes the Kronecker delta, δi

i = 1 and δ
j
i = 0 if i 6= j.

Now given numbers e1, . . . ,ek consider the 1-form:

σe = σ+ eiω
i

Its periods over the basis of H f
1 (∂M,Z) are:

∫
ci

σe =

(∫
ci

σ

)
+ ei

We may then choose the ei’s small enough so that σe is still non-vanishing and such

that all these periods are rational. By multiplying σe by a large enough integer N >> 0 we

obtain a closed 1-form σ∗ = Nσe that is still non-vanishing and such that all of its periods over

the ci’s are in fact integers.

Denote by

H =

{∫
c
σ
∗
∣∣∣∣c is any closed 1-cycle in ∂M

}

The set H forms a discrete subgroup of R (it is contained in Z) so R/H ∼= S1. Now,
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fix a base point p0 ∈ ∂M and consider the map

s : ∂M → R/H

p 7→
∫ p

p0

σ
∗ mod H

The integral on the right is defined along any path connecting p0 and p, its values can

only differ by an element of H so s is a well defined map.

Finally a straightforward computation in local charts using straight lines for paths

allows one to prove it is also a submersion.

Remark: Notice in particular that by the Poincaré-Hopf theorem if M is toroidal then

the Euler characteristic of the boundary must vanish.

4.3 Examples

Before getting into the proofs of the main theorems, let’s discuss some examples

where this result can be applied. Let us start by analyzing some examples of toroidal domains

in different dimensions.

4.3.1 Surfaces

In dimension 2, any surface with non-empty boundary is a toroidal domain (since

their boundary is simply a union of disjoint circles). Consider for example the unit disc in R2;

according to the theorem if we choose a magnetic field B = B(x,y)dx∧dy that has the form:

B(x,y) = f (r)+b(x,y)
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where b(x,y) is any smooth function with bounded derivative defined over the unit disc and

f (r) is a function of the radius alone satisfying
∫ 1

1−ε
r f (r)dr = ±∞, then every B-geodesic is

confined to the interior of the unit disc for all time.

4.3.2 3-dimensional Solid Tori

In dimension 3 a toroidal domain must have its boundary consisting of a disjoint union

of tori. In the simpler case of a solid torus (possibly the most important case since this is the

shape of Tokamaks), we may write the 2-form in terms of vector fields and the result implies

that every ~B-geodesic is confined as long as the magnetic field has the form

~B = f (n)~X +~Bb (4.2)

where on a neighborhood of the boundary ~X agrees with the extension of a vector field de-

fined on the boundary torus diffeomorphic to a constant vector field, ~Bb is a smooth magnetic

field defined on the open solid torus with bounded derivatives and f (n) is a function satisfying

∫
ε

0 f (n)dn =±∞ for some ε > 0 small enough.

4.3.3 Tubular Neighborhoods

For higher dimensional examples one may consider any manifold of the form M =

X×S1 where X is a compact oriented manifold with boundary. Since such manifolds are clearly

toroidal we deduce that there are confining magnetic fields defined on D = M \∂M.

In particular if one considers a closed simple curve C inside some given orientable

manifold of dimension n and take M to be a closed tubular neighborhood of this curve, then M is
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diffeomorphic to an orientable (n−1)-disc bundle over S1, since over the circle the orientability

of a bundle implies its triviality this disc bundle must be trivial, so we may deduce that M ∼=

Dn−1×S1 and M is therefore toroidal.

4.3.4 Flat Circle Bundles

In the same spirit as the previous example we may also consider a base manifold

X with boundary and take M to be any circle bundle over X with a flat connection α. The

connection 1-form is closed (since it is flat) and never-vanishes, so M is a toroidal domain. In

this case the 2-form B∞ near the boundary can be written as

B∞ = f (n)dn∧α

where α denotes the connection 1-form.

Our theorem then implies that any flat circle bundle over a manifold with boundary

carries confining magnetic fields.

Remark: Recall that since the holonomy of a loop is homotopy invariant on a flat

bundle, there is a correspondence between S1-bundles with a flat connection (M,α) over a

compact base X and representations π1(X)→U(1).

4.3.5 Log-Symplectic Magnetic Fields

In this section we describe a class of examples of magnetic fields with σ∞-blow up

which are symplectic in the interior D. These magnetic fields arise naturally from a special class

of Poisson manifolds called log-symplectic manifolds. We first recall some basic definitions.
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Given α ∈
⊕k T M, write α = (a1, . . . ,ak) and denote by α = a1∧ ·· · ∧ ak the corre-

sponding homogeneous k-vector field. Denote the i-th deletion of α by

Di(α) = (a1, . . . ,ai−1,ai+1, . . . ,ak).

Definition 10. The Schouten-Nijenhuis bracket [·, ·] :
∧•T M×∧•T M→∧•T M of multivector

fields is uniquely defined by its action on homogeneous elements. Given α ∈
⊕k T M and β ∈

⊕l T M we define:

[α,β] = ∑
i, j
(−1)i+ j[ai,b j]∧Di(α)∧D j(β)

where [ai,b j] denotes the Lie bracket of vector fields.

Definition 11. A Poisson structure on a manifold M is a bi-vector field π∈ Γ(
∧2T M) satisfying

the Jacobi identity [π,π] = 0.

Given a Poisson manifold (M,π) we have a map Π : T ∗M→ T M given by Π(λ) =

π(λ, ·). If the manifold M has dimension 2n we may consider the 2n-vector field πn = ∧nπ ∈

Γ(
∧2nT M). We then define the singular locus of π by:

Z = {p ∈M | πn
p = 0}

We also call the complement D=M\Z the symplectic locus of π. Over the symplectic

locus the map Π is invertible and we may use its inverse to define the symplectic form ω(v,w) =(
Π−1(v)

)
(w). The fact that this form is closed is a consequence of the Jacobi identity [π,π] = 0.

We sometimes denote ω = π−1.

Definition 12. A log-symplectic manifold is an even dimensional Poisson manifold (M,π) such
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that πn only has nondegenerate zeroes. That is the section πn of the line bundle
∧2nT M is

transversal to the zero section.

The nondegeneracy of πn implies that the singular locus Z is a hypersurface of M

and the symplectic locus D is a dense open subset. For more information on log-symplectic

manifolds and many examples see [5], for some of the structure theory see [7].

We now consider the magnetic field B = π−1 defined on D. The situation here is

analogous to the case of a manifold M with boundary, except now the singular locus Z plays

the role of the boundary ∂M. We will describe how Theorem 4 can be applied in this case to

show that a B-geodesic in D may never reach the singular locus in finite time. Notice that the

vanishing of πn along Z, translates to the blowing up of B along the singular locus.

Let (M,g,π) be a compact orientable Riemannian log-symplectic manifold and let

NZ = T Z⊥ be the normal bundle of Z. One may prove that since M is orientable the normal

bundle NZ must be trivial. Fix a unit normal vector ν ∈ Γ(NZ) and denote by n the induced

fiber coordinate. We have the following local form on a neighborhood of the singular locus (we

refer the reader to [7] for a proof of this theorem):

Theorem 5. Let (M,g,π) be a compact orientable Riemannian log-symplectic manifold. There

is a nowhere vanishing closed 1-form σ∈ Γ(T ∗Z) and a closed 2-form η∈ Γ(
∧2T ∗Z) such that

σ∧βn−1 6= 0. Furthermore there is a neighborhood of Z in M which is symplectomorphic to a

neighborhood of the zero section of NZ with symplectic form d(log |n|)∧σ+β.

This means that close to Z the magnetic field B has the form:

B =
1
|n|

dn∧σ+β
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Which is a magnetic field of σ-blow up, since 1/|n| is non-integrable as n→ 0 and β is a

C∞-bounded 2-form, so that it is a σ-perturbation. We then obtain the following:

Corollary 3. Let (M,g,π) be a compact orientable Riemannian log-symplectic manifold with

magnetic field B = π−1. Any B-geodesic in D is defined for all time and never reaches the

singular locus Z.

4.4 Proof of the Main Theorem

We prove Theorem 3 by contradiction. Let B be a magnetic field with σ∞-blow up

for some 1-form σ∞ ∈ Ω1(∂M) and assume there is some B-geodesic c : I→ D with I ⊂ R its

maximal domain of definition. Suppose T ∞ = sup(I) 6= ∞, by lemma 1 we know that there is a

limit x∞ = limt↗T ∞ c(t) ∈ ∂M which we assume by contradiction does not lie in Z(σ∞).

Before proceeding, we must choose a chart of M at x∞, q : U → Rd which is adapted

to σ∞, we also denote U =U ∩D.

Lemma 2. Let x∞ ∈ ∂M \Z(σ∞). There is a chart of M at x∞, q : U → Rd satisfying:

1. U ⊂Ωε and (σε)u = (π∗
∂Mσ∞)u 6= 0 for all u ∈U.

2. If we denote q(u) = (q1(u), . . . ,qd(u)), then q1(u) = n(u) = dist(u,∂M) and denoting

θ(u) = q2(u) we have: dθ = σε and Sε = G−1σε = |σε|2∂θ

3. There is some r > 0 such that q(U) = {q ∈ Rd | |q|< r, q1 > 0}

Proof. We start by choosing U small enough so that (σε)u 6= 0 for all u ∈ U , the function

n(u) = dist(u,∂M) is smooth and such that we can find a primitive θ : U → R for σε, that is
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dθ = σε.

Next we choose the remaining coordinates by noticing that the distribution

D = kerdn∩kerσε ≤ TU

is integrable since both 1-forms are closed. In order to see this notice that if α is a 1-form and

X ,Y are local vector fields in kerα, the formula:

dα(X ,Y ) = Xα(Y )−Y α(X)−α([X ,Y ])

reduces to α([X ,Y ]) = 0 if dα = 0, which means that kerα is integrable.

We then choose the remaining coordinates q3, . . . ,qd so that the leaves of D are defined

by setting n and θ to be constant.

This in turn implies that Sε is perpendicular to ∂n,∂q3 , . . .∂qd and a simple calculation

shows that it must have the form required Sε = |σε|2∂θ.

Finally by making U possibly a bit smaller we can obtain condition 3. which finishes

our proof.

By translating the time parameter we may focus on the tail end of the curve c(t)

and assume that it is defined for 0 ≤ t < τ∞ with x∞ = limt→τ∞ c(t) and that c(t) is completely

contained in the open set U .

In these coordinates a magnetic field with σ∞-blow up looks like:

B = f (n)dn∧dθ+Bper

We may also choose a convenient magnetic potential A for B. In order to do that
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define F(n) by

F(n) =−
∫

ε

n
f (m)dm (4.3)

Since F(n) is an antiderivative of f (n) we may choose:

A = F(n)dθ+Aper (4.4)

where Aper is a smooth 1-form defined over the domain of the chart with dAper = Bper. For our

estimates we will need to choose a primitive Aper in a way that is again adapted to σ∞. We show

in the following lemma that such a choice is possible.

Lemma 3. There is a primitive Aper = aidqi of Bper defined over the chart q : U→Rd such that

its coefficient aθ = a2 is bounded and the θ-derivatives of all coefficients ∂θai are bounded.

Proof. Following the idea in the standard proof of Poincaré’s lemma, using our chart from

lemma 2 we consider the negative radial vector field defined over U by:

Vq =−qi ∂

∂qi

Its flow is simply φt(q) = e−tq. Notice that we have φt(U)⊂U for t ≥ 0 by condition

3. in lemma 2, so the forward flow of V remains inside U .

Now we define an averaging operator h : Ωk(U)→Ωk(U) by:

hω =−
∫

∞

0
φ
∗
t ωdt

A straightforward computation using Cartan’s formula allows us to show that given

any k-form ω, the (k− 1)-form hιV ω is always one of its primitives. Here the notation ιV ω

stands for the contraction with V .
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We may then choose

Aper = hιV Bper.

We will show that this choice of Aper satisfies the conditions required by the lemma.

Let’s denote the coefficients of Bper by:

Bper =
[
bi jdqi∧dq j]

i< j =
[
bi jdqi⊗dq j−bi jdq j⊗dqi]

i< j = bi jdqi⊗dq j

where we make bi j =−b ji when i > j and bii = 0. We then compute:

Aper =−
∫

∞

0
φ
∗
t ιV Bperdt

=−
∫

∞

0
φ
∗
t (−qibi jdq j)dt

Since φ∗t dqi = e−tdqi we obtain:

Aper =−
∫

∞

0
(−e−tqibi j(e−tq)e−tdq j)dt

so that the coefficients of Aper obey the formula:

ai(q) = q j
∫

∞

0
e−2tbi j(e−tq)dt

and changing variables s = e−t we obtain:

ai(q) = q j
∫ 1

0
sbi j(sq)ds

Since |Bper| and |∇Bper| are bounded by a function h satisfying
∫

ε

0 nh(n)dn < ∞ we

see that the integral defining the coefficients ai converges and

∂kai(q) = q j
∫ 1

0
s∂kbi j(sq)ds
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Furthermore because ιSε
Bper and LSε

B are bounded and in this chart Sε = |σε|2∂θ we

deduce that aθ = q j ∫ 1
0 sbθ j(sq)ds is bounded since

ιSε
Bper = |σε|2ι∂θ

Bper = |σε|2bθidqi

Similarly the θ-derivatives ∂θai are all bounded in U as well.

From now on we choose Aper to be the primitive provided by the lemma.

Let’s introduce some notation in order to carry out a few local computations. Using

the trivialization of T ∗M induced by the chart q on M, write:

p = pidqi A = Aidqi Aper = aidqi

As before we will also denote A2 by the more suggestive notation Aθ. Notice that by

the condition required from f (n) we have that |Aθ(c(t))| → ∞ as t→ tmax, since

Aθ(c(t)) =F(n(c(t)))+aθ(c(t))

=−
∫

ε

n(c(t))
f (m)dm+aθ(c(t))

and aθ is bounded. We are able to derive a contradiction by proving that Aθ may not go to

infinity in finite time. This is due to the following:

Proposition 6. Let c(t) be a B-geodesic, using the chart above one has:

|Aθ(c(t))| ≤C0 +C1|t| (4.5)

for some positive constants C0,C1 > 0.

Proof: Notice that by Hamilton’s equations (1.4) we have:

|ṗθ(t)|=
∣∣∣∣∂H

∂θ

∣∣∣∣
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By using expression (1.3) for the Hamiltonian we obtain in charts:

H =
1

2m
gi j(pi− eAi)(p j− eA j)

We then derive the following formula for |ṗθ|:

∣∣∣∣ 1
2m

(∂θgi j)(pi− eAi)(p j− eA j))−
e
m

gi j(pi− eAi)

(
∂A j

∂θ

)∣∣∣∣
Since H is constant along the trajectory, the terms above of the form (pi− eAi) are

bounded along c(t) and since g is smooth and defined over the closed domain M, the terms gi j

and ∂θgi j are also bounded.

Lastly, notice that ∂θAi = ∂θai since for i 6= 2, in fact Ai = ai, and for i = 2, we have

Aθ = F(n)+aθ. We conclude that those terms are also bounded since Aper was chosen so that

its coefficients had bounded θ-derivatives. This means that |ṗθ| is bounded along c(t).

Integrating this inequality we obtain that |pθ| is bounded by a linear function

|pθ(c(t))| ≤C0 +C1|t|

and finally since pθ− eAθ is bounded we obtain

|Aθ(c(t))| ≤C0 +C1|t|

with possibly different constants C0,C1. This finishes the proof of the proposition and the proof

of the theorem.
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Chapter 5

Conclusion

We have seen that the topology of a manifold seems to play a role on whether it may

carry a confining magnetic field or not. One very interesting question that remains after this

work is to make this dependence on the topology more explicit and hopefully more refined.

In order to proceed in that direction one must perform a more detailed study of the

dynamics of B-geodesics close to a zero of σ∞. Notice for example, that if there is a geodesic

c(t) in D (by that we mean a geodesic for the Riemannian metric) exiting the interior in finite

time and such that ċ(t)∈ kerB, then c(t) is also a B-geodesic and the magnetic field B would fail

to confine particles to the interior D. One interesting property one could ask from the magnetic

field that would prevent such phenomena is to require that kerB = 0 everywhere, that is, to ask

that B is symplectic.

One could try to address for example some of the following questions: Can we find

confining magnetic fields on domains which are not toroidal? If a magnetic field is not confin-

ing, could one still prove that almost all B-geodesics would still be trapped in the interior of the

45



manifold assuming that Z(σ∞) has measure zero?

Another interesting direction for future work is to study whether there are possible

improvements to the class of magnetic fields considered on Theorem 4. Could we relax the

requirements on the σ∞-perturbations? Is there a non-perturbative way of describing these mag-

netic fields?

Working through some examples it also seems reasonable to expect that, in the case

where the magnetic field does not go to infinity at the boundary, one might still be able to trap

particles with low-energy to the interior D. This would not be possible for any given magnetic

field but it is interesting to look for a class of magnetic fields for which one may always find a

threshold value h > 0 for which particles with energy smaller than h would be confined to the

interior of the manifold for all time.

One also wonders whether a similar confinement result would hold for a more general

Yang-Mills field in place of a magnetic field. The structure of the problem is similar to the

magnetic case, but we are still unsure whether the non-abelian nature of the Gauge group might

affect the strategy we have used to establish confinement.

In the quantum context there are also many interesting questions left. Can one find an

analytic proof of quantum tunneling for the not essentially self-adjoint magnetic Schrödinger

operators coming from the family of magnetic fields Bα presented in Section 3.1? That is, in

that case could one prove that there is a self-adjoint extension of the Hamiltonian for which

there are particles whose wave function are initially supported inside of the domain Ω⊂R2 but

who will at some future time leak through the boundary?

A more daunting but very interesting undertaking would be to also analyze the semi-
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classical properties of this system more precisely. Given a magnetic field, when does the quan-

tum completeness of the Hamiltonian operator ĤA imply the completeness of the Hamiltonian

vector field XB? Conversely when does the completeness of the Hamiltonian vector field imply

the completeness of the Hamiltonian operator? When the implication is not possible, can one

prove the presence of quantum tunneling for some of the self-adjoint extensions of the Hamil-

tonian operator?

Additionally, as in the classical context, could one generalize the result on quantum

confinement proved in [6] to Yang-Mills Schödinger operators?

There are many interesting questions that still remain to be answered around the sub-

ject of magnetic confinement, this thesis is but a small step towards a deeper understanding of

the geometry of this problem. Hopefully many more steps will be taken in the future towards

building not only a clearer picture of the geometry and dynamics, but also of the quantum me-

chanics of these systems.
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