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Chapter 1

Introduction

The Dutch mathematician and physicist Christian Huygens, who is credited with

inventing the pendulum clock in 1656, made the startling observation that two pendulum

clocks on a common support would synchronize over time. He described this phenomena in

a letter he wrote to his farther in 1665, which is partially quoted below ([3], pgs. 153-154)

While I was forced to stay in bed for a few days and made observations on my two
clocks of the new workshop, I noticed a wonderful effect that nobody could have
thought of before. The two clocks, while hanging [on the wall] side by side with
a distance of one or two feet between, kept in pace relative to each other with
a precision so high that the two pendulums always swung together, and never
varied. While I admired this for some time, I finally found that this happened
due to a sort of sympathy: when I made the pendulums swing at differing paces,
I found that half an hour later, they always returned to synchronism and kept
it constantly afterwards, as long as I let them go.

As a high school student I was interested in computer modeling. My physics

teacher told me about Huygens’ discovery and thought it would be an interesting to try

and model this phenomena. I was also curious what would happen if the clocks were

replaced by double pendulums since they exhibit chaotic behavior. I attempted to model

the connecting beam as several point masses connected by springs. When I attempted this

simulation it did not work. The position of the point masses grew larger and larger until

the simulation ran out of memory. After unsuccessfully trying to fix it, I left this problem.

In this paper I return to the same questions that intrigued me as a high schooler, however

with a revised model and a few other tools on my belt.
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Chapter 2

Modeling Techniques

2.1 Lagrangian Mechanics

In Newtonian mechanics we consider the forces acting on the system to find the

equations of motion. However for more complicated systems this can become quite tedious.

It is easier to compute the kinetic and potential energy for the conservative forces since

these are scalar quantities (and forces are vectors). Using these energies we can use the

Lagrangian approach to derive the equations of motion.

Let T represent the kinetic energy of a system and let V represent the potential

energy. The Lagrangian is defined as L := T − V . Lagrange’s equations states that

d

dt

(
∂L

∂q̇j

)
=
∂L

∂qj
(2.1)

where {qj}nj=1 are the generalized coordinates and {q̇j}nj=1 are the generalized velocities of

the system. If the system has non-conservative forces Qj (such as friction) which affect the

jth generalized coordinate we can incorporate them into Lagrange’s equation as follows:

d

dt

(
∂L

∂q̇j

)
− ∂L

∂qj
= Qj . (2.2)

More information about Lagrangian mechanics, such as the derivation of equations

2.1 and 2.2, can be found in several sources (such as [1]).

2.2 Krasovskii-Lasalle Invariance Principle

We will now develop some machinery to determine the stability of some of the

systems we will study. We follow the definitions and theorems given in [2]. A continuous

2



function V (x) is positive definite if V (x) > 0 for all x 6= 0 and V (0) = 0. Similarly, a

function is negative definite if V (x) < 0 for all x 6= 0 and V (0) = 0. We say that a function

V (x) is positive semidefinite if V (x) can be zero at points other than x = 0 but otherwise

V (x) is strictly positive. We say V (x) is negative semidefinite if V (x) can be zero at points

other than x = 0 but otherwise V (x) is strictly negative.

Suppose we have a time-invariant system ẋ = F (x), where x ∈ Rn and ẋ denotes

the time derivative of x. Let x(t;x0, t0) denote the solution of this equation at time t with

the initial condition x0 and t0. The set M ⊂ Rn is said to be an invariant set if for all

y ∈M and t0 ≥ 0, we have x(t; y, t0) ∈M for all t ≥ t0.
We want to know what is happening as t → ∞. As such, we say xe is (locally)

asymptotically stable if for all ε > 0, there exists a δ > 0 such that

‖x(0)− xe‖ < δ ⇒ ‖x(t)− xe‖ < ε for all t > 0

and x(t) → xe as t → ∞ for x(t) sufficiently close to xe. Heuristically this mean that all

nearby points converge to the equilibrium point.

Theorem 1. (Krasovskii-LaSalle Principle). Let V : Rn → R be a locally positive definite

function such that on the compact set Ωr = {x ∈ Rn : V (x) ≤ r} we have V̇ is negative

semidefinite. Define S = {x ∈ Ωr : V̇ (x) = 0}. As t → ∞, the trajectory tends to the

largest invariant subset of S. In particular, if S contains no nontrivial invariant sets then 0

is asymptotically stable.

2.3 Runge-Kutta Method

Most Calculus students learn Euler’s method to numerically solve differential equa-

tions. The formulate simply states that for a differential equation ẏ = f(t, y)

yn+1 = yn + hf(tn, yn) and tn+1 = tn + h

where h is the step size. While this is a useful method for educational purposes, in practice

it is not very useful. This method is not as accurate as other methods using the same step

size nor is it as stable as others.

For this paper we will use a fourth-order Runge-Kutta method. This method

states that for the differential equation ẏ = f(t, y)

3



k1 = hf(tn, yn)

k2 = hf

(
tn +

h

2
, yn +

k1
2

)
k3 = hf

(
tn +

h

2
, yn +

k2
2

)
k4 = hf (tn + h, yn + k3)

yn+1 = yn +
k1
6

+
k2
3

+
k3
3

+
k4
4

tn+1 = tn + h

where h is the step size.

In this paper we will study many second order differential equations. To numeri-

cally solve them we will rewrite them into a system of first order equations. Suppose that

ÿ = g(t, y, ẏ). If v = ẏ, then v̇ = ÿ = g(t, y, ẏ). This gives rise to the system

ẏ = v

v̇ = g(t, y, ẏ)

We can then apply the Runge-Kutta method to this system of equations to numerical solve

the differential equation.

4



Chapter 3

Relevant Dynamical Systems

Next we will study some simple dynamical systems which will be important in

the work to follow. A reader with some physics background will probably have seen these

systems before and the derivation of equations of motion using Newtonian Mechanics. Here

we shall derive these equations using the Lagrangian methods outlined above to help the

reader grasp the use of the Lagrangian method.

3.1 Springs: Simple Harmonic Oscillator

M

x

k

Figure 3.1: A Spring on a Frictionless Surface

We will first examine ideal springs. Hooke’s law tells us that F = −kx where

x is the displacement from the springs rest length and k is the spring constant. Since

F = ma = mẍ we find that ẍ = − k
mx. We can also arrive at this using Lagrangian

Mechanics. The kinetic energy of the mass at the end of the spring is 1
2mẋ

2 and the

potential energy stored in the spring is 1
2kx

2. Hence we find that L = 1
2mẋ

2 − 1
2kx

2.
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Applying Lagrange’s equation 2.1, we find that

mẍ = −kx. (3.1)

To visualize solutions to these systems we plot the position x horizontal and the velocity ẋ

vertically. Such a plot is called a phase portrait. Numerically integrating equation 3.1 with

k = m we get the phase portraits show in figure 3.2. A more realistic model accounts for
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Figure 3.2: Phase Portrait for Spring
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Figure 3.3: Phase Portrait for Damped Spring

friction. Applying Lagrange’s equation 2.2 with Qx = −µẋ we find that

mẍ+ µẋ+ kx = 0. (3.2)

Numerically integrating equation 3.2 with k = m and µ/m = 0.2 we get the phase portraits

shown in figure 3.3.

It is clear from the phase portraits that over time all of the trajectories will tend

to the origin. We can prove this using Krasovskii-LaSalle principle. To do this, consider

the function

V =
1

2
mẋ2 +

1

2
kx2 (3.3)

Taking a derivative of V and substituting in equation 3.2, we find V̇ = mẋẍ + kxẋ =

mẋẍ − ẋ(mẍ + µẋ) = −µẋ. Hence V is positive-definite and V̇ is negative semi-definite.

Consider the set S = {(x, ẋ) ∈ R2 : V̇ = 0}. The Krasovskii-LaSalle principle tells us that

any trajectory near the origin with tend towards the largest invariant subset of S. Since

V̇ = 0 implies that ẋ = 0 we know S = {(x, ẋ) ∈ R2 : ẋ = 0}. For any trajectory contained

in S we must have ẋ = 0 identically, meaning that ẍ = 0. Hence by 3.2, we find that x = 0.
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Accordingly the only trajectory in S is trivial, meaning the largest invariant subset of S is

trivial. Ergo all trajectories are asymptotically stable to the origin.

3.2 Pendulums

O

l

m

θ

Figure 3.4: A pendulum

Consider a point with mass m attached to a massless rod of length l (see figure 3.4).

If x represents the x-coordinate of the mass relative to O and y represents the y-coordinate

of the mass relative to O, then x = l sin θ and y = −l cos θ. Hence

T =
1

2
m
[
ẋ2 + ẏ2

]
=

1

2
m
[
(lθ̇ cos θ)2 + (lθ̇ sin θ)2

]
=

1

2
ml2θ̇2

The potential energy is simply V = mgy = −mgl cos θ, meaning L = T − V = 1
2ml

2θ̇2 +

mgl cos θ. Applying Lagrange’s equation 2.1, we find

θ̈ +
g

l
sin θ = 0. (3.4)

Numerically integrating equation 3.4 with g = l we find the phase portrait in figure 3.5.
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Figure 3.5: Pendulum Phase Portrait
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Figure 3.6: Damped Pendulum Portrait
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Suppose that pendulum experiences a frictional force of Qθ = −µθ̇. Applying

Lagrange’s equation 2.2 we find

ml2θ̈ + µθ̇ +mgl sin θ = 0. (3.5)

Numerically integrating equation 3.5 with g = l and µ/ml2 = 0.2 we get the phase portrait

in figure 3.6.

We can again see that the damped pendulum has asymptotically stable equilibrium

points. To show that the origin is asymptotically stable, consider the function

V =
1

2
ml2θ̇2 +mgl(1− cos θ)

where θ ∈ (−π, π). Computing the the derivative and using equation 3.5, we find V̇ =

ml2θ̇θ̈ + mgl sin θθ̇ = −θ̇(gml sin θ + µθ̇) + mgl sin θθ̇ = −µθ̇. Hence V is locally positive-

definite and V̇ is negative semi-definite. Now consider S = {(θ, θ̇) ∈ R2 : V̇ = 0}. We want

to find the largest invariant subset of S. Since V̇ = 0 implies that θ̇ = 0, we know any

trajectory must have θ̇ = 0 identically. This means that θ̈ = 0. Plugging this into equation

3.5, we find that sin θ = 0. Since θ ∈ (−π, π), we see that θ = 0. Hence the only trajectory

in S is where (θ, θ̇) = (0, 0), which by the Krasovskii-LaSalle principle shows that the origin

is asymptotically stable.

3.3 Clocks

Clocks clearly encounter fiction. A mechanism called an escapement supplies en-

ergy so clocks keep ticking. Following the model outlined in [5], we model the escapement

as a Van der Pol oscillator. The escarpment adds an external torque D(θ, θ̇) = e(γ2 − θ2)θ̇
where e is a constant which represents the strength of the escapement and γ represents

the critical angle. If |θ| < γ then the escapement will supply energy to the pendulum.

If |θ| > γ the escapement will dampen the pendulum. Adding the escapement makes

Qθ = −µθ̇ + e(γ2 − θ2)θ̇, which yields

θ̈ = −g
l

sin θ − µ

ml2
θ̇ +

e

ml2
(γ2 − θ2)θ̇. (3.6)

Numerically integrating equation 3.6 for four minutes we get the phase portrait in

figure 3.7. If we only plot the last two minutes of the simulation we can easily see that all

8



initial conditions tend to the same limit cycle, shown in figure 3.8. For both simulations

g = l, µ/ml2 = 0.2, e/ml2 = 1.2, and γ = 0.5.
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Figure 3.7: Phase Portrait for Clock
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Figure 3.8: Limit Cycle for Clock

3.4 Driven Pendulum

The driven pendulum is similar to a normal pendulum, except that the driven

pendulum is external driven by a force of A cos(ωt), where A is the forcing amplitude and

ω is related to the forcing frequency. Unlike the escapement in a clock, this forcing is a

function of time. While it is periodic, it may or may not coincide with the natural frequency

of the pendulum. This can result in periodic, quasi-periodic, or chaotic behavior.

The Lagrangian for the driven pendulum is the same as the pendulum. Since

there is a non-conservative driving forcing of A cos(ωt) and a damping of −µθ̇, we find

Qθ = A cos(ωt)− µθ̇. Using equation 2.2 we find

ml2θ̈ +mgl sin θ + µθ̇ = A cos(ωt) (3.7)

A phase portrait for the driven pendulum is plotted in Figure 3.9, with ml2 =

mgl = 1, µ = 1/4, A = 3/2, and ω = 2/3. These conditions result in chaotic behavior

which gives rise to a cluttered phase portrait.

One way to see more interesting features of the driven pendulum is to create a

Poincare section. Imagine that we place the driven pendulum in a dark room, but turn a

light on at fixed time intervals to record the pendulums angle and angular velocity. We

9
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Figure 3.9: Phase Portrait for Chaotic Pendulum

can then use this data to create a phase portrait. If we strobe the pendulum at the same

frequency as the driving force, we get the Poincare section pictured in figure 3.10. The

reason we want to strobe at the same frequency of the driving force is to see if the motion is

periodic, quasi-periodic, or chaotic. If the motion is chaotic a Poincare section like Figure

3.10, which is called a strange attractor of the system.

Another way to study the chaotic pendulum is through bifurcation diagrams. Sup-

pose we fix all the parameters except for one. We still want to strobe the pendulum, but

instead of plotting the angular velocity versus the angle, we just record the angular velocity.

We can then plot the angular velocity vertically and the parameter we vary horizontally.

When we vary the forcing coefficient we get the bifurcation diagram in Figure 3.11. When

10
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Figure 3.10: Poincare Section for Chaotic Pendulum

we vary the drive frequency we get the bifurcation diagram in Figure 3.12. When we vary

the damping we get the bifurcation diagram in Figure 3.13. These diagram show us where

we get different types of motion. For example, if we look at the damping bifurcation dia-

gram, we can see for µ > 0.5 that we have periodic motion. When µ is around 0.4 we get

quasi-periodic motion. When µ < 0.1 we get chaotic motion. We also notice that sometimes

while we have chaotic motion small windows of quad-periodic motion appear. One instant

of this can bet seen around µ = 0.14.

3.5 Error in Numerical Analysis

A simple way to gauge the error committed by the Runge-Kutta algorithm is to

compare the predicted theoretical energy of the system to the energy of the of the simulated

system. For this method to work we need the energy to be conserved. Hence this method
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Figure 3.11: Forcing Bifurcation Diagram
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Figure 3.12: Drive Frequency Bifurcation
Diagram
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Figure 3.13: Damping Bifurcation Diagram

will only work for the frictionless spring and the frictionless pendulum, as all the other

systems have non-conservative forces. Recall that relative error is given by |Ep − Es|/Ep,
where Ep is the predicted theoretical energy and Es is the simulated energy. In figure 3.14

we show the relative error versus time for the spring with a step size of 0.01. In figure 3.15

we show the relative error for the pendulum with a step size of 0.001.
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Figure 3.15: Error for Pendulum
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Chapter 4

A Model of Two Coupled Clocks

4.1 Experimental Results Motivating Our Model

In [4], the authors attempted to reproduce Huygens’ result experimentally. They

first mounted two pendulum clocks to a walk. However they did not observed synchroniza-

tion. Next they took two tables and placed a block of wood which spanned the gap between

the tables. They then hung the two pendulum clocks from the beam. However they still

did not observed synchronization. Next they placed two small cylindrical rollers under the

beam so the beam could move back and forth. This modification made both in-phase and

out-of-phase synchronization possible. Since it was experimentally shown that this set-up

causes the clocks to synchronize it will serve as the basis for our model in the next section.

4.2 Model and Equations of Motion

In this model we will consider two pendulums with length l and point mass m

attached at the end, affixed to a common support of mass M (as shown in figure 4.2).

The common support is then attached to a spring of spring constant k. As the common

support moves it experiences damping. Suppose that the pendulums have an escapement

mechanism described by Di = D(θi, θ̇i) (i = 1 or 2). Let x measure the displacement of

the support (with x = 0 corresponding to the spring at its rest length), and let α and β be

fixed distances with β > 2l (ensuring that the pendulums never collide).

If xl represents the x-coordinate of the left pendulum relative toO and yl represents

the y-coordinate of the left pendulum relative to O, then xl = x + α + l sin θ1 and yl =
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Figure 4.1: Two Pendulums on a Moving Support, attached to a damped spring

−l cos θ1. Hence the kinetic energy from the left pendulum is

Tl =
1

2
m(ẋl

2 + ẏl
2) =

1

2
m
[
(ẋ+ lθ̇1 cos θ1)

2 + (lθ̇1 sin θ1)
2
]
.

Similarly if xr represents the x-coordinate of the right pendulum relative to O and yr

represents the y-coordinate of the right pendulum relative to O, then xl = x+α+β+l sin θ2

and yl = −l cos θ2. Hence the kinetic energy from the right pendulum is

Tr =
1

2
m(ẋr

2 + ẏr
2) =

1

2
m
[
(ẋ+ lθ̇2 cos θ2)

2 + (lθ̇2 sin θ2)
2
]
.

Since the kinetic energy of the support is simply 1
2Mẋ2 we find the total kinetic energy is

T =
1

2
(M + 2m)ẋ2 +mlẋ

[
θ̇1 cos θ1 + θ̇2 cos θ2

]
+

1

2
ml2

[
θ̇1

2
+ θ̇2

2]
.

The potential energy is simply the sum of the energy stored in the spring plus the gravitation

potential of the two pendulums, which is

V =
1

2
kx2 +mgyl +mgyr =

1

2
kx2 −mgl cos θ1 −mgl cos θ2.

Hence we find the Lagrangian of the system is

L =
1

2

(
M+2m

)
ẋ2+mlẋ

[
θ̇1 cos θ1+θ̇2 cos θ2

]
+

1

2
ml2

[
θ̇1

2
+θ̇2

2]−1

2
kx2+mgl cos θ1+mgl cos θ2.

Since not all the forces are conservative, we must use Langrange’s equation 2.2.

The friction in the frame is incorporated with Qx = −µẋ, the escapement for the left
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pendulum is incorporated with Qθ1 = D1 = e(γ2 − θ21)θ̇1 and similarly the escapement for

the right pendulum is incorporated with Qθ2 = D2 = e(γ2 − θ22)θ̇2. Applying Lagrange’s

equation 2.2 with the three generalized coordinates x, θ1, θ2 yields
gml sin θ1 +mlẍ cos θ1 +ml2θ̈1 = e(γ2 − θ21)θ̇1

gml sin θ2 +mlẍ cos θ2 +ml2θ̈2 = e(γ2 − θ22)θ̇2

(M + 2m)ẍ+ kx+ µẋ+ml
[
θ̈1 cos θ1 + θ̈2 cos θ2

]
= ml

[
θ̇1

2
sin θ1 + θ̇2

2
sin θ2

]
(4.1)

4.3 Asymptotic Stability with Krasovskii-LaSalle

Following in ideas in [5] we can show a simplified version of equation 4.1 tend

to an out-of-phase synchronization (we don’t use same variables as [5] does). When we

use the Krasovskii-LaSalle principle, we want to define our coordinates such that origin is

the asymptotically stable point. Since we are interested in showing that trajectories tend

towards out-of-phase synchronization, we want to introduce the variable θ = θ1 + θ2. Doing

so means out-of-phase synchronization will be achieved when θ = θ̇ = 0. However we can

not do much with this in equation 4.1. We can simplify equation 4.1 by linearizing the

trigonometric functions and dropping the squared terms. After doing this we can add the

first two equations in 4.1 to get θ. Doing so yields

gmlθ + 2mlẍ+ml2θ̈ = 0 (4.2)

(M + 2m)ẍ+ kx+ µẋ+mlθ̈ = 0 (4.3)

Consider the function

V = mglθ2 + 2klx2 + 2Mẋ2 +m(lθ̇ + 2ẋ)2 (4.4)

It is clear that V is a positive-definite function. Differentiating V and using equations 4.2

and 4.3, we find
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V̇ = 2mglθθ̇ + 2ml2θ̇θ̈ + 4kxẋ+ 4Mẋẍ+ 8mẋẍ+ 4ml[θ̈ẋ+ θ̇ẍ]

= 2θ̇(mglθ +ml2θ̈) + 4kxẋ+ 4(M + 2m)ẋẍ+ 4ml[θ̈ẋ+ θ̇ẍ]

= 2θ̇(mglθ +ml2θ̈) + 4ẋ[kx+ (M + 2m)ẍ] + 4mlθ̈ẋ+ 4mlθ̇ẍ

= 2θ̇(−2mlẍ) + 4ẋ[−µẋ−mlθ̈] + 4mlθ̈ẋ+ 4mlθ̇ẍ

= −4mlθ̇ẍ− 4µẋ2 − 4mlẋθ̈ + 4mlθ̈ẋ+ 4mlθ̇ẍ

= −4µẋ2

Hence V̇ is negative semi-definite.

Let S = {(θ, θ̇, x, ẋ) ∈ R4 : V̇ (θ, θ̇, x, ẋ) = 0}. The Krasovskii-LaSalle Principle

tells us that any trajectory tends to the largest invariant subset of S. Since V̇ = −4µẋ2,

V̇ = 0 implies that ẋ = 0. Since we are only interested in trajectories which are contained

entirely within S, we know ẋ must be identically zero which means that ẍ = 0 and x is a

constant. Applying this to equation 4.3 we see that kx+mlθ̈ = 0 which means

θ̈ = −kx
ml

= constant.

Applying this to equation 4.2 we find that gmlθ − lkx = 0 which means that

θ =
kx

gm
= constant.

This means that θ̇ = θ̈ = 0. Since θ̈ = ẍ = 0, equation 4.2 tells us that θ = 0. Hence the

only invariant subset of S is (θ, θ̇, x, ẋ) = (0, 0, 0, 0). Since the only invariant subset of S

is trivial, the Krasovskii-LaSalle Principle tells us that the origin is asymptotically stable.

Since θ = θ1 + θ2, this shows that for all trajectories, θ1 + θ2 tends to zero, which is an

out-of-phase synchronization.

4.4 Investigation of Simulation

While the stability shown in section 4.3 is interesting in that it shows the result

Huygen’s observed, it does paint a complete picture. To fully understand what happens we

need to return to equation 4.1. We now will turn our attention to the numerical simulations

using the Runge-Kutta method outlined in section 2.3 and the Python programing language.

To do this we need to solve equation 4.1 for ẍ, θ̈1, and θ̈2. Doing so yields
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ẍ =
ml[θ̇21 sin θ1+θ̇22 sin θ2]+

1
2
gm[sin(2θ1)+sin(2θ2)]−kx−µẋ− 1

l
[D1 cos θ1+D2 cos θ2]

M+2m−m cos2 θ1−m cos2 θ2

θ̈1 =
e(γ2−θ21)θ̇1−gml sin θ1−ml cos θ1ẍ

ml2

θ̈2 =
e(γ2−θ22)θ̇2−gml sin θ2−ml cos θ2ẍ

ml2

(4.5)

For our first simulation let M = 5, k = 0.1, µ = 7,m = 0.1, l = 1, and g = 9.81. We

start with θ1 = 1.3, θ2 = 1.1 and θ̇1 = θ̇2 = x = ẋ = 0. Looking at a graph of the time series

in figure 4.3 of each pendulum they seem to be close to an out-of-phase synchronization. If

the pendulums are exactly out-of-phase then we would expect θ1 +θ2 = 0. Graphing θ1 +θ2

versus time it appears that θ1 + θ2 is tending towards zero, but is not identically zero, as

shown in figures 4.4 and 4.5.
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Figure 4.2: Early Time
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Figure 4.3: Out-of-Phase Synchronization

Now lets change the damping in the beam and let µ = 3. Looking at a graph

of the time series in figure 4.7 of each pendulum they seem to be close to an in-phase

synchronization. If the pendulums are in-phase then we would expect θ1−θ2 = 0. Graphing

θ1 − θ2 versus time it appears that θ1 − θ2 is tending towards zero, but is not identically

zero, as shown in figures 4.8 and 4.9.

This raises the question of how do the dynamics change as we vary the damping

in the beam. We have just seen for small damping that in-phase synchronization occurs

and for larger damping out-of-phase synchronization occurs. What happens as we vary the

damping? How does the system transition from in-phase to out-of-phase synchronization?

To study this we need to develop a criteria for when synchronization is achieved.
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475 480 485 490 495 500
−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−6

Time (sec)

θ
1
 +

 θ
2

Figure 4.5: θ1 + θ2 when synchronized
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Figure 4.6: Early Time
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Figure 4.7: In-Phase Synchronization

The above time series graphs show that while either θ1 + θ2 or θ1 − θ2 is tending

to zero, it does not become identically zero. Hence we define in-phase synchronization to

mean there exists a T such that |θ1(t) − θ2(t)| < ε for all t > T (where ε is small). We

define out-of-phase synchronization to mean there exists a T such that |θ1(t) + θ2(t)| < ε

for all t > T (where ε is small). We will call T the time when synchronization is achieved.

We can write the program to find the time when synchronization is achieved as we vary µ

and to classify the type of synchronization, which we show in Figure 4.10.

This pictures suggest there is a critical damping where the synchronization switched

form in-phase to out-phase. We are now interested in what happens at this critical damp-

ing. In order to study it we need to find where this critical damping occurs Let µc be the
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Figure 4.8: θ1 − θ2 for Early Time
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Figure 4.9: θ1 − θ2 when synchronized
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Figure 4.10: Time to Synchronize vs. Damping (ε = 0.01)
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critical damping. To estimate µc we will use a bisection method. We start with µmin = 4

which we know gives in phase synchronization and µmax = 6 which gives out-of-phase syn-

chronization. We test the midpoint to see what type of synchronization occurs. If in-phase

synchronization occurs we replace µmin with the midpoint. If out-of-phase synchroniza-

tion is achieved, then µmax is replaced with the midpoint. This is repeated until neither

in-phase nor out-of-phase synchronization is detected at the midpoint. It is possible that

synchronization occurs at a time greater than the time the simulation ran, but we know

for sure that the actual critical damping must be between µmin and µmax. Running this

we find that 4.96417299006 ≤ µc ≤ 4.96417299029. Figure 4.11 shows the time series

where µ = 4.96417299018 (the midpoint of the interval we found). As we can see that no

synchronization occurs here.
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Chapter 5

Coupled Driven Pendulums

In this section we will now make a few slight changes to the system we studied

in the previous chapter. As we saw in section 3.3, adding an escapement to a pendulum

causes a limit cycle to appear. This is the model we used for a clock in the previous

chapter. However if we change this to the time dependent function A cos(ωt) we have a

driven pendulum which has very different behaviour. We will now look at what happens

when we couple two driven pendulums.

5.1 Equations of Motion

The equations of motion for the coupled driven pendulums are very similar to

equation 4.1. We simply need to replace the equation for the escapement with the equation

for the time dependent driver. Hence Qθ1 = Qθ2 = A cos(ωt). This yields the system
gml sin θ1 +mlẍ cos θ1 +ml2θ̈1 = A cos(ωt)

gml sin θ2 +mlẍ cos θ2 +ml2θ̈2 = A cos(ωt)

(M + 2m)ẍ+ kx+ µẋ+ml
[
θ̈1 cos θ1 + θ̈2 cos θ2

]
= ml

[
θ̇1

2
sin θ1 + θ̇2

2
sin θ2

]
(5.1)

5.2 Time Series

Now lets take a look at how the angel evolves over time. For these simulations we

let M = 7.5, k = 0.11, µ = 10, m = 0.1, l = 1.0, and g = 9.81. We start at θ1 = 2, θ2 = −2,

and θ̇1 = θ̇2 = x = ẋ = 0. As we an see, there is some irregular behavior at the start but it
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clearly settles down into non-chaotic behavior. Early on one of the driven pendulum make

several revolutions before settling down. As such for the plot we mod out the angels by 2π

to make it easier to display. This is only needed for figure 5.1. Looking at the sum θ1 + θ2

also helps us see what is going on, which is displayed in figures 5.1, 5.2, and 5.3.
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Figure 5.1: Coupled Driven Pendulums Part 1
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Figure 5.2: Coupled Driven Pendulums Part 2

5.3 Phase Portraits

Lets now look at some phase portraits for the two coupled driven pendulums. We

saw before in section 3.4 that the phase portrait for the driven pendulum was very cluttered.

However we see that when we look at the phase portraits, shown in figures 5.7 and 5.8, for

each of the driven pendulums that they are much less cluttered.

Further more, if only look at the second half of the data, it appears that the
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Figure 5.3: Coupled Driven Pendulums Part 3
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Figure 5.4: Sum of Coupled Driven Pendulums Part 1
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Figure 5.5: Sum of Coupled Driven Pendulums Part 2
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Figure 5.6: Sum of Coupled Driven Pendulums Part 3
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Figure 5.7: Left Pendulum Phase Portrait

behavior is no longer chaotic as shown in figures 5.9 and 5.10. This is very surprising

considering the behavior we observed for the uncoupled system. Of course this is for just

one set of initial conditions and system parameters. Instead of looking at tons of phase

portraits, we can get the same information in a bifurcation diagram.
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Figure 5.8: Right Pendulum Phase Portrait
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Figure 5.9: Left Pendulum Limit Cycle

5.4 Bifurcation Diagram

We now turn our attention to bifurcation diagrams. As we saw before in section

3.4, the bifurcation diagrams gave us an idea of when the system is chaotic and when it

is periodic or quasi-periodic. The phase portraits we looked at in the previous section

suggest that the motion of both pendulums settles down. As we did in section 3.4, we

want to use the bifurcation diagram to see where we get periodic, quasi-periodic, or chaotic

behavior. Recall that we vary one of the parameters and record the angular velocity. We

strobe the angular velocity at the same frequency as the driver. The resulting bifurcation

diagrams (figures 5.11 and 5.12) shows that we no longer get chaotic behavior for either

driven pendulum as we vary forcing. If we vary the drive frequency (figures 5.13 and 5.14)

we also don’t see chaotic behavior. We do however see some chaotic behavior for small

damping (figures 5.15 and 5.16).
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Figure 5.10: Right Pendulum Limit Cycle
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Figure 5.11: Left Forcing Bifurcation
Diagram
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Figure 5.12: Right Forcing Bifurcation
Diagram
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Figure 5.13: Left Drive Frequency Bifurcation
Diagram
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Figure 5.14: Right Drive Frequency Bifurca-
tion Diagram
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Figure 5.15: Left Damping Bifurcation
Diagram
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Figure 5.16: Right Damping Bifurcation
Diagram
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Chapter 6

Future Work and Conclusions

The biggest surprises encountered in this work was with the coupled driven pen-

dulum. Seeing this coupling of two chaotic oscillators produce non-chaotic behavior was

not expected. The first question raised is this an artifact of the numerical methods used or

is this truly how this system behaves? If it is truly how the system behaves, why does this

happen? Is there a global attractor which all initial conditions are drawn to?

We also observed an interesting phenomena when looking at the coupled clocks.

As we varried the damping there was a transition from in-phase synchronization to out-of-

phase synchronization. This suggests that there is a bifurcation which occurs at the critical

damping. An interesting aspect would be to study the dynamics behind this bifurcation.

Another area where more work can be done is in visualizing the data. Both coupled

oscillators live in a six dimensional phase space. To see our data we took various two

diminutional slices to visualize the data. We could look at three dimensional slices, which

could potentially yield more information. In addition to finding other ways to visualize the

data we could also look at other ways to analyze the data. We primarily looked at graphs

which seemed to indicated certain phenomena, but a more formal analysis would be needed

to show these actually exist (and not simply an artifact of the numerical methods).

There are also a number of parameters to vary with these systems. In this paper

we focused on the changes in the dynamics as we varied the damping. There are other

parameters we could vary which might produce interesting results. Also we could look at

for a fixed set of parameters what happens as we vary the initial conditions.
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