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Chapter 1

Introduction

In this work we study the classification of points in the The Monster Tower, which is a
tower of P1 bundles over a manifold M. The Monster Tower construction over the plane C2,
or R2 is of particular interest, as it contains all rank 2 Goursat distributions (see Chapter
1 of [19]), and can be seen as a space whose points contain compactified curvilinear data
of jets of singular analytic plane curve germs.

It had been previously established that the points in the Monster Tower could be
coarsely stratified by a set of code words, where the words consisted of three letters. This
was first observed by Mormul in [20], and eventually by Montgomery and Zhitomirskii in
[19] and Colley, Kennedy, and Shanbrom in [9]. One generally studies this Monster Tower,
and its points, by studying irreducible singular analytic plane curve germs on the base,
or what we call Legendrian curves on the first level. In the case of singular plane curves,
certain words that stratify the points in the Monster Tower also have the potential to
topologically classify plane curve germs on the base.

O. Zariski in [25] and later in [26] gives us the remarkable fact that analytic plane curve
germs of the form f(X,Y ) = 0, with f ∈ C[[X,Y ]] are of the same topological type if and
only if they share the same set of discrete invariants, known as the semigroup of the curve.
This semigroup consists of valuations of regular functions O := C[[X,Y ]]/f on the curve
germs with the same topological type. There are other discrete topological invariants of the
curve, most of which can be found in C.T.C. Wall’s book [24]. One invariant of particular
importance is known as the Puiseux Characteristic, and consists of essential exponents,
that are closely related to the Puiseux Expansion of the curve (see Wall Section 3.1 in [24],
or I.2 in [26]).

There is a finer discrete analytic invariant, which we call the value set of the plane
curve germ, and it is given by the valuations of differential one-forms OdO on the curve.
These were first studied by Zariski in [25] and [26], and they have been studied in more
detail by Delorme in [10] and [11], and more recently by Hefez and Hernandes in [13] and
[15], Perraire in [21] and Almirón in [3].
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Since points in the Monster Tower can be stratified via code words, and topological
classes of singular plane curve germs also have a code word, we can assign a semigroup to
a point in the Monster Tower using this code word to semigroup correspondence. We can
similarly ask whether one can further stratify the points in the Monster Tower using the
value sets of plane curve germs.

A large part of this work is dedicated to this question, and answers that if the point is
what we will later define to be regular, then it indeed has a set of value sets associated to
it. We find these value sets are limited by those value sets associated to a single topological
class. We further show that at some levels in the Monster Tower, certain points will have
only one value set associated to them.

Another large portion of this paper is dedicated to studying the value sets of plane
curve germs in detail, namely the generic value set of a topological class of plane curve
germs. We will also dedicate some effort to working with Legendrian curve germs, as they
are a natural object of study when it comes to the Monster Tower.

The main results of this work include associating value sets of plane curve germs to
points in the Monster Tower, giving a recursive formula for the generic value set of a
topological class of plane curve germs with coprime semigroup, and finding new contact
invariants of Legendrian curves at level 1 of the Monster Tower. We now outline the course
of the paper.

1.1 Outline of the Paper

In Chapter 2 we state all of the preliminaries and the work done before this paper that helps
us achieve our results. The first section of the preliminaries is dedicated to the Monster
Tower and its basic properties. The second section involves developing the basics of plane
curve germs and their semigroups and value sets. Finally in the last section we define what
a Legendrian curve is, and discuss its associated semigroup.

In Chapter 3 we establish the connection between jets of plane curve germs and points
in the Monster Tower. We do this by associating a certain set of plane curve germs to each
point in the Monster Tower. We find that certain points have a well-defined set of value
sets associated to them. We give explicit results in terms of which points have only one
value set associated to them in the Monster Tower. We also determine which points have
the generic value set associated to them, given that their code word is of a certain type.
The main result of our paper is stated at the end of this chapter, which fully describes the
points that have generic associated value sets of a topological class with coprime semigroup.
We will need results from the following chapter to complete the picture

We then move on to Chapter 4, where we study in more detail value sets of plane
curve germs. In this chapter we present what we call the Coordinated Mancala game for a
coprime semigroup. We prove that every game we play results in a value set of some curve
with the given semigroup, and in fact every curve with a given coprime semigroup has
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a value set that corresponds to a Coordinated Mancala game. We find that the minimal
game gives us the generic value set of a topological class of plane curves germs with coprime
semigroup. We then complete what is essentially the main result of the paper by providing
a recursive formula for the minimal generators of the generic value set of a topological class
of plane curve germs with coprime semigroup.

The last part of this chapter is dedicated to partially classifying the set of code words
mentioned above that have only one value set associated to them. Here we give rather
robust results and determine a large set of words which we call Λ-simple, and have the
property above of only one value set.

Finally in Chapter 5 we determine some contact invariants of Legendrian curve germs,
and establish that there is a notion of a Zariski invariant of the Legendrian curve (see
Chapter III in [26] or Theorem 2 in [13]). In this chapter we also give some results that
relate to the Legendrian semigroup of the Legendrian curve. This chapter concludes the
results of this work, and all is left is the conclusion and further speculations in Chapter 6.
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Chapter 2

Preliminaries

2.1 The Monster Tower

Here we introduce one of the main objects of study known as the Monster Tower, or in
some cases the Semple Tower. The construction we are going to introduce can be done
with any smooth manifold M as its base. Here we will stick to the complex plane C2 for
the sake of simplicity, but really any field of characteristic 0 will do. Other constructions
of this tower can be found in 1.1 in [19] over the real plane, or over an arbitrary base in
section 5 in [9].

2.1.1 The Basic Construction of the Monster Tower

The construction of the Monster Tower starts at level 0 where we define M(0) := C2. It is
a sequence of CP 1 bundles

. . .M(n+ 1) → M(n) → · · · → M(1) → M(0),

where at each level n we inductively define a rank 2 distribution ∆n over the MonsterM(n),
which we will sometimes refer to as the focal distribution, or focal bundle as they do in [9].
We begin with ∆0 := TM(0) = TC2. We now define M(1) := P(TC2), the projectivization
of the tangent bundle of M(0). It is straightforward that M(1) = CP 1 × C2.

Next we construct ∆1. One way to define ∆1 locally is to use coordinates on M(1)
given by (x, y, y′), where y′ records the slope of a line in C2 passing through (x, y). It can
also be seen as the affine coordinate [1 : y′] ∈ CP 1. Then ∆1 = ker(dy − y′dx) locally.
Similarly we can reverse the roles of x and y and locally define ∆1 = ker(dx− x′dy) where
in this case we have the affine coordinate x′ for [x′ : 1] ∈ CP 1. Anywhere these charts
overlap we have y′ = 1/x′. Alternatively we consider the natural projection map

π : TC2 → C2
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This map induces a map
π̄ : M(1) → M(0) := C2.

There is then a differential map dπ̄ : TM(1) → TM(0). Any point p̃ ∈ M(1) is of the form
p̃ = (p, l) where p ∈ C2 and l ∈ CP 1 is a line through p in TpM(0). We define

∆1|p̃ := (dπ̄p̃)
−1(l).

That is, it is the set of vectors in Tp̃M(1) that map to the line l in TpM(0). We then define

M(2) := P(∆1),

the projectivization of ∆1. The construction continues inductively: we define M(n) :=
P(∆n−1) and ∆n is obtained by considering preimages of lines l ⊂ ∆n−1(p) in TpM(n− 1)
where p ∈ M(n − 1) under the differential of the induced projection map π̄ : M(n) →
M(n− 1). We then define

∆n|p̃ := (dπ̄p̃)
−1(l),

where p̃ = (p, l) as before.
A good exercise is to verify that in the case of M(1) our general construction of ∆1

agrees with the local construction of ∆1 defined by ker(dy − y′dx).
In the following section we will show how for analytic curves γ : C → M(n), with γ

tangent to the distribution, i.e. such that γ′(t) ∈ ∆n, we can define a procedure called
lifting or prolonging γ that results in an analytic curve germ in M(n+1), tangent to ∆n+1.
We will later on work with what we call Legendrian curve germs, which can be though of
as lifts of singular analytic plane curve germs up into the 1st level of the Monster Tower.
We can carry out a similar procedure for a local symmetry Φ: U ⊆ M(n)→̃Ũ ⊆ M(n),
which we also call lifting or prolonging. Let us see how this is done.

2.1.2 Lifting and Projecting Analytic Curves and Symmetries in the
Monster Tower

We saw from our previous section that the Monster Tower has the potential to capture
information about derivatives of plane curves. We now give a procedure that allows us to
lift certain types of curves into the Monster in a way that records higher order curvilinear
data. These curves are a special type of analytic curves called integral curves, for which
we give a definition below.

Definition 1. We say that an analytic curve γ : C → M(n) that is tangent to ∆n, i.e.
γ′(t) ∈ ∆n for all t ∈ C, is an integral curve.

These integral curves are the curves that we can successfully lift up to higher levels
of the Monster, and the procedure will continue to give us integral curves at each level.
Note that an analytic plane curve is automatically an integral curve at level 0. Let us now
formally define the notion of lifting these curves into the Monster Tower.
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Definition 2. We define the lift or first prolongation of an integral curve γ : C → M(n),
denoted γ1, to be the curve in M(n+ 1) given by the following:

1. If γ′(t) ̸= 0 then γ1(t) = (γ(t), γ′(t)) ⊂ M(n + 1), where γ′(t) is the line in ∆n|γ(t).
containing y′(t).

2. If for some t0 we have γ′(t0) = 0, then since γ is analytic in M(n), the point γ(t)
is an isolated singular point. Hence there exists some punctured neighborhood of t0
such that γ′(t) ̸= 0. We define γ1(t0) := limt→t0 γ

1(t).

Theorem 2.5 in [19] guarantees that the limit above is well defined, and that γ1 is
analytic and is an integral curve in M(n + 1). We can continue the process iteratively
to obtain higher prolongations. We denote the kth prolongation of a curve in M(n) by
γk : C → M(n+ k). Let us give an example of this procedure starting with a plane curve.

Example 1. Let γ be the plane curve germ given by the following parameterization:

x(t) = t4, y(t) = t9 + t10.

We see that the coordinates on M(1) are given by (x, y, y′) and so our new lifted curve is
given by

x(t) = t4, y(t) = t9 + t10, y′(t) =
9

4
t5 +

5

2
t6.

where y′ = dy/dx as before.

We also have the ability to project integral curves in M(n) down to the lower level
M(n− 1). If γ is an integral curve in M(n) we will define the projection down to M(n− 1)
by γ1(t) := π̄(γ(t)), where π̄ : M(n) → M(n− 1) is the induced projection map. It is again
an integral curve, and so we may continue the process. We will denote the kth projection
map as π̄k : M(n) → M(n− k). We with also denote the kth projection of γ as γk.

Definition 3. Let the diffeomorphism Φ: M(n) → M(n) be called a symmetry of M(n)
if we have that Φ∗(∆n) = ∆n. We call Φ: U → Ũ a local symmetry if it sends the open set
U→̃Ũ in M(n) with Φ∗(∆n|U ) = ∆n|Ũ
Definition 4. The prolongation of a local symmetry Φ of M(n) is the local symmetry of
M(n+ 1) given by Φ1(p, l) := (Φ(p), dΦ(l)).

Theorem 1. (1.1 in [19]) For i > 1, every local symmetry at level i is the prolongation of
a symmetry at level i− 1.

This theorem asserts that we need only study local symmetries of M(1), since any other
symmetry at a higher level is obtained by prolongations of lower level symmetries until we
get to level 1. We do not go down to level 0, as it is not sufficient to capture all symmetries
of the Monster. Indeed the set of lifted or prolonged local symmetries of the plane C2 up
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to level 1 is strictly contained in the local contact transformations of M(1) ([19], and see
example 2 below).

From this theorem we get also obtain the notion projecting local symmetries of the
Monster. Indeed Theorem 1 shows that for any n > 1 any local symmetry Φ of M(n) has
a unique local symmetry of M(n − 1), that we will denote Φ1, such that (Φ1)

1 = Φ. We
will call Φ1 the projection of Φ to M(n − 1). We can continue to do this down as far as
level 1. We will denote the kth projection of Φ, for any 1 ≤ k ≤ n − 1 by Φk, which will
be a local symmetry of M(n− k).

We now define what it means for two points in M(n) to be equivalent.

Definition 5. We say that two points p, q ∈ M(n) are equivalent if there is a local sym-
metry Φ of M(n) such that Φ(p) = q. We similarly say two integral curves are locally
equivalent if there is a local symmetry that takes one to the other.

By Theorem 1 we must have that two points p and q are equivalent in M(n) if and only
if there is a symmetry at level 1 that prolongs to level n and takes p to q. Sometimes we
want to restrict our attention to just those local symmetries that come from lifting local
analytic isomorphisms of the plane. Let us give a formal name to the equivalency of points
under these lifted analytic isomorphisms, as it will be used quite often in the following
chapters.

Definition 6. Let p, q ∈ M(n) be called analytically equivalent, or a-equivalent , if Φ in
Definition 5 is the nth prolongation of a local analytic isomorphism of the plane.

Note that a-equivalence implies equivalence. However as mentioned above, there are
examples of symmetries in the first level of the Monster M(1) that are not lifted analytic
plane isomorphisms. Let us give an example of one such symmetry of M(1).

Example 2. Consider the local transformation given by Φ: (M(1), 0) → (M(1), 0) defined
by

(x, y, y′) 7→ (y′, xy′ − y, x) =: (x̃, ỹ, ỹ′)

One can quickly check that this is a diffeomorphism ofM(1), since it is in fact an involution.
We compute the pullback on the contact form:

Φ∗(dỹ − ỹ′dx̃) = d(xy′ − y)− xdy′

= xdy′ + y′dx− dy − xdy′

= −(dy − y′dx)

This shows that the one-form defining the distribution ∆1 is preserved up to sign, and
therefore the distribution is preserved, and Φ is a local symmetry of M(1), also called a
contactomorphism. Clearly Φ is not a lifted analytic isomorphism of the plane.

This gives us the example we were looking for, and later we show that this transforma-
tion is important to consider when it comes to moving curves in a fiber of M(1) → M(0)
to curves that are not entirely in that fiber.
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Now that we have defined prolongation and equivalence of curves, we wish to state a
couple of facts about local symmetries and integral curves given to us by [19]:

Proposition 1. (2.6 and 2.9(i) in [19]) Projection and prolongation of local symmetries
and integral curve germs are inverses.

Proposition 2. (2.9(ii) in [19]) Projections and prolongations of integral curves commute
with local symmetries: (Φ ◦ γ)k = Φk ◦ γk for any k, and (Φ ◦ γ)k = Φk ◦ γk if k ≤ n− 1.

These two propositions along with Theorem 1 give us the following theorem from Mont-
gomery and Zhitomirskii.

Theorem 2. (2.2 in [19]) Let γ, γ̃ : (C, 0) → (M(n), p) be two integral curve germs such
that their (n− 1)st projections are non constant curve germs. Then γ and γ̃ are equivalent
if and only if γn−1 is equivalent to γ̃n−1.

2.1.3 RVT Code Words for Points and Curves in The Monster Tower

We can stratify the points in the Monster Space M(n) by using a code word that has the
same length n. We only need three distinct symbols to form our alphabet. These symbols
are R for regular, V for vertical, and T for tangent. These three letters correspond to
three types of directions in the distribution. We now explicate what we mean by types
of directions. These symbols have been adopted from [8] and [19], but can be originally
credited to Mormul in [20] where instead he uses the letters C and S in place of R and V
respectively.

We will do most of our work on a-equivalence, and use definitions that fit this criteria.
When it is appropriate, we will note the difference between regular equivalence and a-
equivalence.

Definition 7. A point p ∈ M(n) is said to be a nonsingular point if there exists a
nonsingular plane curve γ(t) such that γn(0) = p and γ′(0) ̸= 0. Otherwise we say that p
is singular.

The author notes that the terminology may seem off in the sense of algebraic geometry.
However we have that the group of germs of plane diffeomorphisms fixing the origin acts
on the fiber of the Monster Tower over the origin. This action generates a-equivalence. In
other words, two points of the Monster Tower over the origin are a-equivalent if and only
if they lie on the same orbit of this group action. When a group acts on a space, one has
a single generic or principal orbit type whose points we call “regular” and a subvariety
of smaller orbits which we call “singular”. For example, if we act on square matrices by
conjugation by invertible ones, then the matrices with distinct eigenvalues form the regular
points, and all those with double eigenvalues form the singular points. It is with this group
theoretic perspective in mind, rather than the algebraic geometric perspecitve, that we use
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this ‘nonsingular / singular’ terminology. In our case, the nonsingular points form a single
orbit.

We see from the preceding definition that p can be realized by evaluating the prolonga-
tion of a nonsingular curve in the plane. In [19] they instead ask for a nonsingular integral
curve germ γ : (C, 0) → M(1) such that γn−1(0) = p. In the latter definition, this allows
for nonsingular curve germs completely contained in the fiber of M(1) → M(0), as well as
a nonsingular curve tangent to such a fiber. We will call this notion of nonsingular points
contact nonsingular points When considering nonsingular curves in M(1) there is no reason
to distinguish immersed curves along a fiber from any other immersed curves (see Remark
2.18 in [19]). This is due to the fact that we can use a symmetry of M(1) similar to the
one presented in Example 2 to transform a nonsingular curve germ in the fiber to one not
even tangent to the fiber.

Theorem 2.15 in [19] shows us that all contact nonsingular points in M(n), n ≥ 1, are
equivalent. We now present a similar theorem that shows that all nonsingular points are
as well.

Theorem 3. All nonsingular points in M(n) are a-equivalent.

Proof. All nonsingular plane curves are locally equivalent to a line by the inverse function
theorem. Hence all nonsingular plane curves are locally equivalent to each other, and
therefore for any two nonsingular curves in the plane we have a local symmetry of M(0)
taking one to the other. We can prolong this symmetry and these curves up to level n.
Using the propositions from the previous chapter we have the results we desire.

Here is a point where we can make a distinction between what we are calling a-
equivalence of points and equivalence in the broader sense. We have for instance that
if we restrict ourselves to a-equivalence, then not all points in M(2) are equivalent, as we
have some critical points. On the other hand, if we allow symmetries of M(1) to define
equivalence of points, then all points on M(2) are equivalent (2.14 in [19]).

Since all nonsingular points are essentially the same, we now wish to turn to singular
points and coarsely stratify these points by RVT code words. How shall we assign a letter
at each level to our point? Let us begin by defining what a critical directions and critical
curves are.

Definition 8. An integral curve γ ⊂ M(n) is called critical if its projection γn is a constant
curve.

Definition 9. An integral curve γ ⊂ M(n) is called vertical if γ1 is a constant curve (i.e.
n = 1 in the prior definition).

We can now define some special directions in the distribution at level n. To do so we
define critical lines and points in the Monster Tower.
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Definition 10. (Critical and Regular Lines and Points) Let p ∈ M(n) We call l ⊂ ∆n(p)
a critical line if there exists an immersed critical integral curve germ γ : (C, 0) → (M(n), p)
such that γ′(0) ∈ l. The point (p, l) ∈ M(n + 1) is then called critical as well. All other
lines in ∆n(p) are called regular, and similarly for points in M(n+ 1).

new def here for vertical line or put in pvs def?

Definition 11. An immersed integral curve germ γ : (C, 0) → M(n) is called regular if
γ′(0) is in a regular direction.

Montgomery and Zhitomirskii prove Proposition 2.31 in [19], which states that every
prolongation of a regular integral curve germ γ : (C, 0) → M(n) is regular. It follows by
induction that the prolongation γk : (C, 0) → M(n + k) and the point γk(0) for all k ≥ 0
must be regular as well.

Note the distinction between regular and nonsingular points. Regular points need only
that there exists a regular curve at that level. Nonsingular points require a curve that is
regular at the base (in the plane, or, if we use contact nonsingular points, in M(1)).

As it turns out there are two types of critical directions. Roughly there is the vertical
direction, which comes from vertical curves, and there is the tangency direction, which
comes from all other critical curves. It is important to note as well that if p ∈ M(n) is
regular, then ∆n(p) has only one critical direction, namely the vertical direction. On the
other hand if p is critical, then ∆n(p) has two critical directions, vertical and tangent. We
sum this up with a proposition:

Proposition 3. (2.41 in [19]) Let p ∈ M(n) and n ≥ 2. If p is a regular point then ∆n(p)
contains no tangency lines, hence only the one critical line in the vertical direction (fiber
direction). If p is critical, then ∆n(p) contains exactly two critical lines: the vertical line
and the tangency line.

We can relate these three directions−regular, vertical and tangent−to what we call
divisors at infinity (see section 8 in [9]). One can consider the immersed vertical curves
that lie completely in the fiber of M(n− 1) → M(n− 2) at each point in M(n− 1). From
there we can form the line bundle from these vertical curves using vectors tangent to them.
The projectivization of this bundle sits inside of M(n), and is called the nth divisor at
infinity, In → M(n), where we borrow the notation from section 9 in [9].

We may take the kth prolongation of these immersed vertical curves and again take
their tangent vectors at each point. These vectors will be in what we call the tangency
direction in the distribution ∆n+k−1. We denote their projectivization as In[k] ⊂ M(n+k).
As noted by Colley, Kennedy and Shanbrom in section 9 of [9] we get a tower of identical
spaces with growing codimension:

. . . In[k] → In[k − 1] → · · · → In → M(n− 1),

12



where we call In[k] the kth prolongation of In. With these relations between regular, ver-
tical and tangency directions, and what we call divisors at infinity, we are ready to assign
a unique RVT code word to a point p ∈ M(n).

Assigning RVT Code Words to Points: Given a point p ∈ M(n), we would like
to assign to it a unique code word of length n consisting of the letters R, V and T . We
will call this the RVT code word of the point p. Let us define the process by which
one assigns this code word to a point in the Monster Tower. We define a critical point
p = (π̄(p), l) ∈ M(n) vertical if l ⊂ ∆n−1(π̄(p)) is in the vertical direction, and tangent if
l is in the tangency direction. Alternatively we can call p vertical if p ∈ In, and tangent if
there exists some j + k = n, such that p ∈ Ij [k].

We assign the RVT code word to p ∈ M(n) recursively as follows. Assume we have
formed the word for π̄1(p). Then the RVT code word for p is given by adding an R, V , or
T to the end of the RVT code word of π̄1(p), depending on whether p is a regular, vertical
or tangent point in M(n), respectively. Beginning with the empty word at the base and
assigning an R for any point in M(1), a word of length k is assigned to each point in M(k).

By Proposition 3 it follows that we cannot record a T for the last symbol of the word
for p unless we have the symbol V or T for π̄1(p), that is if π̄1(p) is already critical. This
restricts the words that are possible for our points.

One way to assign an RVT code word to a point is if we have an integral curve germ
γ in M(n) such that γ(0) = p̃. If we do have such a curve, then we can take the tangent
vectors of each projection π̄k(γ), and find their directions.

Assigning RVT Code Words to Analytic Plane Curve Germs: We are also able
to assign an RVT code word to an analytic plane curve germ γ in the following way. We
can lift γ into the Monster tower and at each level n determine if the prolongation γn(0) is
a regular, vertical, or tangency point. We can then record an R, V or T for the nth letter
of the RVT word depending respectively on the type of point. This is the same as looking
at the tangent direction of the (n− 1)st prolongation of γ, and determining its type.

If the plane curve germ is analytic and irreducible, then there is a level at which we
will only record R’s from there on out. We will call this the regularization level of a
singular plane curve germ. This is proved in Theorem 2.36 in [19], which states that every
well-parameterized, analytic integral curve germ has a finite level of regularization. Let
us also say a plane curve germ is regularized in the Monster if we have prolonged it to its
regularization level.

Let us define the RVT code word of singular curve germ at the base to be the critical
RVT code word, i.e. the one ending in V or T , that we assign to its prolongation at its
regularization level in the Monster Tower. Any regular integral curve germ through a point
p ∈ M(n) will therefore have the same RVT code word. For completeness, we assign the
empty word to any nonsingular plane curve germ. Let us see an example of how to assign
a code word to an analytic plane curve germ.
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Example 3. Let γ(t) be the curve germ given by

γ : x(t) = t4, y(t) = t9.

The tangent vector is horizontal at t = 0 so we record an R. Now we take the derivative

y′ = dy/dx =
9

4
t5

so that γ1 = (t4, t9, 94 t
5). A quick check shows that (γ1)′(0) is in a regular direction. We

then record another R. Now we retain x again, and find that in this chart

γ2 =
(
t4, t9, 94 t

5, 4516 t
)
.

The tangent vector of γ2 at t = 0 is in the vertical (fiber) direction. We record a V for our
word at level 3, and anticipate a need to change our retained coordinate. We now see that
if we make the regular choice of coordinates we have γ3 = (t4, t9, 94 t

5, 4516 t,
45
64

1
t3
). It follows

that γ3(0) cannot be expressed in this chart, and so we choose to retain y′′ instead and our
new coordinate is x′ = dx/dy′′. Thus

γ3 =
(
t4, t9, 94 t

5, 4516 t,
64
45 t

3
)
.

in the chart with coordinates x, y, y′, y′′, x′. Since the tangent vector (0, 0, 0, 4516 , 0) is still
in the direction of a fiber, but at a lower level, we record a T . We continue onward now
retaining y′′ at each step, and one can verify that we will record one more T and then R’s
from there on out. This implies our code word is RRV TT for our curve γ.

The example gives a set of coordinates in which we may express our point γn(0), and
γn(t) locally. These are special coordinates that can be found by observing the type of
point πk(p) is for p ∈ M(n), k < n, or in the case of a curve, the type of point γk(0) is at
each level.

There is an algorithm that gives a one-to-one correspondence between RVT code word
and Puiseux Characteristic, a topological invariant of the curve (see section 2.2). Colley,
Kennedy and Shanbrom devote section 12 in [9] to this algorithm where it is illustrated
with multiple examples. This gives the following proposition.

Proposition 4. Two curve germs γ, γ̃ : (C, 0) → (C2, 0) are topologically equivalent if and
only if they have the same RVT code word.

Every point p ∈ M(n) has a uniquely assigned RVT code word. If we find a plane curve
germ γ with γn(0) = p and γn regular, then γ have the same critical RVT code word as p,
i.e. the word assigned to p truncated by removing any R’s at the end. Later we show that
for each p ∈ M(n) there exists such a curve, γ. These facts along with Proposition 4 give us
a coarse stratification of the Monster Tower through equi-singularity classes, equivalently
critical RVT code words, of plane curves in the following way:
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Proposition 5. If p, q are equivalent, and their RVT code words both start with two R’s,
then they will have the same RVT code word. If p, q ∈ M(n) are a-equivalent points in the
Monster Tower, then they have the same RVT code word.

Proof. The first part is Montgomery and Zhitomirskii’s Proposition 3.4 in [19]. The second
claim is a matter of restricting to a-equivalence, which allows for a V at level 2. In this case
if we have two points p, q ∈ M(n) that are a-equivalent under an analytic isomorphism of
the plane Φ, then, as we will show later on, it is not difficult to construct two plane curve
germs γ and γ̃ such that γn(0) = p and γ̃n(0) = q, and Φ(γ) = γ̃. Since Φ is an analytic
isomorphism, it is a homeomorphism, and so we have that γ and γ̃ have the same RVT
code word by Proposition 4.

The converse is immediately false, as there is known to be moduli of plane curves and
Legendrian curve germs at level 1 (see [6]) when it comes to equivalence classes of those
curves under analytic isomorphism or contactomorphism. It follows by prolongation of
these curves into the Monster that there must be points that are not equivalent, but still
have the same RVT code word. This will become more clear as we formalize the connection
between jets of plane curve germs (or Legendrian curve germs) and points in the Monster
Tower.

Our next section is devoted to the special coordinates related to the RVT code word of
a point in the Monster. These are the ones we found in Example 3.1.1, sometimes referred
to as Kumpera-Ruiz coordinates (see [16]).

2.1.4 Coordinates on the Monster and Finding a Plane Curve That Pro-
longs Through a Given Point

We would now like to introduce special coordinates on the Monster Tower. In [19] and
[9] they relate these coordinates to Kumpera-Ruiz coordinates (KR-coordinates), which
appear in [16]. A good demonstration of these coordinates and how they work can be
found in Section 8 in [9], and 8.1 in [19]. We will give an explanation here as well.

To express a point p ∈ M(n) in a set of coordinates, we need to make a choice of a
specific chart. If U ⊂ C2 is an neighborhood in C, then on U(n) ⊂ M(n) there are 2n

charts that look like U ×Cn. How we make this choice will depend on the RVT code word
of p, however the choice itself is between only two possibilities, what are called the ordinary
or inverted choice in [9]. It should be noted that for a general we point, we can see it in
every chart. However there are some points that can only appear in certain charts and not
others. It is for these points that we need to define special coordinates.

Let us assume we are given a point p ∈ M(n). We will give a recursive process to
determine which chart to express p in. We define at each level 1 ≤ k ≤ n a new coordinate
nk, a retained coordinate rk and a deactivated coordinate dk as follows. Suppose we are
given nk−1, rk−1, then we define
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1. The ordinary choice to be nk := dnk−1/drk−1, rk := rk−1 and dk := nk−1.

2. The inverted choice to be nk := drk−1/dnk−1, rk := nk−1 and dk := rk−1.

For any p ∈ M(n) in the case where k = 0 we may arbitrarily choose n0 and r0 so long
as dn0/dr0 is finite at p. There is no d0. We then make the ordinary choice. Now suppose
0 < k < n and let us determine how we will make the choice for k + 1. We assume that
we are given nk and rk for our point p. If we find that drk ̸= 0 on ∆k(π̄n−k(p)), we make
the ordinary choice for k + 1, otherwise we make the inverted choice. We can record our
coordinate chart with a series of o’s and i’s. We call the nk and rk the active coordinates at
level k. The coordinates on each chart at level M(k) are the coordinates r0, n0, n1, . . . , nk.

For an alternate set of names, set x = r0, y = n0 and y′ = n1, so that y′ = dy/dx.
As noted in section 8 of [9] from here on out we have that the active coordinates are x(i)

and y(j) for some nonnegative integers i and j. If x(i) is the retained coordinate we define
y(j+1) = dy(j)/dx(i) as the new coordinate. Similarly if y(j) is the retained coordinate,
x(i+1) = dx(i)/dy(j) becomes the new coordinate. At each step we get a pair of active
coordinates that can be thought of as a parameterization of a plane curve germ itself, at
the point (x(i)(0), y(j)(0)). Let us give a name to this process of obtaining this pair of active
coordinates.

Definition 12. We call the process outlined above, where we obtain a new pair of active
coordinates x(i), y(j) in M(n) to be the directional blowup at level n of the plane curve
germ γ.

Let us now show how one can use the RVT code word of a point or a curve germ to
decide whether or not to make the ordinary or inverted choice at each level.

Using the RVT code word to choose a chart:

Suppose that we know the RVT code word of a given point p ∈ M(n). From this we know
what type of point π̄n−k(p) is for all 0 ≤ k ≤ n in terms of regular, vertical or tangent. If
we encounter a V in position K, then we must make the inverted choice, since drk−1 = 0
on the specified line ∆k−1(π̄n−k+1(p)). This is reflecting the fact that ∂rk is in the vertical
direction, i.e., that p lies on the divisor at infinity Ik. If we encounter a T in position k, then
we must make the ordinary choice, since drk−1 = 0 on the specified line ∆k−1(π̄n−k+1(p)).
In other words, ∂nk

is in the tangency direction and thus p sits on the prolongation of
a divisor at infinity from a lower level. If we encounter an r we may make the ordinary
choice, since drrk ̸= 0 on the specified line ∆k−1(π̄n−k+1(p)). The inverted choice is also
allowed if dnk

̸= 0, but we conventionally make the ordinary choice if we encounter an R.
Let us illustrate this with an example:

Example 4. Consider the word RRV TTR, and some point p ∈ M(6) that has this code
word. We first choose x and y so that y′ = dy/dx is not vertical. We can again make an
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ordinary choice for our chart on M(2) so that x will be our retained coordinate and y′ our
deactivated one. This implies y′′ = dy′/dx is our new coordinate. This coordinate for p is
expressible as a scalar in this chart because the fiber is in the regular R direction.

We now encounter our first V and need to make the inverted choice. Thus we choose
our new coordinate to be x′ = dx/dy′′ and retain y′′. This leaves x as our now deactivated
coordinate. The rest are T’s and R’s, so our retained coordinate will always be y′′, and
our new coordinates will be x(j) = dx(j−1)/dy′′ for j = 2, 3, 4. At our point p we have
x(2) = x(3) = 0, but the value of x(4) is nonzero.

Going from a point to a plane curve:

Given a point p ∈ M(n) and a chart chosen based off of the RVT code word of p as
above (or the more simple o’s and i’s), we can construct a plane curve germ γ such that
γn(0) = p, and γn is regularized. This is a finite inductive process that starts with a regular
parameterization for the active coordinates of the chart we have chosen for p. In general
we have either y(j+1) = dy(j)/dx(i) or x(i+1) = dx(i)/dy(j) as described above. Therefore,
in terms of differential one-forms, we must have that

y(j+1)dx(i) = dy(j) or x(i+1)dy(j) = dx(i),

and we can integrate to get y(j) or x(i). This is not difficult if we have a parameterization
for the active coordinates, as we can pull everything back in terms of t. Let us illustrate
this with an example.

Example 5. We will use the chart from our previous example in this section

(x, y, y′, y′′, x′, x′′, x′′′, x(4))

and assume that p = (0, 0, 0, 0, 0, 0, 0, 1) in our chart. We see from the example that our
active coordinates must be x(4) = dx′′′/dy′′ and y′′. To find a plane curve that lifts through
p we must have that x(4)(0) = 1, and y′′(0) = 0. To make it so the prolongations of the
lifted curve is regular from level 6 on, we will choose a nonsingular parameterization for
x(4)(t) and y′′(t).

We will keep it as simple as possible, and choose

x(4)(t) = 1 + t, y′′(t) = t.

This way we have dy′′ = dt and our other conditions are satisfied as well. Since x(4) =
dx′′′/dy′′, then x(4)dy′′ = dx′′′ so that

x′′′(t) =

∫ t

0
x(4)dy′′ =

∫ t

0
(1 + s)ds = t+

1

2
t2.
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It is clear that x′′′(0) = 0, which is necessary for the point p. We can continue on in this
manner to find

x′′(t) =

∫ t

0
x′′′dy′′ =

∫ t

0
(s+

1

2
s2)ds =

1

2
t2 +

1

3!
t3,

x′(t) =

∫ t

0
x′′dy′′ =

1

3!
t3 +

1

4!
t4,

x(t) =

∫ t

0
x′dy′′ =

1

4!
t4 +

1

5!
t5,

y′(t) =

∫ t

0
y′′dx =

1

30
t5 +

1

144
t6

y(t) =

∫ t

0
y′dx =

1

1, 620
t9 +

11

43, 200
t10 +

1

38, 016
t11

Our plane curve germ becomes

(x(t), y(t)) =

(
1

4!
t4 +

1

5!
t5,

1

1, 620
t9 +

11

43, 200
t10 +

1

38, 016
t11
)
.

The multiplicity of x and y in this case is not a surprise. It is hopefully clear that our
plane curve will have the desired regularization level of level 6, and that it indeed prolongs
through the point p. This concludes our example.

This example suggests to us that in general we can construct a plane curve which has
a regularized prolongation at level n and prolongs through the any point p ∈ M(n). This
is indeed the case, as the process in the above example generalizes to any RVT code word,
or choice of coordinate charts using our conventions quite nicely.

So far, we have shown that there exists a coarse stratification of the Monster Tower
using RVT code words. We have also shown the connection of these RVT code words to
singular plane curve germs that prolong through points with our given word, and hence
have the same critical word as our point. We have further demonstrated, using our special
coordinates, a way to construct a plane curve germ that prolongs through p ∈ M(n) and
has a regularized prolongation at that level. It is because of these facts that we will focus
more and more on the invariants of plane curve germs and their Legendrian counterparts
at level 1.

Therefore the main objective of this writing is to answer whether or not we can further
stratify the Monster Tower using finer discrete invariants of plane or Legendrian curve
germs. There are several candidates for these finer invariants. One of them is the Leg-
endrian Semigroup of the lifted Legendrian curve, which we will explain shortly. Another
is the valuations of one forms on the plane curve germs that lift through our given point.
These all have potential to help us understand points in the Monster Tower. We will see as
well in the next chapter that points in the monster and sets of certain sized jets of analytic

18



curve germs have a natural identification, and so studying points in the Monster is the
same as studying jets of planar or Legendrian curve germs.

We end this section on the Monster Tower with an exploration of M(1) and the integral
curves germs at this level.

2.1.5 Level 1 of the Monster Tower and Legendrian Curve Germs

The first level of the Monster Tower M(1) = C2 × CP 1 is a complex three dimensional
manifold. We can use the contact form dy− y′dx to define our distribution ∆1 locally. We
call a local symmetry of M(1) a (local) contactomorphism.

Definition 13. An integral curve germ γ : (C, 0) → M(1) is called a Legendrian curve
germ.

A contactomorphism, or germ of a contactomorphism, takes a Legendrian curve germ
to another Legendrian curve germ. It has been established by M&Z in [19] that studying
equivalence of points in the Monster Tower is the same as studying contact equivalence of
certain jets of Legendrian curve germs. To show this we can use Theorem 1 in part, and
the rest is obtained by studying Legendrian curve germs that prolong through our given
points. We will show later in a similar fashion that studying a-equivalence of points is the
same as studying analytic equivalence of jets of plane curves up to a certain specific jet.

Theorem 4.12 in [19] asserts that any critical Legendrian curve germ in M(1) is contact
equivalent to the one-step prolongation of a singular analytic plane curve germ γ(t) =
(tp, tm + h.o.t.) such that m > 2p, where h.o.t. stands for higher order terms in regards to
powers of t. This allows us to assign an RVT code word to our Legendrian curve germ,
namely the RVT code word of the plane curve germ γ. The RVT code word of a Legendrian
curve will always have two R’s at the beginning.

We give an example of two plane curve germs that are not analytically equivalent, but
whose Legendrian lifts are contactomorphic in M(1).

Example 6. Let γ(t) = (tm, tm+1), with m > 1. This curve is singular, and so is not
analytically equivalent to the curve germ (t, 0). If we lift the curve we get that

γ1(t) =
(
tm, tm+1, m+1

m t
)
.

This curve is locally diffeomorphic to the curve (t, 0, 0) which is also a contact curve.
Therefore by Zhitomirskii’s Lemma in [27], we have that these two curves must be contac-
tomorphic as well. Explicitly we can first take the contactomorphism

x 7→ x−
(

m
m+1y

′
)m

,

y 7→ m
m+1y −

(
m

m+1

)m+2
(y′)m+1,

y′ 7→ m
m+1y

′.
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This will give us the curve (0, 0, t) which is clearly a regular curve, and is contactomorphic
to (t, 0, 0) under the transformation

x 7→ y′, y 7→ xy′ − y, y′ 7→ x.

Since m was arbitrary it follows that though (tm, tm+1) and (tk, tk+1) are not analytically
equivalent if k ̸= m, their lifts to M(1) are both contactomorphic to (t, 0, 0) and hence to
each other.

The transformation above, which was used in Example 2 is the one we used to take an
immersed curve that is in the fiber of M(1) → M(0) to an immersed curve that projects
down to an immersed curve on the base. This base is now the plane given by coordinates
(y′, xy′ − y) but yet still gives the same construction of the Monster from level 1 onwards.

Now that we have started to establish a connection between equivalence of points in
the Monster Tower and equivalence of plane curve germs or Legendrian curve germs, it
is time that we start to discuss some finer analytic (resp. contact) invariants of plane
(resp. Legendrian) curve germs. Our next section is devoted to these invariants with some
information on the analytic classification of irreducible plane curve germs.

2.2 Discrete Invariants and Moduli of Plane and Legendrian
Curve Germs

From our previous section we begin to see why studying the invariants of irreducible plane
branches and Legendrian curve germs is such an important topic when studying points in
the Monster Tower. Soon we will formally develop the intimate relation between points in
the Monster, Analytic plane curve germs, and their Legendrian lifts. We devote this section
to some of the basics of invariants of plane curve germs under local Analytic transformations
of the plane, and invariants of Legendrian curves germs in M(1). Let us now set the stage
for our work in this section.

2.2.1 Theorem of Puiseux and Topological Invariants of Plane Branches

Let us define what we mean by an irreducible plane branch of an analytic curve germ. We
follow along with the preliminaries in [26]. Denote C[[X,Y ]] as the ring of all formal power
series in two variables over C. Further denote C{X,Y } to be the ring of all convergent
power series in X and Y near 0 ∈ C2.

Definition 14. We say an element f ∈ C[[X,Y ]] defines an (irreducible) analytic plane
branch γ given by f(X,Y ) = 0 if f is irreducible in C[[X,Y ]], and f ∈ C{X,Y }.

From here on out we assume, unless otherwise stated, that if we write plane curve germ,
we are writing about an irreducible analytic plane branch like f in the definition above.
We now define the main equivalence classes of plane branches we wish to work with.
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Definition 15. Let γ, γ′ : (C, 0) → (C2, 0) be two irreducible plane curve germs. We say γ
and γ′ are topologically equivalent if there exists a germ of a homeomorphism T : (C2, 0) →
(C2, 0) such that T (γ) = γ′ as germs. If T is also an analytic isomorphism, we say that γ
and γ′ are analytically equivalent as curve germs.

We recall that germs are equivalence classes of pairs [C,U ] where C is a curve (or in
the case of T a homeomorphism) defined on U , and U an open set in C2 containing 0. The
equivalence relation requires curves to agree on the intersection of their two paired open
sets. One can check quickly that both topological and analytic equivalence are equivalence
relations on the set of analytic curve germs in the plane.

Let us denote the equivalence class of γ under topological equivalence by L(γ) as in
[26]. This is known as the equisingularity class of of γ. Let us further denote the analytic
class of γ as A(γ). It is always the case that A ⊆ L for any γ. Therefore if we write A as
the set of all analytic equivalence classes, and L as the set of all topological classes, then
we can consider the quotient space L/A, which is a moduli space of plane branches.

In [26], Zariski notes that L/A can be endowed with a (generally nonseparable) topol-
ogy, but does not have the “structure of an algebraic set or even a scheme.” He then poses
the problem of the moduli space: construct a map from L(γ) to a finite dimensional affine
space so that any two analytically equivalent germs will have the same image in this space
(see Section 2.2 in [26]).

One can wonder how to study such a space and form a map with much algebraic
structure. As it turns out there is a theorem by Puiseux which allows us to find in some
coordinates, a very nice form for γ. Once we are given this form, called the Puiseux ex-
pansion, we can extract a discrete topological invariant from the curve germ, known as the
Puiseux characteristic.

We need some important notation and facts about the algebraic structure of plane
branches in C[[X,Y ]]. First we note that C[[X,Y ]] is a local ring with unique maximal
ideal m := (X,Y ). Any f ∈ m defines a plane curve germ γ at the origin via the vanishing
locus f = 0. If f ∈ m2, then it defines a singular curve germ. We denote the local ring of
regular functions on γ as O := C[[X,Y ]]/f. The curve γ is analytic and so has a unique
tangent line in the plane. A linear isomorphism of the plane allows us to rotate it and
scale it if necessary, so that our tangent line becomes Y = 0, and thus the leading term of
f becomes fp(X,Y ) = Y p, for some p.

We next use the Weierstrauss Preparation Theorem, which allows us to write f up to
a unit in the form

f(X,Y ) = Y p + F1(X)Y p−1 + · · ·+ F0(X)

where each Fi ∈ C[[X]], and has order of vanishing strictly larger than i. We call p the
multiplicity of the branch, and it is our first topological invariant. Note that f defines a
singular plane branch γ whenever p > 1. Zariski reminds us that the above polynomial,
called the Weierstrauss polynomial is also irreducible in C((X)). Puiseux’s Theorem uses
these algebraic facts, and several others to give us a set of coordinates x and y that allow us
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to write f in a nice parameterized form. We state the essential part of Puiseux’s Theorem
that concerns us in this work.

Theorem 4. (Puiseux Expansion) Let γ be an irreducible plane curve germ with multiplic-
ity p > 1. Then there is a positive integer m > p such that p ∤ m and a set of coordinates
(x, y) on C2 such that γ is represented by

γ : x(t) = tp, y(t) = tm +
∑
i>m

ait
i

A perhaps more algebraic way to state the theorem is that there is an injection of
O ↪→ C[[t]] = O, such that x 7→ tp, and y 7→ tm +

∑
i>m ait

i. Here O is the integral
closure of O. Wall in [24] gives us a way to go back and forth between the equation
f(X,Y ) = 0, and γ(t) = (x(t), y(t)). The forward direction of obtaining a parameterization
is a well-known procedure, known as the Newton-Puiseux Method, which requires the
Newton Polygon. The reverse direction involves a method using matrices of coefficients in
a good parameterization, which is given by lemma 2.3.1 in [24].

The integer m is a topological invariant as is the Puiseux Characteristic (PC), which is
the set of essential exponents in the Puiseux expansion of the curve germ γ. It is outlined
in Chapter II, section 3 of [26] how one is to obtain this characteristic from any irreducible
plane curve germ. We denote this set of exponents as

PC(γ) = (β0;β1, . . . , βg),

where in general we have p = β0 and m = β1. It is a well known topological invariant of
the curve and is one of many that can be found in C.T.C Wall’s book [24] in 4.3.8 (p. 85),
which include the proximity diagram, multiplicity sequence, and the proximity matrix, to
name a few.

If gcd(p,m) = 1, then the Puiseux Characteristic of γ is (p;m). In general for longer
Puiseux Characteristics we have that gcd(β0;β1, . . . , βg) = 1, but not necessarily pairwise.
We define e1 := gcd(p,m) and then recursively define ei := gcd(ei−1, βi). The set of ei
always decreases so that e1 > e2 > · · · > eg = 1 for an irreducible plane curve germ.

An equally important topological invariant for plane branches is the set denoted as
Γ := v(O), where v is the function given by taking the valuations (orders of vanishing) of
elements of O using the injection O ↪→ C[[t]]. In particular we have v(x) = p and v(y) = m.
Γ has the algebraic structure of a numerical semigroup, which is a monoid under addition,
and has a finite complement in the nonnegative integers. We will denote the minimal
generators of Γ as νi and write

Γ = ⟨ν0, ν1, . . . , νg⟩,

where in general the minimal generators of Γ are the same in number as the essential
exponents. We also have that in general ν0 = p and ν1 = m.

22



The set Γ can be obtained from the PC, and vice-versa due to II.3.9 in [26]. The
theorem also provides that gcd(ν0, ν1, . . . , νg) = 1, and gcd(ei−1, νi) = ei as well. These
facts are precisely what makes Γ a numerical semigroup. Therefore Γ ⊂ Z≥0 has a finite
complement, and we call this set the gaps of Γ.We distinguish the greatest gap max(Z≥0\Γ)
and call this the Frobenius number. It is one less than the conductor c(Γ), the minimum
value for which all integers greater than or equal to it are contained in Γ, and simply
denoted as c if Γ is clear. Alternatively one can write that c(Γ) is the minimum value in Γ
such that Γ ∩ (N0 + c) = N0 + c

The conductor is also the Milnor number of the curve Γ, which is given by

µ := dimC
(
C[[X,Y ]]/(fx, fy)

)
,

where γ is the curve given by f = 0, withf ∈ m as before, and fx, fy are the partials
with respect to x and y. Thus we often denote the conductor as µ = c(Γ). In terms of
deformation theory, it is also the dimension of the versal deformation space (see [4]). For
more on deformation theory, see [12], or the appendix by Tessier in [26].

Zariski notes in II.2 in [26] that the number of gaps of Γ is given by µ/2, precisely half
of the conductor of the semigroup Γ. These semigroups are often referred to as symmetric
semigroups. Upon studying the gap structure this can become rather clear as to why this
name fits well.

Zariski also gives a formula for µ in terms of the ei defined above. Equation II.2.1 in
[26] tells us that

µ =

g∑
i=0

ei(ei − 1).

and alternatively on page 13 he writes

µ = eg−1νg − βg − (p− 1).

In the particular case that Γ = ⟨p,m⟩ we have that µ = (p− 1)(m− 1).
Theorem II.3.9 in [26] gives us a one-to-one correspondence between Puiseux Charac-

teristic and Semigroup of a plane branches. The remarkable fact proved by Zariski is stated
in the following theorem in regards to these two invariants.

Theorem 5. (Zariski, 3.3 in [26]) Two branches are in the same equisingularity class if
and only if they have the same Γ, if and only if they have the same Puiseux Characteristic.

To connect this to the Monster tower, we note that there is also an algorithm (see
[9]) to go from RVT code word to PC and vice-versa as well. Thus there is a one-to-one
correspondence between PC, Γ and the critical RVT code word (ending in a V or T) of
a branch, making the RVT code word a topological invariant of the branch as well. In
some ways this suggests that there is some type of topological equivalence of points in the
Monster tower, even though there is no way to lift homeomorphisms into the tower.
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Let us now illustrate this process of Puiseux Characteristic to semigroup Γ to RVT
code word with a relatively simple but nontrivial example.

Example 7. Consider any curve γ with PC = (4; 6, 7). To determine the semigroup Γ we
note that lcm(4, 6) = 12. Our semigroup is then Γ = ⟨4, 6, 13⟩. This is reflecting that 7 is
one more than 6, and so when our valuations of x3 and y2 meet up at 12 they will cancel
to the valuation 13 with the right linear combination.

Indeed every curve in L(γ) is topologically equivalent to the curve x(t) = t4, y(t) =
t6 + t7. We see in O that the only way to get a valuation outside of the semigroup ⟨4, 6⟩ is
to consider the minimal valuations in v(O) that are shared by monomials in x and y. The
first is clearly v(x3) = v(y2) = 12. One can check that v(y2 − x3) = 13.

It is left to the reader to follow the prolongation procedure outlined in the previous
section on the Monster Tower for the curve written above. When one goes through this
procedure, one finds that the RVT code word for this curve is RV RV R . . . .

This concludes our example and our section on the topological invariants of curve
germs. We now look to a finer analytic invariant of the curve that is also discrete, and is
a semimodule of the semigroup Γ.

2.2.2 Value Sets of Plane Curve Germs

A finer discrete analytic invariant of our plane curve germ γ is the set of valuations of
(non-torsion) differential one-forms OdO on the curve, denoted Λ(γ) := v(OdO), or just
Λ if there is no confusion about the curve. Similarly to before we will use the pullback of
these forms into C[[t]]dt, and take their order of vanishing.

We will generally use the convention that is used by Hefez and Hernandes in [13] where
we insist that v(dg) = v(g) for all g ∈ m. This is equivalent to demanding that v(dx) = p
and v(dy) = m, or that v(dt) = 1. With this convention we have that Γ∗ ⊆ Λ for any γ,
where Γ∗ = Γ \ {0}. Furthermore Λ is a Γ-semimodule, i.e. for any l ∈ Λ, a ∈ Γ we have
l + a ∈ Λ. As with our semigroup Γ we will denote the conductor of a semimodule Λ as
c(Λ). As before c(Λ) is the minimum value for which N0+ c(Λ) ⊂ Λ. We also call the N \Λ
the gaps of Λ.

Alternatively to Λ we can consider the valuations of O + y′O where y′ = dy/dx. We
will call O + y′O the Delorme module, after Charles Delorme (see [10], [11]), and the set
∆ = v(O + y′O) the Delorme semimodule. Λ and ∆ are isomorphic as Γ-semimodules,
since Λ = ∆+ p. We can see this via the fact that OdO = Odx+Ody.

Both of these semimodules are, in practice, rather difficult to compute given a singular
plane curve germ. There are several algorithms that can help us compute the value set
(see [15]). In practice, these algorithms often rely on some sort of reduced form, such as
the Zariski short form in III.1 in [26]. We present a particularly useful form for plane curve
germs that we intend to use in several places throughout the paper.
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Normal Form of Hefez and Hernandes:

Zariski in Proposition III.1.2 of [26] gives for any curve germ γ an analytically equivalent
curve germ called a short parameterization of γ. This short parameterization eliminates all
powers of t in Γ from the parameterization of y(t), leaving only powers of t that are gaps in
Γ with nonzero coefficients. This is provides us with a polynomial for the parameterization
of y(t) with no exponent greater than µ. We can further eliminate powers of t to pick a
convenient representative of the analytic class of our curve germ.

In [13] Hefez and Hernandes prove Theorem 2.1, their main result, called the ‘Normal
Forms Theorem.’ It gives a particularly useful form for our plane curve γ. The theorem
states that γ as a plane curve germ is analytically isomorphic to a curve germ of the form
x(t) = tp, y(t) = tm, or there exists some λ > m with λ+ p = min(Λ \ Γ∗), such that γ is
a-equivalent to the curve germ

x(t) = tp, y(t) = tm + tλ +
∑
i>λ

i/∈Λ−p

ait
i, ai ∈ C. (2.1)

We give a special name to λ: We call it the Zariski invariant of the curve γ, as it was
proved by Zariski in [25] to be an analytic invariant of the curve γ. We will often use this
form and refer to it simply as the normal form. Note that here we use the normal form as
we find the coefficients, ai, are unique up to some action of C∗.

In the case that γ is a-equivalent to a curve of the form x = tp, y = tm, we call it the
Quasi-Homogeneous (QH) curve and we find that Λ = Γ∗, and vice-versa. In fact we have
that OdO contains only exact differential one-forms if and only if γ is a-equivalent to a
QH curve of the form x = tp, y = tm if and only if Λ = Γ∗ (see III.3 in [26], [13]). Let us
now consider the case where Γ∗ ⊊ Λ. In this case there is a minimum element in Λ \ Γ∗. It
is given to us by a non-exact differential one-form, often called the Zariski one-form.

The Zariski invariant and Zariski one-form of a curve germ:

Suppose that we are in the case where our curve γ has Λ \ Γ∗ ̸= ∅. We would like to find
min(Λ \Γ∗), which we will denote as λ1, the first generator of Λ as a Γ-semimodule. From
above it must come from a non-exact differential one-form. We are therefore looking for
some one-form ω = Adx−Bdy with A,B ∈ O, such that v(ω) = λ1.

By the way that valuations work, we are looking for A and B with the smallest possible
valuations such that v(Adx) = v(Bdy). We note that if γ is in normal form, then v(xdy) =
v(ydx) = m + p. We must have that m + p is the minimum such valuation where two
distinct one-forms agree. Indeed if say v(Adx) < m + p, then it either has valuation m
or it has valuation a multiple of p, as v(Adx) ∈ Γ. Only dy has valuation m up to higher
valued terms. Similarly any multiple of p that is less than m must be of the form xidx up
to a constant, and higher valued terms.
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Therefore we set A = px and B = my and denote ω1 := mydx − pxdy. We call this
the Zariski one-form. In the case where γ is already in its normal form we immediately
have that v(ω1) = λ+ p /∈ Λ. Therefore our we have λ1 = λ+ p = min(Λ \ Γ∗), the Zariski
invariant shifted up by the multiplicity p of our curve germ. In general it is rather difficult
to find the next minimal generators of Λ, especially for general Puiseux Characteristic.

We can do quite a bit more if we restrict ourselves to the coprime case, where we simply
have Γ = ⟨p,m⟩. In this case we will present a procedure, which bears some resemblance
to the bead game called Mancala, that provides us with all possible value sets for a pair of
coprime positive integers. There is still much work to do in the case where our semigroup
is generated by more than two elements. Recent work by Abreu and Hernendes help shed
some light on the subject in their work in [1]. We will dedicate some effort to this case
later on as well.

Next let us consider another analytic invariant of a plane curve germ that is related to
the value set, called the Tjurina number.

Tjurina Number of an Analytic Curve Germ: Earlier we mentioned the Milnor
number, µ, that in deformation theory is the dimension of the Milnor Algebra of a curve
f = 0. The algebra is used to construct versal deformations of a singular plane curve germ
(see Section 2 of [4]), and in the case of semigroups we recall that the Milnor number is
the conductor c(Γ).

We have also an analytic invariant that relates to the Tjurina algebra of the curve germ
γ given by f = 0. We denote the Tjurina number by τ and it is defined to be

τ := dimC

(
C[[X,Y ]]

(f, fx, fy)

)
.

The Tjurina algebra is related to constructing miniversal deformations of γ and the relation
is given by Tjurina and presented as Corollary II.1.17 in [12].

In general we have as stated in [2] that µ/τ < 4/3 for any singular analytic plane curve
germ. Though at first none of this seems to relate to the value set, Hefez and Hernandes
note in [15] that due to a proof by Berger in [7] we have the formula

µ− τ = |Λ \ Γ∗|. (2.2)

Therefore if we know the value set of the curve germ, and the conductor of its semigroup,
then we can compute the Tjurina number quite easily. Later in this work we will use the
recursive formula given in [17] to demonstrate how one can compute the minimal Tjurina
number, τmin, of the topological class of curve germs with Γ = ⟨p,m⟩, and compare them
to results in [2].

We finish this section on value sets with some particular examples of all possible value
sets for plane curve germs with a fixed coprime Γ, and the corresponding normal forms that
produce these value sets. All of these forms can be found in [14], which give all possible
normal forms up to and including multiplicity 4.
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Example 8. Let γ be a curve germ with Γ = ⟨2, 2k+1⟩ for any k ≥ 1. Since we automat-
ically have that the conductor of Γ is 2k and that min(Λ \Γ∗) > 2k+1 we must have that
Λ \ Γ∗ = ∅. Note further that by Zariski in III.3 in [26] we have no choice but to conclude
the well known fact that γ is a-equivalent to (t2, t2k+1).

Example 9. Let γ be a curve germ with Γ = ⟨3, 3k + 1⟩ for some k ≥ 1. We then claim
that the Zariski invariant of γ completely determines the Analytic type of the curve. That
is, there are no moduli, and only discrete data for curves of multiplicity 3.

To see this, let us suppose that γ is not quasi-homogeneous and that the Zariski invari-
ant of γ is λ ̸= ∞. With Γ = ⟨3, 3k+1⟩, and λ > 3k+1, we must have that λ ≡ 2 mod 3,
since once we get to 3k + 1 ∈ Γ we have all multiples of 3 and all integers congruent to 1
mod 3 greater than 3k. Now λ+ 3 = min(Λ \ Γ∗) and so as soon as we get to λ+ 3 in the
value set Λ we have also all integers congruent to 2 mod 3. It follows that c(Λ) = λ + 1,
since if λ = 3(k+ r)+2, r ≥ 0, then we must already have 3(k+ r+1), 3(k+ r+1)+1 ∈ Λ
but λ /∈ Λ.

Observing the normal form given by (2.1) for multiplicity 3, we find that there is no
room for any other nonzero coefficients above λ, since (Λ\Γ∗)∩(N0+λ+3) = ∅. Therefore γ
is a-equivalent to the curve (t3, t3k+1 + t3(k+r)+2). Note that the conductor of Γ is µ = 6k.
The number of gaps in Γ is thus 3k. The number of gaps between 0 and 3k + 1 is 2k.
Therefore there are 3k− 2k = k gaps above 3k+1. This implies there are k− 1 choices for
the Zariski invariant for γ not QH. This is because the normal form theorem in [13] shows
we cannot have λ = µ− 1, the Frobenius number.

Adding back in the QH case for γ this gives us k possible Λ for Γ = ⟨3, 3k + 1⟩, which
implies that for our λ = 3(k+r)+2 we have 0 ≤ r ≤ k−2. This gives a complete description
of possible value sets for curve with Γ = ⟨3, 3k + 1⟩, and their possible normal forms. A
similar process can be done for Γ = ⟨3, 3k + 2⟩.

Example 10. Let us now assume that γ has semigroup Γ = ⟨4, 9⟩, which has conductor
µ = 24. From Table 1 in Section 4 of [14], Hefez and Hernandes give us the possible normal
forms for γ as follows:

Normal Form Λ \ Γ∗ λ

(t4, t9) ∅ ∞
(t4, t9 + t10 + at11), a ̸= 19/18 {14, 19, 23} 10
(t4, t9 + t10 + 19

18 t
11 + at15) {14, 23} 10

(t4, t9 + t11) {15, 19, 23} 11
(t4, t9 + t15) {19, 23} 15
(t4, t9 + t19) {23} 19

Notice in the table that we have a modulus in two of our normal forms. This is the
lowest multiplicity and smallest generators in general for Γ for which moduli appear. We
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can also observe that the second row gives us the generic Λ type, which specializes to any
of the other types.

The reader is highly encouraged to do some calculations with the forms in rows 2 and
3 to observe the effects of coefficients on our value sets.

This concludes our examples and our section on value sets of plane branches. We end
our preliminaries with a discrete invariant of Legendrian curve germs that we will explore
in detail later.

2.2.3 Semigroups of Legendrian Curves

Given a Legendrian curve germ, we can consider the regular functions on the curve similarly
to the way we did for plane curve germs. These regular functions have a pullback into C[[t]].
This gives us a valuation on the regular functions on a Legendrian curve germ.

In Section 2.1.5 we found that any singular Legendrian curve germ can be thought
of as the prolongation of some singular plane curve germ that can be parameterized as
γ(t) = (x(t), y(t)) with v(x2) < v(y).

Let O be the regular functions on γ. The regular functions on our Legendrian curve γ1

are then given by
O[[y′]] = O + y′O + (y′)2O + . . . ,

and the Legendrian semigroup is given by v(O[[y′(t)]]). In most cases we will assume that
we already have our γ and it has semigroup Γ. In this case we will denote the Legendrian
semigroup of γ1 as Γ1.

It is clear from the equation above that the Delorme module of γ is contained in
the regular functions on the Legendrian curve germ γ1. This immediately implies that
the Delorme semimodule is contained in the Legendrian semigroup. Later we will show
that there is an analogous notion to the Zariski invariant for Legendrian curves and their
semigroups, which is closely related to the containment of the Delorme module.

In [6] they give a definition for the generic projection of a Legendrian curve germ,
and also give an algorithm to compute what they call the generic Legendrian semigroup
associated to a pair of coprime integers p and m with 2p < m.

Later in this work we will show that there are certain directions related to the distri-
bution ∆1 that one can use to project a contact curve to a plane curve and always find the
same set of discrete analytic invariants. These invariants will also be contact invariants of
the contact curve in the sense that they are invariants under contact transformations fol-
lowed by projections. Even further we can show that there is some analytic jet information
that is invariant under contact transformation and projections in these directions that are
essentially transverse to the contact distribution ∆1.

Let us finish this section with an example on computing some Legendrian semigroups.

Example 11. Let us consider plane curve germs with Γ = ⟨4, 9⟩. The table in Example
22 gives all possible normal forms for these plane curve germs. Any singular Legendrian
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curve germ with RRV TT as its code word will be contact equivalent to the lift of one the
curve germs in the table. Let us assume that our plane curve germ γ is already in normal
form, so that

γ1 : x(t) = t4, y(t) = t9 + h.o.t., y′(t) = 9
4 t

5 + h.o.t.

Since n · v(y′) ∈ Γ1 for all n ≥ 0, we have that ⟨4, 5⟩ ∈ Γ1. Note that ⟨4, 5⟩ has conductor
3 · 4 = 12. Also because we now have y′ at our disposal, we can consider the fact that
v(xy′) = v(y). Let us consider the possible valuations of v(y − 4

9xy
′).

In the case that y(t) = t9 or y(t) = t9 + tλ, λ ≥ 15, we have that v(y − 4
9xy

′) ≥ 15,
which is greater than the conductor of our Legendrian semigroup, as it is greater than the
conductor of ⟨4, 5⟩. Thus in this case our Legendrian semigroup is Γ1 = ⟨4, 5⟩.

In the case that y(t) = t9 + t11, we have that v(y − 4
9xy

′) = 11, and so the Legendrian
semigroup is given by Γ1 = ⟨4, 5, 11⟩, which is not the semigroup of any plane curve germ.

Finally in the case that y(t) = t9+ t10+at11+h.o.t. where we put no restrictions on a,
we find that there are two possibilities depending on the value of a. One can verify that if
a = 10

9 then Γ1 = ⟨4, 5⟩, and otherwise Γ1 = ⟨4, 5, 11⟩. These are all of the possible normal
forms, and therefore all of the possible Legendrian semigroups for the code word RRV TT.

This concludes our example and our preliminaries. In our next chapter we will formally
assign sets of jets of singular plane curve germs to points in the monster, and from there
we will show how value sets of plane curve germs can also be assigned to certain regular
points in the Monster tower.
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Chapter 3

Value Sets of Points in the
Monster Tower

The goal of this chapter is to assign value sets of plane curve germs to points in the Monster
Tower. We will see that the value set of the point u ∈ M(n) is related to the critical code
word of the point, and also the level n at which the point u sits. In order to do this we
will need to define a particular set of plane curve germs that we can assign to our point
u ∈ M(n). With the help of Montgomery and Zhitomirskii in Chapter 4 of [19] we will show
that this particular set of plane curve germs assigned to u all have analytically equivalent
r-jets for some fixed r > 0 if the point u is indeed a regular point (see Defintion 10). From
this we will be able to assign value sets to points u ∈ M(n) by comparing r and n.

This will ultimately lead to our main result, which gives a recursive formula for the
generic value set assigned to generic points u ∈ M(n) with a given critical RVT code word
with only one critical block. We now establish that every equi-singularity class of analytic
plane curve germ has a finite positive integer l associated to it, such that if we know the
l-jet of a plane curve germ in this class, then we know its value set Λ.

3.1 Λ Jet Identification Number for a Topological Class

Let us review some notation from the preliminaries. We assume that we are working with
analytic irreducible plane curve germs γ : (C, 0) → (C2, 0) with Puiseux Characteristic
(p;m,β2, . . . , βg), and associated semigroup Γ = ⟨p,m, ν2, . . . , νg⟩. We denote the con-
ductor of the semigroup Γ as µ for the Milnor Number. We also assume that Λ is the
associated value set of differential one-forms (equiv. the Γ-semimodule) of the curve γ. We
denote its conductor as c(Λ). From the main result in [13], any curve germ in the topolog-
ical class with the above Puiseux Characteristic is analytically equivalent to a curve germ
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parameterized by:

x = tp, y = tm + tλ +
∑

i/∈Λ−p
i>λ

ait
i, ai ∈ C. (3.1)

We will denote the r-jet of a curve germ γ at the origin as jr(γ). Let us now define what
we mean by a Λ jet identification number:

Definition 16. Let (p;m,β2, . . . , βg) be a Puiseux Characteristic of a plane curve germ,
with 2 < p < m. Then the Λ jet identification number for (p;m,β2, . . . , βg) is the minimum
positive integer l such that if any two plane curve germs γ1 and γ2, both with Puiseux
Characteristic (p;m,β2, . . . , βg), have different value sets Λ1 ̸= Λ2, then jl(γ1) ̸= jl(γ2).

We now show that in general this number l is finite. This finite aspect of l is mainly
a result of Zariski’s short parameterization in III.1.2 of [26], of which the normal form of
Hefez and Hernandes is a refinement.

Proposition 6. The Λ jet identification number l for any Puiseux Characteristic (p;m,β2, . . . , βg)
is bounded by the conductor µ of the semigroup Γ associated to (p;m,β2, . . . , βg).

Proof. Suppose that two analytic plane curve germs γ1 and γ2, both with Puiseux Charac-
teristic (p;m,β2, . . . , βg), have value sets Λ1 and Λ2, respectively, such that Λ1 ̸= Λ2. Now
suppose for contradiction that we further have jµ(γ1) = jµ(γ2). Let us assume we have
coordinates such that x = tp for both γ1 and γ2. Then we can write

γ1 : x(t) = tp, y(t) = tm +

µ∑
i=m+1

ait
i +
∑
i>µ

ait
i (3.2)

γ2 : x(t) = tp, y(t) = tm +

µ∑
i=m+1

ait
i +
∑
i>µ

bit
i. (3.3)

Since every integer greater than equal to µ is a valuation of some polynomial in x and y,
we see that by possibly two different analytic isomorphisms of the plane we have that both
curve germs γ1 and γ2 are analytically equivalent to the curve germ

γ : x(t) = tp, y(t) = tm +

µ∑
i=m+1

ait
i.

This curve germ has a unique value set, Λ, associated to it. Since the value set Λ is an
analytic invariant, it must be that γ1 and γ2 both have the same value set. This contradicts
our original assumption that they were not equal. Thus we must have that µ is an upper
bound on l the Λ jet identification number.

Let us define what it means to associate a value set to a jet of particular size.
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Definition 17. Let (p;m,β2, . . . , βg) a Puiseux Characteristic of an analytic plane curve
germ, and l the Λ jet identification of (p;m,β2, . . . , βg). Then for any γ with P.C. charac-
teristic (p;m,β2, . . . , βg), the associated value set Λ to jk(γ), k ≥ l, is the value set Λ of
the curve γ.

Note any γ̃ such that jk(γ̃) = jk(γ) will have the same Λ, since k ≥ l and so this is a
good definition. If k is large enough to determine the topological type of any curve germ
with the same k-jet (see Section 3.2.2 below), then we could also consider t he set of value
sets “belonging” to the k-jet jk(γ) for some γ in the given topological class. By belonging
we simply mean all possible value sets associated to all possible curves γ with the the given
k-jet.

In the case where our Puiseux Characteristic is of the form (p;m), equivalently our
RVT code word only has one critical block, we can compute the precise value of l.

3.1.1 Determining the Λ Jet Identification Number for (p;m)

We now determine the value for the Λ jet identification number for a given set of coprime
integers p,m. A formula for a general Puiseux characteristic will require more knowledge
on value sets and how they possibly build from values sets of semiroots of the curve (see
[1]). This is saved for a later work. For now we present the following theorem.

Theorem 6. The Λ jet identification number for the coprime integers 2 < p < m is the
number

l = µ− p− 1.

Proof. First we show that l it must at least be µ − p − 1. For this we will take the two
curve germs

γQH : x = tp, y = tm

γFr : x = tp, y = tm + tµ−p−1

We note that ΛQH ̸= ΛFr, since the valuation of the one-form pxdy−mydx differs for each
curve. These two curves are already in Zariski short form (ref Z), and so we must have
that v(pxdy − mydx) is the minimum possible valuation of any element in Λ \ Γ. Here
we have vQH(pxdy −mydx) = ∞, but on the other hand vFr(pxdy −mydx) = µ− 1, the
Frobenius number. By the above comment we must have that ΛQH \ ΓQH = ∅ whereas
ΛFr \ ΓFr = {µ− 1}. Thus ΛQH ̸= ΛFr.

Now consider that ji(γQH) = ji(γFr) as long as i < µ − p − 1. On the other hand it
is clear that jµ−p−1(γQH) ̸= jµ−p−1(γFr). This shows that we must at least compare the
µ− p− 1-jets of any two curve germs to see a distinction in their jets if they have differing
Λ. Hence l ≥ µ− p− 1.

We next want to show that l is at most µ − p − 1. Let us consider two curve germs
γ1 and γ2, with Γ-semimodules Λ1 and Λ2, respectively, such that Λ1 ̸= Λ2. We show
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that jµ−p−1(γ1) ̸= jµ−p−1(γ2). Let us assume towards contradiction that instead we have
jµ−p−1(γ1) = jµ−p−1(γ2).Wemay assume (WLOG) that γ1 is in the reduced normal form of
Hefez and Hernandes (see Section 2.2.2). Otherwise we could use an analytic isomorphism
to take γ1 to its reduced normal form, and the jets of the two transformed curve germs
would remain equal (i.e. if Φ is the isomorphism, then jµ−p−1(Φ ◦ γ1) = jµ−p−1(Φ ◦ γ2)).

Therefore, avoiding the quasi-homogenous curve for now, we have the parameterization:

γ1 : x = tp, y = tm + tλ1 +
∑

i/∈Λ1−p
i>λ1

ait
i.

Note here that i ≤ µ− p− 1, since Γ∗ − p ⊆ Λ1 − p, and c(Γ− p) = µ− p. Hence the last
possible gap in Λ1−p is µ−p−1.We now use the assumption that jµ−p−1(γ1) = jµ−p−1(γ2).
If this is the case we must have

γ2 : x = tp + atµ−p + h.o.t., y = tm + tλ1 +
∑

i/∈Λ1−p
i>λ1

ait
i + h.o.t.

That is, γ2 has the same parameterization as γ1 up to powers of t greater than µ− p− 1.
We now show that those higher order terms are inconsequential in determining the

value set of the curve. Let us first note that if λ1 = µ − p − 1 we are in the case above
with γ1 = γFr. It is clear for γ2 that the Zariski form will then give us a valuation of
µ− 1. There are no other gaps left between µ− 1 and µ− p− 1 in Λ, so the terms greater
than or equal to µ − p can no longer play a part in calculating the value set Λ2, as their
valuations would be beyond the conductor. Thus we already have our contradiction in that
Λ1 = Λ2 = Γ ∪ {µ− 1}.

Now suppose that λ1 < µ−p−1. If this is the case, then again we have that γ2 must share
the same Zariski invariant as γ1, namely, λ1. This implies min(Λ2 \ Γ) = λ1 + p < µ − 1.
This automatically implies that µ − 1 ∈ Λ2, since if λ1 + p ∈ Λ2 \ Γ, then there exists
a, b > 0 such that λ1 + p = pm− am− bp. We also have that µ− 1 = pm−m− p, and so
λ1+p+(a−1)m+(b−1)p = µ−1. Since (a−1)m+(b−1)p ∈ Γ, µ−1 ∈ Λ2. As the above
paragraph shows, if µ − 1 ∈ Λ2 then there are no gaps in Λ2 that are greater than µ − p.
It follows that it is impossible for the terms in x(t) and y(t) in the above parameterization
for γ2 that are greater than µ − p − 1 to alter the value set Λ2, as these terms can only
produce valuations greater than µ−p−1. Hence we must again have that Λ2 is completely
determined by terms in x(t) and y(t) that are less than µ − p. But these terms are the
same in both γ1 and γ2 by the equality of their jets. It must then be that Λ2 = Λ1, a
contradiction.

Finally we look at the case where γ1 = γQH . If this is the case then γ2 has a Zariski
one-form ω = pxdy−mydx with valuation greater than µ− 1. This is enough to show that
γ2 is analytically equivalent to the quasi-homogeneous curve germ. Indeed suppose that α
is a one-form on the curve γ2 such that v(α) ∈ Λ2 \ Γ. Then it is well known (ref) that we
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can write α = Adx − Bdy with A,B ∈ Oγ2 the set of regular functions on the curve γ2.
Note here that we must have v(Adx) = v(Bdy), which implies

v(A) + p = v(B) +m. (3.4)

We consider that v(A) is equal to the lowest valued monomial in x and y in terms of
valuations of powers of t. We also consider that since p,m are coprime, we must have that
this monomial uniquely provides this valuation, and there are no other monomials of this
order (as we assume v(α) produced something less than the conductor of Γ).

Thus v(A) = v(xjyk) = jp + km. Similarly for B we must have v(B) = v(xrys) =
rp+ sm. By (1) we have

(j + 1)p+ km = rp+ (s+ 1)m.

Since we are assuming v(α) < µ, we must have v(A), v(B) < µ and so with p,m coprime,
the above equation implies r = j + 1 and k = s + 1. This gives A = axjys+1 + h.o.t. and
B = bxj+1ys so that Adx−Bdy = axjys+1dx− bxj+1ysdy + h.o.t. or

Adx−Bdy = xjys(aydx− bxdy) + h.o.t.

It is not hard to see that a = cm and b = cp for some c in order for v(α) to satisfy the
conditions of being a gap of Γ, when explicitly dealing with the parametrization of γ2. If
not, there could not be a cancellation of powers of t, and v(α) would be an element of Γ.
Thus we can write

Adx−Bdy = xjyscω + h.o.t.

where ω is the standard Zariski one-form for the curve γ2. This shows that the Zariski
one-form is indeed the minimal possible valuation outside of Γ in the case of γ2, but in
this case with γ1 = γQH we have that v(ω) > µ− 1 and so it must be that γ2 is equivalent
to the quasi-homogenous curve, which is the case if and only if Λ2 = Γ∗ = Λ1, again a
contradiction.

This shows that is is sufficient to let l = µ− p− 1 in order to see a distinction in l-jets
of two curves with different value sets. From the first part of the proof we also see that
it is necessary, and thus the Λ jet identification number for the coprime integers p,m is
l = µ− p− 1.

We give an example of computing the number l, and the two curves mentioned in the
proof above.

Example 12. Suppose we have (4; 9) as our Puiseux characteristic. Then γQH(t) = (t4, t9)
and γF = (t4, t9 + t19). We have that µ = (4 − 1)(9 − 1) = 24, and so l = µ − p − 1 =
24 − 4 − 1 = 19. A quick check using the Zariski one-form shows that min(ΛF \ Γ∗) = 23
for γF .
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Now that we have proved the theorem, we would like to attempt to make a similar
statement about points in the Monster Tower. That is, at what level, if any, do we see
two curves with different value sets prolonging through different points? To do this we will
need to develop quite a bit of machinery. Fortunately much of this has already been done
to some extent by Montgomery and Zhitomirskii in Chapter 4 of [19]. The author does
not consider the next section his original work, but rather an extension of that found in
[19]. None-the-less it is necessary for the results in this chapter to push their work down
to plane curve germs by restricting our notion of equivalence to analytic isomorphisms of
the plane and their lifts into the Monster Tower.

In particular we will need to develop the idea of an analytic jet identification number
for points in the Monster Tower in regards to equivalence of plane curve germs rather
than contact equivalence of Legendrian curves as is done in [19]. We are thus leaving the
somewhat more natural notion of equivalence of points in the Monster Tower behind as
we restrict to analytic equivalence. However with this restriction we will see that we can
obtain a finer stratification of the Monster Tower beyond that of RVT code words. We now
formally develop the connection between points in the Monster Tower, and jets of analytic
plane curve germs.

3.2 The Analytic Jet Identification Number of a Regular
Point in the Monster Tower

We turn our attention back to points in the Monster Tower. Following along with the ideas
in Chapter 4 of [19], we devote the following section to defining exactly what the analytic
jet identification number is for a regular point u ∈ M(n).

3.2.1 Defining The Analytic Jet Identification Number of a Point in the
Monster Tower

In order to define the analytic jet Identification number of a regular point in the Monster
Tower, we will first need to associate a set of analytic plane curve germs to the given point.
These curves should all have a couple of specific properties. We should obviously impose
that these plane curve germs prolong though our given point. We also would want them
comparable in some other way, and it would be most appropriate to have these curve germs
all regularized at or before the level at which our point sits in the Monster Tower. Let us
define this set. First we define the following set of integral curve germs at the level in the
Monster Tower of our given point.

Definition 18. Let u ∈ M(n). We define the set

IntReg(u) := {γ : (C, 0) → (M(n), u) | γ is regular at u}.
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Recall from Definition 11 that for γ to be regular in M(n) it must be integral and
immersed, with γ′(0) in a regular direction. We now associate to our point the desired set
of plane curve germs mentioned above.

Definition 19. Let u ∈ M(n). We define the set

Pl(u) := {γn | γ ∈ IntReg(u)}.

In other words Pl(u) is the set of all plane curve germs that are projections of regular
curves through u down to the base C2. We again emphasize that in this work we do not
consider immersed curves in the fiber of M(1) to be regular curves, and so to be regular
the projection, γn, cannot be constant at the base.

With these definitions in hand, we are now ready to define what we mean by the analytic
jet identification number of a point u ∈ M(n).

Definition 20. Let u ∈ M(n) and suppose there exists an r such that the following two
properties hold:

1. If γ ∈ Pl(u), then for any γ̃ a plane curve germ such that jr(γ) = jr(γ̃) we necessarily
have γ̃ ∈ Pl(u).

2. The set jr(Pl(u)) consists of only one r-jet up to reparameterization.

Then r is called the analytic jet identification number of the point u, and the single r-jet
in 2 is called the associated r-jet to u.

We would now like to develop the notion that points in the Monster are analytically
equivalent if and only if they have the same analytic jet identification number r, and have
analytically equivalent associated r-jets. Let us define what it means to have analytic
equivalence of jets.

Definition 21. Let γ1 and γ2 be analytic plane curve germs. We say that jk(γ1) is
analytically equivalent to jk(γ2) if there exists an analytic isomorphism Φ such that jk(Φ ◦
γ1) = jk(γ2) up to reparameterization.

We now state a proposition that mirrors closely the results of Theorem 4.14 in [19] and
the fact that analytic isomorphisms lift to contactomorphisms.

Proposition 7. Two points u and ũ are analytically equivalent in M(n), n > 0, if and
only if their exists two curve germs γ ∈ Pl(u) and γ̃ ∈ Pl(ũ) that are analytically equivalent.

Proof. First suppose two points u, ũ in the Monster are analytically equivalent. Then by
definition there exists an analytic isomorphism germ Φ of the plane such that Φn(u) = ũ.
Take any γ ∈ Pl(u) and consider the curve Φ ◦ γ. This curve germ is certainly analytic to
γ and we claim it is in Pl(ũ). Indeed we see that by results from Montgomery Zhitomirskii
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(see 2.6, 2.7, 2.12, 4.14 in [19]) and the fact that Φ1 is a germ of a contactomorphism, that
prolongation and lifts of contactomorphisms commute (see 2.9 in [19]). This implies

(Φ ◦ γ)n(o) = (Φn ◦ γn)(0) = Φn(u) = ũ.

Since Φn is a local symmetry of M(n), is follows that Φ ◦ γ is regular at ũ as well. Thus
(Φn ◦ γn)n ∈ Pl(ũ). We further have that projections commute with local symmetries
and inverse to prolongation down to level 1. Since we are insisting that Φ is an analytic
isomorphism of the plane, we can further project all the way down to the base to find that
(Φn ◦ γn)n = Φ ◦ γ. We thus now shown the forward direction of the proposition.

Now suppose that two curve germs γ ∈ Pl(u) and γ̃ ∈ Pl(ũ) are analytically equivalent.
Then there again exists a Φ such that Φ ◦ γ = γ̃. From above we have

Φn(u) = (Φn ◦ γn)(0) = (Φ ◦ γ)n(0) = γ̃n(0) = ũ.

Hence, u and ũ are analytically equivalent.

Next we give results that will help us complete the picture of how regular points in the
Monster Tower correspond to jets of curve germs in the plane.

Proposition 8. If u ∈ M(n) has a jet identification number, then this number is unique.

Proof. The proof is nearly identical to proposition 4.21 in [19], which applies almost entirely
to this situation.

Proposition 9. If u has a jet identification number r and ũ is analytically equivalent to
u, then ũ also has jet identification number r.

Proof. This proof is again nearly identical to the proof given in proposition 4.22 in [19]. One
merely needs to replace the word contactomorphism with analytic isomorphism throughout
the proof.

We next give the main theorem of this section, which gives the complete picture of
points and jets of curve germs.

Theorem 7. Let u and ũ be points in the Monster M(n), n > 0, with defined jet identifi-
cation numbers r and r̃ respectively. Then u and ũ are analytically equivalent if and only if
r = r̃ and any two curve germs γ ∈ Pl(u) and γ̃ ∈ Pl(ũ) have analytically equivalent r-jets.

Proof. Assume first that u and ũ are analytically equivalent. Then Proposition 9 gives that
r = r̃. By the proof of the forward direction of Proposition 7, we have that there exists a
Φ such that for any γ ∈ Pl(u), Φ ◦ γ ∈ Pl(ũ). Now take any γ̃ ∈ Pl(ũ). By the definition
of jet identification number, jrPl(ũ) consists of only one r-jet up to reparameterization.
Therefore we must have jr(Φ ◦ γ) = jr(γ̃) up to reparametrization. This is the definition
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of having analytically equivalent r-jets for plane curve germs (see Def. 20). This completes
the forward direction of the theorem.

The other direction is left to the reader as it is a straightforward application of the
above propositions and part 1 of Definition 20.

This ends our section on jet identification number. We will return to this concepts at
the end of this section to give a precise value for r given the RVT class of the point u.
We will also therefore give a complete description of the points in M(n) that have a jet
identification number. For this we will need the concept of parameterization number.

3.2.2 Parametrization Number of a Point in the Monster

We start with the definition of a well-parameterized curve, and it’s order of good parame-
terization.

Definition 22. An analytic curve germ γ(t) = (x(t), y(t)) is a poorly-parameterized if there
exists analytic germs ϕ : (C, 0) → (C, 0) and µ : (C, 0) → (C2, 0) such that γ(t) = (µ◦ϕ)(t).
Otherwise γ is called well-parameterized.

Definition 23. The order of good parameterization of a well-parameterized analytic curve
germ γ(t) = (x(t), y(t)) is the number d such that if any other curve germ γ̃(t) has jd(γ̃) =
jd(γ), then γ̃(t) is also well-parameterized.

It is now that we will explicitly start working with RVT code words and Puiseux
Characterisitics of plane curve germs. We have that a topological class of curve germs is
closed under analytic transformations (as they are germs of homeomorphisms). We next
consider prolonging these curve germs up into the Monster Tower M(n), and evaluating
these curve germs at t = 0 to give us a set of points S(n) ⊂ M(n). We note that S(n) is
then closed under lifted analytic isomorphisms. That is, there is a locus of points in the
Monster Tower M(n) that corresponds to a certain topological class of curves in the plane.
We recall from Proposition 4 that this topological class has a unique critical RVT code
word, i.e. a word that ends in a V or T.

The length of the word corresponds to the regularization level in the Monster Tower:
any curve germ γ in the topological class corresponding to α will have the property that
the point γn(0) is critical, γn is regular at γn(0), and hence at γn+1(0) is a regular point,
where n is the length of α. Let us denote the locus in M(n) corresponding to α as (α). Also
denote Pl(α) as the set of plane curve germs Pl(u) for all u ∈ (α). We have the following
proposition.

Proposition 10. Let α be a critical RVT code word, and γ : (C, 0) → (C2, 0) an analytic
plane curve germ. Then γ ∈ Pl(α) if and only if α is the RVT code word of γ (i.e. γ is in
the topological class corresponding to the RVT code word α).

38



Proof. Suppose γ has RVT code word α. Then γr(0) ∈ (α) ⊂ M(n). Moreover, γ is regular
at γn(0). Thus γn ∈ IntReg(γr(0)). Finally we have from previous results that (γn)n = γ,
and so γ ∈ Pl(γn(0)) and γn(0) ∈ (α), so γ ∈ Pl(α).

Now suppose γ ∈ Pl(α). Then by definition γn(0) ∈ (α), and γn is regular at γn(0).
It follows immediately by the way an RVT code is assigned to a curve germ that γ has
critical code word α.

We recall from Proposition 5 that any a-equivalent point ũ to the point u ∈ (α) has the
same RVT code word of u, namely α. It is also clear that because the curves in Pl(α) are
regular at level n (n again the length of α), the points on the locus (αRq) in M(n+q) have
the same property as the locus (α) in that γ ∈ Pl(αRq) has topological type corresponding
to the RVT code word α. We now need to say what we mean when we assign a Puiseux
Characteristic to an arbitrary code word α.

Definition 24. Let α be an RVT code word of any type. Write α = βRq with β critical,
and q ≥ 0. Then the Puiseux Characteristic associated to α is the Puiseux Characteristic
of the critical code word β.

Next we have an important result.

Proposition 11. Every curve germ in the same topological class has the same order of
good parametrization. This order of good parameterization is equal to the last entry in the
Puiseux Characteristic of the curve.

Proof. We leave the details of the proof to the reader noting that any curve in a given
topological class is analytically equivalent to curve in reduced normal form of Hefez and
Hernandes (see main result in [13]), or even simply Zariski’s short form in III.1 of [26].
Either of these forms will consist of a certain restricted set of exponents, including the
essential ones with nonzero coefficients (see essential exponents in ??). From here it is easy
to see that the order of good parameterization is the same for any curve germs sharing the
same topological type, and it is equal to the last entry of the Puiseux Characteristic.

We are now ready to assign a parameterization number to any point in the Monster
Tower for n > 0.

Definition 25. Let u ∈ M(n), n > 0. Then the parameterization number of u is the order
of good parameterization of any plane curve germ in Pl(u).

Note that Proposition 11 guarantees that this is a good definition. It is also worthwhile
to note that every point in the Monster Tower above the base has a parameterization
number associated to it. This is not the case for the jet identification number, as we will
see, and so not the case for the Λ identification number as well. One could sum this up as:
every point has an associated semigroup Γ in the Monster Tower, but not every point has
an associated value set (equiv. semimodule) Λ. We finish this section on parameterization
number with one final result:
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Corollary 1. Let u ∈ M(n), n > 0. Let α be the associated RVT code word to u, and
(β0;β1, β2, . . . , βg) be the Puiseux Characteristic of α. Then the parameterization number
of u is βg.

Proof. This follows immediately from the definition of parameterization number, and Propo-
sitions 10, and 11.

This ends the section on parameterization number. In the next section we compute the
analytic jet identification number using the parameterization number.

3.2.3 Computing the Analytic Jet Identification Number of a Point in
the Monster

We now wish to give a complete description of the points in the Monster Tower that have
a jet identification number, and what that number is.

Theorem 8. Let u ∈ M(n), n > 0 and α the associated RVT code word. Then u has a jet
identification number if and only if α is not critical (ends in an R). That is, if and only if
u is a regular point.

We will need some other results before we can prove this theorem. The following is a
crucial result from [19], which is presented in chapter 4 of their work and proved in chapter
8.

Theorem 9. (Theorem B in Chapter 4 of [19]) Let c∗ be a plane curve germ with order
of good parameterization d and regularization level r in the Monster, with r ≥ 3. Let c be
another plane curve germ. Let q ≥ 1. Then the r-step prolongations (c∗)r and (c)r have
the same q-jet up to reparameterization if and only if the curves c∗ and c have the same
(d+ q − 1)-jets up to reparameterization.

The next theorem gives us the existence of jet identification numbers for regular points.

Theorem 10. Let u ∈ M(n), n > 0, be regular with associated code word α = βRq, q ≥ 1,
and β critical. Let (β0;β1, β2, . . . , βg) be the associated Puiseux Characteristic of α. Then
the analytic jet identification number of u is

l = βg + q − 1.

Proof. The result of the theorem comes from examining Proposition 11 above, and Theorem
B in section 4.10 in [19].

We end this section with the proof that critical points do not have jet identification
numbers.

Proposition 12. Let u ∈ M(n), n > 1. If u is critical (i.e. if its associated code word
ends in a V or T ), then u does not have a jet identification number.
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Proof. Assume for contradiction that l is the jet identification number of u. Since u is a
point in the Monster, we know that u must have a parameterization number d. Fix a curve
germ γ ∈ Pl(u).

First assume that l < d. Then we can find a curve γ̃ such that jl(γ̃) = jl(γ) with (̃γ)
having order of good parameterization less than d, which is the order of good parameteri-
zation of γ. To see this more clearly, one can introduce coordinates so that

γ : x = tp, y = tm + tλ +
∑

i/∈Λ−p
i>λ

ait
i.

Truncating γ below the td term in our parameterization of y above and then reducing
terms will give us the desired γ̃ we seek. In this case we have that γ̃ will have an order of
good parameterization less than d, and so we must have by Proposition 11 that γ̃ /∈ Pl(u).
However this is impossible if jl(γ̃) = jl(γ) by definition of jet identification number. Thus
we cannot have l < d.

Now suppose l ≥ d. If this is the case then take any regular one-step prolongation of
u, and call this û. We have many choices in what regular direction we wish to prolong
u, as there is essentially a whole C available (there are only two special directions that
we must avoid in an entire CP 1). We will show that no matter what “choice” we intend
to make for û we will always have γn+1(0) = û for our (arbitrary) fixed γ ∈ Pl(u). Let
α be the associated critical code word to u, so that û ∈ (αR) ⊂ M(n + 1). Theorem 3
and the following remark (see theorem 4.10 in M&Z) guarantee that û will have the same
parameterization number as u itself. By Theorem 10, û has jet-identification number d as
well.

Now take a curve γ̂ ∈ Pl(û). Since û is a regular point, γ̂ ∈ Pl(u) as it is a regular
prolongation of a curve in the level below, and is itself regularized. By definition of jet
identification number jl(γ̂) = jl(γ) up to reparameterization. Since l ≥ d it is automatic
that jd(γ̂) = jd(γ). Since d is the jet-identification number of û we again, by definition,
have that γ ∈ Pl(û). If this is the case, then γn+1(0) = û. However, γ is a fixed germ, and
there are nearly a C’s worth of possible choices for û. Thus we have our contradiction, and
therefore we u has not jet identification number as a critical point.

We now have all the necessary ingredients to show that Theorem 8 is indeed valid. In
a later section, we will use the coordinates on the Monster Tower for a given code word
α as we did in Section 2.1.4. With this set of coordinates we will give some description
of points on the locus (α) in relation to the curves in Pl(α). This ends our section on
analytic jet identification number. We will now determine which points at which levels
in the Monster Tower have to them a single associated value set, given their associated
semigroup, equivalently their RVT code word.
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3.3 Λ Identification Level of a Critical Word in the Monster

In this section we will tie the previous two sections together to associate a level in the
Monster tower to a critical RVT code word where the points on a special locus at this
level all have associated value sets. These points will necessarily have jet-identification
numbers, and we will use these and the results of the previous sections to show that there
is a well-defined minimum level, and an easily determined locus of points. To establish
that this level exists and is well-defined, we will first need a lemma:

Lemma 1. Let α be a critical code word. Then there exists a q0 ≥ 1 such that for all
q ≥ q0, and for any u ∈ (αRq), all curve germs in Pl(u) share the same value set Λ.

Proof. We need to show that this q0 exists. In order to do so, let us consider that if q ≥ 1
then any u ∈ (αRq) has a jet identification number. This number is based on q. Indeed
the jet identification number for any u ∈ (αRq) is given by r = d + q − 1 where d is the
parameterization number of (α). Clearly if we continue to add R’s at the end of our code
word, we will continue to increase the jet identification number of our locus. On the other
hand the Λ jet identification number l for α is a fixed number entirely base on the RVT
code word of α.

We now note that if u has jet identification number r, then jr(Pl(u)) consists of only
one jet. If r is greater than or equal to l it follows that for any γ ∈ Pl(u), jr(γ) has an
associated value set. That is, r is large enough that for any γ ∈ Pl(u), jr(γ) completely
determines the value set of the curve germ γ.

We now can show that all curves in Pl(u) must share the same value set for sufficiently
large r and hence sufficiently large q. Indeed, suppose we have that q is large enough so
that r ≥ l. Take any two curves γ, γ̃ ∈ Pl(u). Then we must have by definition of jet
identification number that jr(γ) = jr(γ̃). Since r ≥ l it follows that the r-jets of γ and γ̃
have associated value sets, and that they must too be equal by equality of jets. In other
words, the r-jets of γ and γ̃ completely determine their value sets, and they are equal. By
transitivity, we must have that Pl(u) consists of only one value set Λ.

Now that we have proved the lemma we have the ability to define the Λ level in the
monster.

Definition 26. Let α be a critical code word with length k. Then the Λ identification
level of α (or Λ level for short) in the Monster tower is the level k+ q0 where q0 ≥ 1 is the
minimum q0 such that for any u ∈ (αRq0), all curve germs in Pl(u) share the same value
set.

It is clear that at the Λ level in the Monster, points have associated l-jets that have
themselves associated value sets. What should also be clear is that if we are to take regular
prolongations of these points in the Monster, these points will themselves have associated
jets with well-defined associated value sets. We note that from Section 3.1.1 we can give a
precise value for the Λ level in the monster if α has associated Puiseux Character (p;m).
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Theorem 11. Let α be a critical code word with only one critical block corresponding to
the Puiseux Characteristic (p;m). Let k be the regularization level of α in the Monster.
Then the Λ level in the Monster tower for α is L = k + µ− p−m.

Proof. This is comes immediately from the results in Theorem 6 and Corollary 1 with the
fact that the parameterization number d = m in this case, and the Λ jet identification
number l = µ− p− 1.

In the general case, instead of equality, we obtain an upper bound of k+µ−p−βg. We
will discuss this more in Section 3.5 where we make some attempts to understand the Λ
jet identification number and Λ identification level for general α. For now we simply make
the above assertion without proof, but note that it is not a difficult result to obtain per
the comments and results of Section 3.1.

At this point we have given our attention mainly to critical words, or equivalently
Puiseux Characteristics and their loci in the Monster Tower. Now we wish to consider
individual points in the Monster tower. To do so we will also want to study individual
plane curve germs and their various jets. A closer examination of parameterizations of these
plane curve germs allows us to see that for a given curve there may be jets of lower order
than the Λ jet identification number for the topological class of the given curve which still
allow us to determine the given curve’s value set. If this is the case, one logically concludes
that some points in the Monster too must have this property. Our next section is devoted
to this idea.

3.4 Λ Level for Points in the Monster Tower

In this section we will define a Λ level for certain points similar to that for an entire critical
locus. We will first need to establish that individual curve germs have Λ jet identification
numbers.

3.4.1 Λ Jet identification Number for Plane Curve Germs

We now return to the plane, and consider fixing a certain curve germ γ : (C, 0) → (C2, 0).
It is possible that this γ has a value set that can be determined from a lower order jet than
the Λ jet identification number of its topological class. For example, curve germs in the
class (3; 3k+1) have value sets completely determined by their Zariski invariant λ. In this
case, we would only need the λ-jet of the curve to fully determine its value set. Therefore
individual curves may have smaller Λ jet identification numbers than their topological class.
In fact this is often the case, and so we wish to formally define this notion.

Definition 27. Let γ : (C, 0) → (C2, 0) be a plane curve germ. Then the Λ jet identification
number for γ is the minimum positive integer I such that for any curve germ γ̃ : (C, 0) →
(C2, 0) with jI(γ̃) = jI(γ) we have Λγ = Λγ̃ .
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It is clear that I ≤ l, the Λ jet identification number of the topological class of γ.
Therefore this number is finite, and must be well-defined by the existence of l.

Example 13. Let Γ = ⟨4, 9⟩ which gives code word α = RRV TT. Let γ : x(t) = t4, y(t) =
t9 + t10. Then the Λ jet identification number of γ is I = 11. Indeed consider the curve
γ̃ : x(t) = t4, y(t) = t9 + t10 + 19

18 t
11. We have j10(γ̃) = j10(γ), yet j11(γ̃) ̸= j11(γ).

Thus I ≥ 11. To show that it must be 11 we note that there are only two value sets for
the class α that include the value 14: (1) the value set Λγ \ Γ = {14, 19, 23}; (2) the
value set Λγ̃ \ Γ = {14, 23}. If some curve γ′ has j11(γ′) = j11(γ) then we must have
γ′ : x(t) = t4+at12+h.o.t., y(t) = t9+ t10+ bt12+h.o.t. A quick computation shows that
Λγ′ = Λγ .

On the other hand the Λ jet identification number for α is l = µ−p−1 = 24−4−1 = 19.

We now give a proposition that in a way is an example which illustrates to some extent
the structure of the Λ jet identification number of curves with rather high minimum values
for their Zariski invariants.

Proposition 13. Let γ be a plane curve germ with semigroup Γ = ⟨p,m⟩. Suppose that γ
has min(Λ \ Γ) = λ + p = pm − m − ap with p < ap < m. Then the Λ jet identification
number for γ is I = λ.

Proof. If γ has pm−m−ap ∈ Λ then we automatically must have that pm−m−(a−i)p ∈ Λ
for 0 ≤ i ≤ a. If γ also has that min(Λ\Γ) = λ+p = pm−m−ap, then we must have that
Λ = Γ∪̇{pm −m − (a − i)p}0≤i<a, since there are no other gaps in Γ greater than λ + p
other than those mentioned above.

There are coordinates for which γ is parameterized by

x(t) = tp y(t) = tm + tλ + h.o.t.

It is rather clear that we must have I ≥ λ by similar arguments to those in the example
above. We now wish to show that it must be equal to λ. Indeed suppose that γ′ is a curve
germ such that jλ(γ′) = jλ(γ). Then we must have

γ′ : x(t) = tp + btλ+1 + h.o.t., y(t) = tm + tλ + h.o.t.

A quick check shows that this curve has Zariski invariant λ and so must have, by the same
argument above for γ, a value set equal to γ. Thus it must be that the Λ jet identification
number for the curve γ is I = λ.

We can go to the other extreme and consider the generic value set Λgen of any topological
class. In this case we would like to determine if the curve given has generic value set. We
now make a claim towards the generic Λ jet identification number of a plane curve.
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Proposition 14. Let γ be a plane curve germ with semigroup Γ = ⟨p,m⟩. Suppose γ
has generic value set Λgen, then the Λ jet identification number I for γ is bounded by the
inequality m < I < m+ p.

Proof. The proof of this proposition follows immediately from Proposition 4 of Delorme in
[10], which gives the existence of a generic polynomial relying on the first sequential p− 1
coefficients greater than m of the short form parameterization of y(t) for the curve germ
γ.

This implies the generic form is completely determined by these coefficients. That is
to say, with the knowledge of these coefficients, one could match the generators of Λ for γ
to those of Λgen provided by Delorme’s algorithm in [10]. It follows that any other curve
with these coefficients would necessarily give us the same result, and therefore we need to
know at most the m+ p− 1-jet of γ to determine the value set of any other curve with the
same m+ p− 1 jet as γ.

To show the lower bound, we see that we need to at least know the m + p + 1 jet of
some other curve germ γ′ to know that it has the minimal possible value for the Zariski
invariant of curves in the topological class of Γ. This is a necessary condition of any curve
with generic value set Λgen.

From the above proposition we see that it is enough to know the m+ p− 1-jet of any
curve germ γ with Γ = ⟨p,m⟩ to determine whether or not it is of the generic type. If γ
does not have an m + p − 1-jet equal to some other curve with generic value set, then it
cannot have the generic value set.

This concludes our section on Λ jet identification number of a plane curve germ. We
now consider that from this definition, we can give a pointwise definition of Λ level in the
Monster Tower.

3.4.2 Λ Level of a Point in the Monster Tower

We would now like to assign a minimal level to a point in the Monster tower for which the
projection of that point down to that level has a well-defined associated value set. This
will generally involve the jet identification number of a point and jet identification number
of the projection of the point down to a point with the same critical RVT code word. We
should not expect that all points in the Monster will have this property.

We recall that if u ∈ M(n) then we denote the k-step projection of u by πk(u) ∈
M(n− k). We now define the Λ level for a point in the Monster.

Definition 28. Let u ∈ M(n) be regular, and suppose there is a number s ≥ 0 such that
all curve germs in Pl(πk(u)) share the same value set for 0 ≤ k ≤ s, but not all curve
germs in Pl(πs+1(u)) share the same value set. Then we say that u has Λ identification
level n− s.
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We assume u is regular, and therefore has a jet identification number. However, the
Λ level in the Monster Tower may not exist for u. That is, it is quite possible that Pl(u)
contains curve germs with differing value sets. Then by definition u cannot be assigned a
Λ level in the Monster Tower. On the other hand if there exists a Λ level for u, then there
is a well-defined value set we may associate to the point u, namely the one belonging to all
curves in Pl(u).

Definition 29. Let u have a Λ identification level in the Monster Tower. Then the value
set associated to u is the value set shared by all the curves in the set Pl(u).

We now characterize the Λ level for a point in the Monster using jet identification
numbers and Λ jet identification numbers. We will need a lemma and a proposition.

Lemma 2. Suppose u ∈ M(n) is a regular point with jet identification number r. Suppose
further that γ ∈ Pl(u) with Λ jet identification number I such that r ≥ I. Then every
γ′ ∈ Pl(u) has Λ jet identification number I.

Proof. Suppose that r ≥ I. Now suppose there is some γ′ ∈ Pl(u) with Λ jet identification
number I ′. We have jr(γ′) = jr(γ) by definition of jet identification number of u and so
since jI(γ) = jI(γ′), by definition of Λ jet identification number we must have that γ and
γ′ share the same value set.

Now let µ be any plane curve germ such that jI(µ) = jI(γ′). Then by above we have
jI(µ) = jI(γ) = jI(γ′) and so by definition of I, we must have that µ has the same value
set as γ, hence the same value set as γ′. We must have that I ′ ≤ I by the minimality
condition of Λ jet identification number. Supposing strict inequality I ′ < I contradicts the
minimality of I for γ leaving the only possibility to be that I = I ′.

Now we can prove a proposition in regard to the definition of Λ level in the Monster.

Proposition 15. Let u ∈ M(n) be a regular point with jet identification number r. Then
u has a Λ level in the Monster if and only if for every γ ∈ Pl(u) with Λ jet identification
number I we have r ≥ I.

Proof. Suppose first that u has a Λ level in the Monster tower. Now let γ ∈ Pl(u), with Λ
jet identification number I and take any plane curve germ γ′ such that jr(γ′) = jr(γ). By
definition of jet identification number, we necessarily have that γ′ ∈ Pl(u). By definition
of Λ level in the Monster, we must have that Pl(u) has curve germs all sharing the same
value set. Thus Λγ′ = Λγ . By minimality of I, we must have that r ≥ I.

Now suppose that r ≥ I for all γ ∈ Pl(u). We need to show that Pl(u) has curve germs
all sharing the same value set. Suppose γ1, γ2 ∈ Pl(u). By the lemma we have that γ1 and
γ2 both have Λ jet identification number I. Then we have by definition of jet identification
number of points in the Monster that jr(γ1) = jr(γ2). Since r ≥ I we have jI(γ1) = jI(γ2)
and so they must share the same value set by definition of Λ jet identification number for
plane curves. It follows that for s = 0, Pl(πs(u)) consists of plane curve germs all sharing
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the same value set. This is sufficient for there to exist a maximal s, so that u has a Λ level
in the Monster.

Proposition 15 shows that we need the jet identification number of the point to equal
or exceed the Λ jet identification number of the curves in the set Pl(u). Equipped with this
proposition, we now use Section 3.4.1 to give some results about the Λ level in the Monster
tower for certain points. First let us monetarily consider the consequences of Proposition
8, and assume that u ∈ M(n) is some regular point, such that the jet identification number
r of u is precisely equal to the Λ jet identification number I of the curves in Pl(u), that is
r = I for u.

Let us assume that u has associated word αRq where α is critical and of length k. We
then recall that if d is the parameterization number of u, then the jet identification number
for u is r = d+ q − 1. Setting r = I we have I = d+ q − 1 =⇒ q = I − d+ 1, so that the
level of such a u is given by

L = I − d+ k + 1. (3.5)

With Proposition 15 we can now use this as our definition for the Λ level of a point in the
Monster Tower. The following is essentially a corollary of Proposition 13.

Proposition 16. Suppose u ∈ M(n) is a regular point with jet identification number r,
and associated Γ = ⟨p,m⟩. Suppose further that we find that some γ ∈ Pl(u) has Zariski
invariant λ = pm − m − (a + 1)p for p < ap < m. If r ≥ λ, then u has Λ level in the
Monster L = λ−m+ k + 1 or

L = pm− 2m− (a+ 1)p+ k + 1,

where k is the regularization level of Γ, that is the length of the critical word corresponding
to Γ.

Proof. The proof is given by combining Propositions 13 and 15, and equation 3.5.

The proposition above can be considered a upper bound in some ways when wanting
to compute the Λ level of a point in the Monster with a single Puiseux pair.

We end this section with a theorem in regards to determining which points have the
generic value set associated to them. In doing so we give a lower bound for the level in the
Monster Tower at which we can determine if a point on a given RVT locus has this generic
value set associated to it. Let us first define what we mean when we say a generic point of
an RVT code word locus (αRq).

Definition 30. Let u ∈ (αRq), where α is a critical RVT code word, and q > 0 as before
(so u is a regular point). Then u is called a generic point of the locus (αRq) if and only if
there exists some γ ∈ Pl(u) with the generic value set.
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We note that this definition is indeed good, as these points will form an open and dense
set in the following sense. If u has γ ∈ Pl(u) with Λ(γ) = Λgen, and it is regular, then
u has a generic r-jet, where r is the analytic jet identification number of u. If we take all
u ∈ (αRq) with these generic r-jets, then we will clearly have formed an open and dense
set.

Now we present the final theorem of the section.

Theorem 12. Let u ∈ (αRq) where α is a critical word with only one critical block corre-
sponding to the semigroup Γ = ⟨p,m⟩. Assume that q ≥ p. Then u has associated to it the
generic value set Λgen if and only if it is generic. That u is generic if and only if every
γ ∈ Pl(u) has the same value set given by Λgen.

Proof. Suppose first that u is a generic point. Then there exists a γ ∈ Pl(u) such that
Λ(γ) = Λgen. By Proposition 14 we have that γ must have a Λ jet identification number
I < m+ p. By Theorem 10 u has jet identification number r = m+ q − 1. By assumption
we have that q ≥ p and so r ≥ m + p − 1 ≥ I. Finally by Proposition 15 we have that u
has a Λ level in the Monster Tower, and that Pl(u) has curves all sharing the same value
set. This value set is clearly that of γ which was assumed to be the generic type. Thus u
is, by definition, a generic point.

The reverse direction is trivial, since all γ ∈ Pl(u) have generic value set, hence u is
generic by definition.

This concludes our section on the Λ level of a point for a regular point in the Monster.
We now look forward to the next section, where we make some characterizations about the
Λ level in the Mobster for a critical word that has more than one isolated critical block.
That is a word corresponding to a case where the Puiseux characteristic is given by more
than a single pair of coprime numbers.

3.5 Λ Level for Code Words with More Than One Critical
Block

In the previous sections we have mostly dealt with two generator Puiseux Characteristics
corresponding to RVT code words with one critical block. In this section when referring
to longer words what we mean is RVT code words with more than one critical block. We
will heavily reference the work of Abreu and Hernandes in [1] throughout, and use their
results to develop some of our own about the Monster tower. Mainly we will be using the
concept of semiroots of plane curve germs. Let us explore semiroots and how they relate
to points in the Monster.

3.5.1 Semiroots and Projections of Points in The Monster Tower

We begin with definitions, starting with some notation to help simplify our writing.
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Definition 31. Let (β0;β1, . . . , βg), with β0 = p, β1 = m, be a Puiseux Characteristic.
Define e0 := p, n0 := 1, and

ei := gcd(ei−1, βi), ni =
ei−1

ei
for 1 ≤ i ≤ g.

Now we define a semiroot of a plane curve germ.

Definition 32. Let γ(t) = (x(t), y(t)) be an irreducible plane curve germ with Puiseux
Characteristic (β0;β1, β2, . . . , βg), and semigroup Γ = ⟨ν0, ν1, . . . , νg⟩. Then for 0 ≤ k ≤ g
a k-semiroot of γ is a plane curve germ γk(t) given by the equation fk(X,Y ) = 0, such
that fk ∈ C{X}[Y ] is irreducible, and monic of degree p/ek with v(fk(x(t), y(t))) = νk+1,
the (k + 1)th generator of Γ (here we set vg+1 := ∞).

We find that given these conditions, one immediately has that γk has Puiseux Charac-
teristic given by (β0;β1, β2, . . . , βk)/ek (see Section 2 of [1]). We also note that if we find
an irreducible curve germ µ such that

jβk+1−1(µ(tek)) = jβk+1−1(γ), (3.6)

then µ is a k-semitroot of γ (see Corollary 5.3 in [22]). Furthermore we can easily construct
a k-semiroot µ such that equation (3.6) holds. This is done by truncation and reduction
of terms below βk+1, which will always give a semiroot of the curve, and obviously has the
property above.

To formalize notation, denote Γk and Λk as the semigroup and set of valuations of
one-forms on the curve germ γk, respectively. Also denote vk := vγk , the valuation with
respect to the pullback of γk(t) into C{t}.

We have a definition for a special collection of all levels of semiroot.

Definition 33. A set {γk : γk is a k semiroot for γ, 0 ≤ k ≤ g} is called a complete system
of semiroots of γ.

Though at first definition 32 may appear mysterious, it is rather clear once an example
is provided. In general a semiroot of a curve is not difficult to find if one is given a normal
or short form of a curve. Let us illustrate this with a simple example:

Example 14. Let us consider the curve

γ : x(t) = t4, y(t) = t6 + t7.

This curve is in the topological class (4; 6, 7), which has corresponding Γ = ⟨4, 6, 13⟩. A
1-semiroot of this curve is given by truncating the parameterization for y(t) before the
t7 term, and reducing all common powers of t in x and y. That is we first truncate to
get (t4, t6), then reduce to get γ1(t) = (t2, t3). This curve is well known to be irreducible.
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Furthermore we see that γ1 is defined by the equation Y 2 −X3 = 0. A quick computation
shows that

(y(t))2 − (x(t))3 = 2t13 + t14,

which clearly has valuation 13.

Now that we have illustrated what a semiroot is, we now would like to see how they
relate to points in the Monster tower. Suppose that u ∈ M(n) lies on a locus (αRq), q ≥ 1,
with α a critical code word consisting of more than one isolated critical block. Assume
also that (β0;β1, β2, . . . , βg) is the Puiseux Characteristic of u. Now consider the projection
πk(u) down to some level M(n − k). We consider if there are any relations between the
curves in Pl(u) and Pl(πk(u)). We claim that the curves in Pl(πk(u)) will contain semiroots
of the curves in Pl(u) and which semiroot will depend on the k and the RVT code word
α. The assertion is obvious if k < q using the g-semiroot of any curve in Pl(u), that is the
curve germ itself.

Let us rewrite
α = Rq1C1R

q2C2 . . . R
qgCgR

q,

where Ci are entirely critical words, and the qi ≥ 1 for all i ∈ {1, . . . , g}. Let us also denote
|Ci| for the length of Ci. Suppose now that

q + |Cg| < k < q + qg + |Cg|.

Then πk(u) ∈ (Rq1C1R
q2C2 . . . R

qg−1Cg−1R
q′) for some 0 < q′ < qg. We claim that for

any γ ∈ Pl(u) there exists a g − 1-semiroot γg−1 of γ, such that γg−1 ∈ Pl(πk(u)).
Note that if γ ∈ Pl(u) then γ has Puiseux Characteristic (β0;β1, β2, . . . , βg). Therefore
any g − 1-semiroot of γ must have Puiseux Characteristic (β0;β1, β2, . . . , βg−1)/eg−1. Fur-
thermore we can construct a γg−1 such that jβg−1(γg−1(t

eg−1)) = jβg−1(γ). This implies
γn−k
g−1 (0) = πk(u). Since γg−1 has Puiseux Characteristic given above, we also have that

γn−k
g−1 is regularized for all k in the range above, and so we have that γg−1 ∈ Pl(πk(u)). All

together this gives us the following proposition.

Proposition 17. Let u ∈ M(n) be a regular point with length g Puiseux Characteristic.
Take any γ in Pl(u). Then for any k ≥ 0 such that πk(u) is regular, there exists a 0 ≤ j ≤ g
and a j-semiroot γj such that γj ∈ Pl(πk(u)). That is Pl(πk(u)) contains a semiroot of γ.

With this proposition, we have connected projections of regular points to regular points
with semiroots of curves in their plane set. With this idea in mind we now introduce a
result of Abreu and Hernandes that will allow us to say more about Λ levels in the Monster
for certain words.

3.5.2 A Result of Abreu and Hernandes

To sufficiently summarize their results, we need two functions defined on the value set Λk

by Abreu and Hernandes in [1]. A similar idea can be found in Section 4 of [11].
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Definition 34. Define the function

Θk : Λk → Γk ∪ {∞}
δk 7→ max{νk(B) : δk = νk(Adx−Bdy)}

Further define

ρk : Λk \ Γk → Λ \ Γ

δk 7→

{
ekδk if ek(δk −Θk(δk)) < βk+1

βk+1 + ekΘk(δk) if ek(δk −Θk(δk)) > βk+1

We now present one of the main theorems of Abreu and Hernandes, which will allow
us to make statements about the Λ level of certain points in the Monster.

Theorem 13. (Theorem 5.2 in [1]) For any branch Cf in the topological class determined
by Γf = ⟨ν0, . . . , νg⟩ with ng = 2 we have that

Λf \ Γf = ρg−1(Λg−1 \ Γg−1)∪̇{νg − 2δ : δ ∈ N∗ \ Λg−1}∪̇{νg + 2δ : δ ∈ N \ Γg−1}, (3.7)

and ♯(Λf \Γf ) = µg−1. In particular, we have that τf = µf −µg−1 where µf and τf are the
Milnor and Tjurina of Cf respectively.

In summary, this theorem allows us to relate value sets of semiroots of curves to the
value set of the the original curve if ng = 2. Notice that the equality sign in (3.7) allows
us to precisely know the value set of the original curve given the value set of the g − 1-
semiroot. We will now apply this knowledge to characterize the Λ jet identification number
for a curve germ, and hence a Λ level in the Monster for a regular point with the special
property that the corresponding Puiseux Characteristic of the point has ng = 2.

3.5.3 The Λ Level of Points With Critical Word αRqV, q > 0.

We would now like to determine the Λ level of the code word αRqV with q > 0 and no
restrictions on α. If we are given an single point u ∈ (αRqV Rs), s > 0 we would also like to
determine the Λ level of u as well, and even further show that there is a maximal projection
of u down to a certain level that will still provide enough information for us to determine
the value set of u itself. We start with the Λ level of the code word αRqV.

Proposition 18. Let α be any RVT code word (including the empty word). Then the code
word αRqV with q > 0 has Λ level in the Monster L = |αRqV | + 1, that is the length of
the word plus 1.

Proof. We are tasked with proving that q0 = 1 in the definition of Λ level for a critical
word. That is, we must show that for any u ∈ (αRqV R) all curve germs in Pl(u) share the
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same value set. We note that any curve in Pl(u) has critical word αRqV and so by Theorem
13, any curve germ in Pl(u) has its value set completely determined by any g−1-semiroot.

It then suffices to show that any two curves in Pl(u) share a g−1-semiroot, and therefore
must share the same value set. Since u is a regular point, it has a jet identification number.
This number is rather easy to calculate, as it is simply the last entry in the Puiseux
Characteristic, say βg. Now let us take any two curves γ, γ̃ ∈ Pl(u). We claim that since
jβg(γ) = jβg(γ̃), they must share a common g− 1-semiroot. Indeed for any g− 1-semiroot
γg−1 of γ we have

jβg−1(γg−1(t
eg−1)) = jβg−1(γ(t)) = jβg−1(γ̃(t)).

This implies γg−1 is a g − 1-semiroot of γ̃ (see equation 3.6). Hence all curves in Pl(u)
must share a common g − 1-semiroot, which completely determines the value set of each
curve.

The proposition implies that any point u ∈ (αRqV Rs) for any q, s > 0 has Λ level at
most |αRqV R|. From Proposition 17, we have that γg−1 ∈ Pl(πk(u)) for s+1 < k < q+s+1,
whenever γ ∈ Pl(u). If Pl(πk(u)) consists of curve germs all sharing the same value set,
then we can determine the value set associated to u by knowing the value set associated
to πk(u). What is remarkable here is the bound on k, as the statement is obvious for
0 < k < s.

Suppose now that α is critical. One can see immediately that if q is large enough, then
|αRq| may exceed the Λ level in the Monster of the critical word α. If this is the case, then
any point at the Λ level of α has an associated value set. This includes any point that is
a projection of a point on the locus (αRqV Rs). Therefore, if q is large enough for |αRq| to
exceed the Λ level in the Monster for α, then any u ∈ (αRqV Rs) has that if πk(u) is its
projection down to the Λ level of α, then Pl(πk(u)) has only one associated value set. It
must be that some g−1-semiroot of u is contained in Pl(πk(u)). These last two paragraphs
are summarized by the following theorem:

Theorem 14. Suppose u ∈ (αRqV Rs) with q, s > 0, and α a critical RVT code word.
Further suppose that |αRq| exceeds the Λ level of the word α. Then the value set associated
to u is completely determined by the value set of the projection of u down to the Λ level of
α.

This ends our section on longer words. In the next chapter we will develop some results
about plane curve germs RVT code words with more than one critical block, in hopes to
enrich our knowledge about points with the same RVT code word. For now we turn to
studying the locus of points in the Monster Tower corresponding to a given RVT code
word, and use the previous sections to develop some structure of this locus.
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3.6 Hypersurfaces of RVT Loci in the Monster Tower

With the results developed so far in this chapter we can begin to discuss the geometric
structure of points of a given RVT code word locus (α) ⊂ M(n). Let us start with a result
that will help guide us to a more robust understanding of the points lying in (α)

Proposition 19. Let W be a critical code word with a single critical block corresponding
to Γ = ⟨p,m⟩, with p > 2. Also suppose that Γ ̸= ⟨3, 4⟩ or ⟨3, 5⟩. If m ̸≡ −1 (mod p) and
m ̸= p+1, there is a hypersurface Σ ⊂ (WRR) defined by the condition that a plane curve
germ γ ∈ Pl(Σ), if and only if p +m + 1 /∈ Λ, the value set of γ. If m ≡ −1 (mod p) or
m = p + 1, then there is a hypersurface of points Σ ⊂ (WRRR) defined by the condition
that γ ∈ Pl(Σ) if and only if p+m+ 2 /∈ Λ.

Proof. Suppose that we are in the first case, where m ̸≡ −1 (mod p) and m ̸= p+1. Then
we have that m+ p+ 1 /∈ Γ. Now take any u ∈ (WRR) and consider that the analytic jet
identification number of the point u is given by m+ 1 (see Theorem 10). Therefore every
γ ∈ Pl(u) has the same m+ 1 jet up to reparameterization.

From 7, any two points in (WRR) are a-equivalent if and only if they have analytically
equivalent m+1-jets. Since γ ∈ Pl(u), we must have that γ has code word W , and therefore
is analytically equivalent to a curve germ of the form γ̃ = (tp, tm+atm+1+h.o.t.). Therefore
there is some ũ ∈ (WRR) such that u is a-equivalent to ũ and γ̃ ∈ Pl(ũ). Note further
that if γ̃ ∈ Pl(ũ), then so must (tp, tm + atm+1) as these two curve germs clearly have the
same m+ 1-jet.

It follows that any point u ∈ (WRR) has a curve germ γ ∈ Pl(u) that is a-equivalent
to the curve γ̃ = (tp, tm + atm+1). A quick check shows that if a ̸= 0, then m+ p+ 1 ∈ Λ,
and if a = 0 then m + p + 1 /∈ Λ. It is also clear that for a general nonzero a, the curve
(tp, tm + atm+1) specializes to the quasi-homogeneous curve (tp, tm), i.e. the case where
a = 0.

Finally we have that (tp, tm + atm+1), with a ̸= 0, is a-equivalent to the curve (tp, tm +
tm+1) by the normal form theorem of Hefez and Hernandes in [13]. Thus all points u ∈
(WRR) that have a γ ∈ Pl withm+p+1 ∈ Λ must form an open and dense set, with closure
all of (WRR). We also have that a = 0 is a closed condition. Therefore γ ∈ Pl(Σ) if and
only if a = 0 for some analytically equivalent plane curve germ, if and only if p+m+1 /∈ Λ.

If on the other hand we have that m ≡ −1 (mod p) or m = p+1, then m+p+1 ∈ Γ and
so we must go one step higher to (WRRR). At this point the proof is nearly identical to
that given above, but instead we work with (tp, tm+atm+2). This completes our proof.

We can continue inductively up the Monster Tower and consider the word WRq for
q > 2 or 3 depending on the congruency of m modulo p. Note that if u ∈ (WRq) for q > 2,
such that πq−2(u) ∈ Σ, then u itself sits on a hypersurface of (WRq) defined bym+p+1 /∈ Λ
for any γ ∈ Pl(u). This is due to the fact that we always have Pl(u) ⊆ Pl(π(u)) if q > 2.
Let us call this set of points Σq−2. Similarly for the case where we need to consider q > 3.
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In general it becomes increasingly difficult to state a clean proposition about the struc-
ture as we go up higher in the Tower. One can imagine that along these hypersurfaces, we
find other “hypersurfaces”, or codimension 1 sets of points that are again determined by
whether or not the next possible minimum value of Λ \ Γ∗ is in fact in Λ or not. Let us
illustrate this with an example.

Example 15. Let us consider the case where Γ = ⟨4, 9⟩. This corresponds to the word
W = RRV TT. We then have that Σ ⊂ (RRV TTRR) is characterized by γ ∈ Pl(Σ) if and
only if 14 /∈ Λ. Now suppose we have that u ∈ (RRV TTRRR) such that π(u) ∈ Σ. We
therefore have that for any γ ∈ Pl(u), m+ p+ 1 /∈ Γ.

From here we ask if p+m+ 2 = 15 ∈ Λ. If so then γ must be a-equivalent to (t4, t9 +
at11 + h.o.t.). A similar argument to the above proposition holds and we can see there is
an open and dense set S ⊂ Σ1 defined by γ ∈ Pl(S) if and only if 15 ∈ Λ. It follows that
the complement of this set, i.e. the set defined by 14, 15 /∈ Λ must have codimension 1.

We can also consider the case where we in fact have that p + m + 1 ∈ Λ for our set
Pl(u). If this is the case, we may encounter more structure above depending on the code
word W . Let us illustrate this with another example

Example 16. Again take the wordW = RRV TT and consider a point u ∈ (RRV TTRRR)
such that π(u) /∈ Σ. Thus 14 ∈ Λ and we have that any γ ∈ Pl(u) has jet a-equivalent to a
jet of the form (t4, t9 + t10 + at11). From the table of Hefez and Hernandez in [14] we have
that if a = 19/18, then 19 /∈ Λ, and otherwise it is. It is clear that the other curve germs
with a ̸= 19/18 then specialize to (t4, t9 + t10 + 19

18 t
11).

By similar argument, we must have a closed set of points that are defined by the
condition that u is in this set if and only if all 19 /∈ Λ for all γ ∈ Pl(u)

In general one would need to algorithmically find these different sets of points, and they
are very dependent on the p and m that we are given. One can also say something similar
about hypersurfaces and the structure of points in the case where Γ is not coprime. This
requires the use of semiroots and a bit more work, of which some small steps have been
taken near the end of the following chapter.

Overall we find that in the case where there are two critical blocks, and n2 > 2 (see
Definition 31), there is a similar hypersurface of points on (WRR). The defining quality of
this hypersurface is a bit more involved to state, and depends on the essential exponents of
the curve. We conjecture that this is the case in general for an arbitrary number of critical
blocks with ng > 2.

In the following section we give our main result of the paper, which involves the generic
set of points on the locus (WRp−1+q) for W critical, with one critical block, and q ≥ 0.
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3.7 The Generic Points of an RVT Locus

This section is devoted to stating the main result of this work. We would like to give a
complete characterization of the generic points of the locus of a given critical code word
extended by a sufficient number of R’s. We recall Theorem 12, which allows us to consider
the generic points of WRp−1+q where W is critical, with one critical block, and q ≥ 0. We
now state our main theorem.

Theorem 15. Let W be a critical RVT code word with one critical block and corresponding
semigroup Γ = ⟨p,m⟩. Let u ∈ (WRp−1+q) where q ≥ 0. Then u is a generic point of
(WRp−1+q) if and only if every plane curve germ γ ∈ Pl(πq(u)) has generic value set Λgen

given by the recursive formula in Theorem 18.

Proof. This theorem is a more precise restatement of Theorem 12, and a result of Theorem
18, which we prove in the next chapter. Indeed we have that since πq(u) ∈ (WRp−1), then
Theorem 12 applies. In that case we only need to find one γ ∈ Pl(πq(u)) with generic value
set that is given by the recursive formula in 18.

To see examples of how one computes recursively the generic value set of a generic point
of the Locus (WRp−1+q), see the following chapter, particularly Section 4.1.4.

One can ask if there is a precise minimum bound on the level in the Monster Tower
we need to go to for the result of Theorem 12 to hold. Delorme in [10] gives us an upper
bound of p − 1 R’s after our last critical letter in W . We speculate that it is in fact less
than this, and that there is a precise number of R’s that one needs to add to W for the
results of Theorem 12 to hold.

This exact number is sum of the number of “jumps” one must take in the recursive
formula in Theorem 18, that is the difference between the ui and the gi in the theorem.
We will leave this result for later work.

This concludes our section and our chapter on value sets of points in the Monster Tower.
We look forward to our next chapter, where we give a procedure for obtaining all value
sets associated to any coprime Γ. We will also, of course, recursively compute the minimal
generators of the generic value set of and given corpime Γ. Lastly we will explore some
results for value sets of plane curve germs that have a Γ that is not coprime.

55



Chapter 4

Value Sets of Analytic Curve
Germs

In this chapter we wish first to provide rules for what we will call a coordinated Mancala
game. Every outcome of this game will correspond to a value set of an analytic plane
curve germ with a two generator semigroup. We will then give a recursive formula for
the minimal generators of the value set that corresponds to the minimal Mancala game.
We will show through Delorme’s algorithm in [10] that this minimal coordinated game
corresponds to the generic value set of a topological class of plane curve germs with a 2
generator semigroup.

From there we will begin to explore value sets of plane curve germs with semigroups
that have 3 or more minimal generators. In this part of the section we will partially
describe the equi-singular classes of plane branches that have only one value set associated
to them using what is known as semiroots of the curve (see [1]). Finally, we will attempt
to formulate some sort of converse to the latter, where we show that certain equi-singular
classes must have more than one values set associated to them.

We start by defining how to play the coordinated Manacala game for what we call the
coprime case, and prove that every game leads to a value set of a curve that has a two
generator semigroup.

4.1 Coordinated Mancala for the Two Generator Semigroup

In the classic Mancala game, played in many countries around the world, there is a rect-
angular board with small bins carved into it. These bins usually appear in two columns
and multiple rows. In each of these bins one places a number of beads or stones, and the
game goes on by players picking up beads in bins and distributing them throughout the
other bins. There are, of course, rules attached as to how one may pick up the beads and
distribute them.
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In order to compute a value set Λ of a singular plane curve germ with semigroup Γ, we
will give a set of rules for what we call a coordinated Mancala game. This game can be
played for a general equi-singularity class represented by a Γ with any number of minimal
generators. However, if we take a Γ generated by more than 2 elements, we find that not
every Mancala game leads to a value set of a plane curve germ. On the other hand if we
restrict ourselves to Γ = ⟨p,m⟩, then we can prove, thanks to Delorme in [11] and Almirón
in [3], that a Γ-semimodule belongs to some plane curve germ if and only if there is a
coordinated Mancala game that produces this semimodule.

The author would like to acknowledge Gary Kennedy in this work, who has been in-
strumental in helping develop the rules of the coordinated Mancala game. This work could
not have been completed without his input and creativity.

4.1.1 The Rules of the Game:

We now present the game for the two generator semigroup Γ =< p,m >.
Each turn of the game begins with a µ×k matrix whose entries are 0 and 1. The matrix

represents the present state of the game. 1s correspond to filled bins and 0s to empty bins
in Mancala. The turn either produces a µ × (k + 1) matrix of this same type or calls the
game over.

The rows of the matrices are labelled by the integers i = 0, 1, . . . , µ− 1. The columns
are to be identified with subsets of the integers {0, 1, . . . , µ − 1}. The column Ci can be
thought of as a map {0, 1, . . . , µ− 1} → {0, 1} and as such it represents the characteristic
function of its corresponding subset of {0, 1, . . . , µ− 1}.

Using the identification of columns Cj with subsets, write

min(Cj) = λj .

Thus λj is the smallest filled bin of column Cj . When the game is over, the λj will be the
generators of the desired semi-module.

Setting up the game board: We start off with two columns C−1 and C0 having
associated minima λ−1 = p, λ0 = m. C−1 corresponds to the subset (p+Γ)∩ [0, µ− 1] and
C0 to the subset (m+Γ)∩ [0, µ−1]. The notation [a, b] means the closed interval a ≤ t ≤ b
so this act of intersecting a set of integers with [0, µ− 1] is just a way of truncating it by
deleting from it all integers bigger than the conductor µ. So the initial matrix for our game
board is a µ × 2 matrix of 1s and 0s. These two columns are placed next to each other,
rows aligned, to form the initial game board. See Example 17 and figure 4.1

Taking a Turn: After the ith turn we have i + 2 columns C−1, C0, . . . , Ci−1. We
continue to use the symbol Cj for its associated subset of {0, . . . , µ− 1}, the subset whose
characteristic function is the column vector Cj . A single turn involves three steps. The
first of these steps concerns finding collisions. By a “collision” of two columns we mean an
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element lying in the intersection of their corresponding subsets, so a bin having two beans
in it.

1. Find the minimal collision, ui−1, amongst the columns:

ui−1 := min(
⋃
j ̸=k

(Cj ∩ Ck)).

This integer ui−1 labels the smallest row having two beans in its bin. See figure 4.1
where this is row 13, i.e u0 = 13, for the first move. We will see later on that the
minimal collision occurs with the last column Ci−1 so that ui−1 = min(Cj ∩Ci−1) for
some j < i− 1. We assume this fact for now.

2. Remove the bead in the bin ui−1 from column Ci−1, along with all beads in those of its
bins labelled by integers in Γ+ui−1. In other words, replace Ci−1 by Ci−1\(ui−1+Γ).
This will form our new column relabeled as Ci−1.

3. Choose any value λi > ui−1 which is not in any of the columns. That is, select some
integer [ui−1, µ− 1] \ (∪−1≤j≤i−1Cj). Form the new column:

Ci = (Γ + λi) ∩ [0, µ− 1].

There is an alternate choice here: set λi = ∞. This signifies that the game is over. We
stop the game with the columns C−1, C0, . . . , Ci−1, this Ci−1 being our just-modified
last column from the previous step.

Game Over. It could be that there are no collisions amongst the i + 1 columns we
have at the beginning of our turn. In this case we declare the game over and stop with
the columns we started with. It could also be that there are no λi available left to choose
besides λi = ∞. (In other words, we might have that [ui−1 + 1, µ − 1] ∩ (∪−1≤j≤i−1Cj)
is empty.) In that case we have to choose λi = ∞ and declare the game over as per the
alternate choice is step 3 above.

This completes the description of the game and its rules.
The game stops in at most min(p− 2, µ− 1− (p+m)) moves, since the λi are strictly

increasing integers in [p+m,µ− 1] and they must represent distinct classes modulo p.

Move 1 is always the same.

Move 1: The first collision occurs at u0 = m + p. Note that m + p ∈ C−1 ∩ C0. We
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leave the reader to verify that there are no collisions between C0 and C−1 smaller than
m+ p.

We now choose any λ1 > u0 such that λ1 /∈ Γ∗ since C−1 ∪ C0 = Γ∗ ∩ [0, µ − 1].
Alternatively, one may call (i.e. end) the game here by declaring that λ1 = ∞. This
completes the first move.

Let us now proceed with an example to illustrate how this coordinated Mancala game
works.

Example 17. Take Γ = ⟨4, 9⟩. We recall that µ = 24 in this case, and so we have 2 columns
with 23 bins each for move 0. In column C−1 we have a bead in each bin with value in
(Γ+4)∩ [1, . . . , F ], and in C0 we have (Γ+9)∩ [1, . . . , F ] (see figure 4.1). This implies our
u0 = 13. We then choose a λ1. We have that the set of gaps in Γ∗ that are greater than
13 are given by {14, 15, 19, 23}. Let us play this game by choosing λ1 := 14. We now have
C−1 is unchanged C0 = (Γ + 9) \ (Γ + 13) ∩ [1, . . . , F ] and C1 := (Γ + 14) ∩ [1, . . . , F ].

We have now completed move 1 and are ready for move 2. We find that

u1 := min(C0 ∩ C1) = 18.

The only row of bins that does not have a bead in it above 18 in our three columns is
the row of bins labeled 19. Let us choose 19 as our λ2. This will complete the game, as
there are now no gaps above 18. We then have C1 = (Γ + 14) \ (Γ + 18) ∩ [1, . . . , F ] and
C2 = (Γ+19)∩ [1, . . . , F ]. This concludes our coordinated Mancala game for this example.
Note that we could have also chosen to throw the bead in bin 19 in our right most column
to ∞. Note further that any choice of λ1 other than 14 would have immediately ended
the game, since if we choose 15 instead, then 19 and 23 are automatically in C2 by the
coordinated move. Below is a figure that shows the columns generated after each move.

4.1.2 Coordinated Mancala in Relation to Plane Curve Germs:

Now that we have described how to play the game, we would like to relate it to a plane
curve germ (x(t), y(t)) that has a two generator semigroup Γ = ⟨p,m⟩. As before we define
v(dx) := v(x) = p and v(dy) := v(y) = m. Then we note that columns C−1 and C0

are precisely the valuations of monomial one-forms on the curve given by v(xiyjdx) and
v(xkyldy) respectively.

The nth move produces a new rightmost column Cn with the λn = min(Cn). If we can
show there is a one-form ωn on the plane curve germ such that v(ωn) = λn, then our new
column Cn is precisely the set of valuations given by v(xiyjωn) up to the conductor of Γ.
Note that only needing monomials is specific to the fact that Γ = ⟨p,m⟩ so that every
integer in Γ is given by v(xiyj) for some i, j ≥ 0.

The question now becomes, for any choice of λn, is there a plane curve germ that has
on it the one-form ωn? The answer is in fact, yes! To show this is the case, we will need
to define what an increasing Γ-semimodule is. This will require a bit of notation that was
first presented by Delorme in [10] and later in [11].
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Figure 4.1: The columns generated by the game played in Example 17.

Definition 35. Let λ−1 < λ0 < λ1 < · · · < λN be the minimal generators of a Γ-
semimodule Λ. Define the set

Ei :=
⋃

−1≤j≤i

(Γ + λj) for − 1 ≤ i ≤ N.

We also define
ui := min ((Γ + λi) ∩ Ei−1) for 0 ≤ i ≤ N.

We have in general that Λ = En and λi /∈ Ei−1, for 0 ≤ i ≤ N. In the case of the
Mancala game we are interested in setting λ−1 = p, λ0 = m, and this gives u0 = m + p.
We will eventually show that these ui are precisely what we called the minimum collisions
in the game. We define what it means to be an increasing Γ-semimodule, which will help
us attach a curve to a coordinated Mancala game.

Definition 36. Let λ−1 < λ0 < λ1 < · · · < λN be the minimal generators of a Γ-
semimodule Λ, and the Ei and ui be given as above. Then we call Λ an increasing Γ-
semimodule if λi−1 < ui−1 < λi for all 1 ≤ i ≤ N.

As it turns out, for every increasing Γ-semimodule Λ for the two generator case for
which λ−1 = p and λ0 = m there exists a corresponding plane curve germ with value set
given precisely by Λ. This result can be found as the main result in [3] and is summarized
as follows.
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Theorem 16. (P. Almirón [3]) Let Γ = ⟨p,m⟩, and Λ a Γ-semimodule minimally generated
by p < m < λ1 < · · · < λN . Then there exists a plane curve germ with semigroup Γ and
value set Λ if and only Λ is an increasing Γ-semimodule.

There is a notion of a Mancala game that is not coordinated. If we play this game we
often find that no plane curve germ can achieve the value set of the resulting game. This is
due to the fact that we do not achieve an increasing semimodule. We therefore do not go
any further in to detail about a general Mancala game in this work that is not coordinated.

On the other hand given a semigroup Γ = ⟨p,m⟩ and taking Theorem 16 into account,
if we show that playing every coordinated Mancala game in the coprime case gives us every
possible increasing Γ-semimodule such that λ−1 = p, and λ0 = m, then we have effectively
shown that every value set Λ associated to an equi-singularity class given by Γ is the result
of some coordinated Mancala game. To do this, we will need a couple of lemmas provided
to us by Delorme in [11].

Lemma 3. (Delorme, Lemma 10 in [11]) Let r and q be two elements of Z such that
|r − q| /∈ Γ. Set

u = inf{(Γ + r) ∩ (Γ + q)} and ū = u+ c−mp.

Furthermore set v = r+ q+mp−u and v̄ = v+ c−mp. Then the following relations hold:

1. (Γ + r) ∩ (Γ + q) = (Γ + u) ∪ (Γ + v),

2. (Γ + r) ∪ (Γ + q) = (Γ + u−mp) ∩ (Γ + v −mp),

3. N+ v̄ ⊂ (Γ + r) ∪ (Γ + q),

4. (N+ ū) ∩ ((Γ + r) ∪ (Γ + q)) = (Γ + v −mp) ∩ (Γ + u).

We can calculate u and v from r and q as follows: if |r− q| /∈ Γ then there exists one, and
only one, pair (α, β) ∈]0, p[×]0,m[ such that q − r = αm − βp. Then u and v are, up to
order, the two numbers r + αm and q + (p− α)m.

The other lemma of Delorme that we now state and later make use of will give us the
ability to greatly simplify our arguments.

Lemma 4. (Delorme, Lemma 12 in [11]) For any integer i ∈ {0, . . . , N − 1}, with ūi =
ui + c−mp, there exists a number ci ∈ Z such that

(N+ ūi) ∩ Ei = (N+ ūi) ∩ (Γ + ci).
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Delorme provides a recursive formula for ci. Define c0 = 0. Then

ci+1 = ci + λi+1 − ui+1. (4.1)

We are now in a position to prove that every increasing Γ-semimodule is the result of
a coordinated Mancala game, and therefore any value set of any plane curve germ with
semigroup Γ is the result of a coordinated Mancala game. We state and prove the theorem.

Theorem 17. Let Γ = ⟨p,m⟩ be a semigroup and Λ a Γ-semimodule minimally generated
by p < m < λ1 < · · · < λN . Then Λ is the value set of some plane curve germ in the
equi-singularity class corresponding to Γ if and only if Λ is the result of some coordinated
Mancala game.

Proof. Let us form a recursive proof based on the move of the game we are on. For any
set of nonnegative integers S, let us denote Sk := S ∩ [0, . . . , k], It is clear in move 0 that
we have C−1 ∪ C0 = (E0)F = ((Γ + p) ∪ (Γ +m))F = Γ∗

F .

Move 1: For move 1 we have m < u0 < λ1, and the minimum collision u0 = p + m,
as we have already noted before. Furthermore we must show that our minimum collision
for move 1 is indeed the u1 given in Definition 35, so that λ1 < u1.

By rules of the game, in move 1 we are required to form the column C1 by choosing a
λ1 > u0, or send λ1 → ∞. If λ1 < ∞, we claim that in general that once we have completed
step 2 for move 1 (see Step 2 in Section 4.1.1), we will have C−1 ∩C0 = ∅. To see why this
is the case, consider that by Lemma 3 with r = p, q = m we have the equality

(Γ + p) ∩ (Γ +m) = (Γ +m+ p) ∪ (Γ +mp) (4.2)

After step 2 for move 1, C0 has beads removed from all bins with values in Γ + m + p.
Furthermore mp > µ > F , so our claim that C−1 ∩ C0 = ∅ holds. Note all these elements
that we removed from C0 remain present in C−1 by Equation 4.2 above.

We are therefore looking for a minimum collision between C1 and Ci where i ∈ {−1, 0}.
By definition and by 4.2 we have C1 = (Γ + λ1)F , and therefore we are looking for
min(C1∩Ci) = min((Γ+λ1)∩Γ∗) = u1, as in Definition 35. Since λ1 /∈ Ci, and min(Γ+λ1) =
λ1 we must have that λ1 < u1 as desired. Finally we note that C−1 ∪ C0 ∪ C1 = (E1)F .
We are now in position to make our general recursive move.

Move i, 1 < i ≤ N : Suppose that we have made i − 1 moves in our Mancala game,
and we are on move i. Further suppose as in move 1 that at each move j we have formed
our new rightmost column by removing beads from the previous rightmost column, so that

Cj = (Γ + λj)F λj /∈ Ej−1.

Now suppose we are on move i so that Ci−1 = (Γ + λi−1)F . Furthermore we may assume
that the inequality λj−1 < uj−1 < λj for all 1 ≤ j ≤ i − 1 holds, and that the uj =
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min ((Γ + λj) ∩ Ej−1) are indeed the minimal collisions defined in the Mancala game, and
simultaneously in Delorme’s definition. Finally we conclude by our recursion that

j⋃
k=−1

Ck = (Ej)F , ∀ 0 ≤ j ≤ i− 1

and that min(Cj ∩ Ck) > c(Ei−1), or empty, whenever −1 ≤ j < k < i + 1. Here c(Ei−1)
is the conductor of the Γ-semimodule Ei−1. Thus we may assume we are looking for a
collision between Ci−1 and Cj , with −1 ≤ j < i−1. We then have for this particular j that

ui−1 := min((Γ + λi−1) ∩ Ei−2) = min(Ci−1 ∩
( i−2⋃

k=−1

Ck

)
) = min(Ci−1 ∩ Cj).

We are ready to make the ith move, and note that we are allowed to choose any λi > ui−1,
such that λi /∈ ∪i−1

k=−1Ck equivalently λi /∈ Ei−1, provided it exists. Assuming that it does,
let us suppose that we arbitrarily choose such a λi.

We show that any choice of our λi still gives us the increasing semimodule condition.
That is, once we have made the ith move, and look amongst the new columns for the
minimal collision of beads, we will find that our minimal collision is greater than λi and is
again given by ui as in definition 35. Hence we will maintain the property that λi < ui <
λi+1, provided i < N.

Even before we have chosen our λi > ui−1 such that λi /∈ Ei−1, we have recursively
that ci−1 = ci−2 + λi−1 − ui−1 from Lemma 4. We also have by definition of the rules
of the game that the beads in Cj will remain untouched for all −1 ≤ j ≤ i − 2. Thus
amongst these columns we can be sure that min(Cj ∩ Ck) > c(Ei) for all 1 ≤ j < k ≤ i.
Our concern is with column Ci−1 We would like to show that once we have completed Step
2 of move i, that is we have removed the beads in Ci−1 that are also in Γ + ui−1, we have
min(Ci−1 ∩ Cj) > c(Ei), for −1 ≤ j < i − 1. If this is so, then we can be sure that our
minimal collision of beads involves Ci = (Γ+λi)F , or is beyond the conductor c(Ei), which
would conclude our game.

Let us make use of Delorme’s lemmas to see why this the case. Suppose we have not
yet removed the beads from Ci−1. We note that since λi−1 > ui−2 > ūi−2, then by our
recursion so far and Lemmas 1, 3 and 4

Ci−1 ∩
( i−2⋃

k=−1

Ck

)
= ((Γ + λi−1) ∩ Ei−2)F (4.3)

= ((Γ + λi−1) ∩ (Γ + ci−2))F (4.4)

= ((Γ + ui−1) ∪ (Γ + ci−1 +mp))F . (4.5)
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Therefore all bead collisions between Ci−1 and the other columns are given by the union
above. Finally by Lemma 3.3 we have that

(N0 + ci−1 +mp)F ⊂
i−1⋃

k=−1

Ck = (Ei−1)F ,

so that c(Ei−1) ≤ ci−1 +mp.
Let us now take Step 2 of move i, and remove all of the beads in Ci−1 that are also in

Γ + ui−1. From the equalities above, we see that by removing these beads in Ci−1, we are
removing all collisions of beads between Ci−1 and all other columns Cj , j < i− 1, that of
value less than c(Ei−1), as we had wanted to show. We therefore have that if there are any
minimal collisions of beads that are less that c(Ei), they must occur between the rightmost
column Ci and some other column Cj , j < i. This also implies ui = min((Γ + λi) ∩ Ei−1)
is our minimum collision of beads for Step 1 of move i+ 1.

This shows recursively that any coordinated Mancala game will provide us with an
increasing Γ-semimodule in the coprime case. By the main result of Almirón in [3] (see
also Proposition 20 below) it must be that there exists a plane curve germ with value set
generated by the resulting minimum beads in each column of our game. It is rather clear
that every increasing value set can be achieved by playing all the Mancala games in the
coprime case. Therefore, since every plane curve germ produces some increasing value set
whenever its semigroup Γ is coprime, then we must have that one of the games results in
this value set. This proves both directions of the theorem, and concludes our proof.

Now that we have proved our theorem we may ask: given a result of a Mancala game,
how does one find a plane curve germ that has this given value set? Similarly we could ask:
given a plane curve germ, how does one use the Mancala game to determine the value set.
The latter question is a bit more simple than the former. Given an analytic plane curve
germ, one can assume coordinates that give us a normal form for its parameterization.
From there we can use the Zariski one-form to get the first generator, λ1.

After this we can use the columns to indicate which monomial one-forms we should
try multiplying the Zariski one-form by to get our minimum collision of beads, u1. From
there it is a matter of computation to determine how far to throw the u1 bead and all of
the other beads in Γ + u1, to achieve the appropriate λ2. The process continues, and we
will always use our newly found one-form ωi with v(ωi) = λi at each step according to our
game.

Let us show how one can achieve a curve germ given an outcome of Coordinated Mancala
game.

4.1.3 A plane curve germ for each Mancala game

For the sake of self containment, we give a proof that will also provide an algorithm to
obtain a plane curve germ with value set Λ generated by the minimal beads in each column
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of a given coordinated Mancala game. Note that Almirón has proved the existence of such
a plane curve germ in [3], and so here we present a proof and algorithm that, for the author,
is more related to the ideas in the coordinated Mancala game. To complete our proof we
will need a lemma of Delorme:

Lemma 5. (Delorme Lemma 12 part (b) in [11]) Let γ be a plane curve germ with semi-
group Γ and value set Λ generated by λ−1 < λ0 < λ1 < · · · < λN , with v(ωj) = λj. Then
there is a relation

ωl+1 =
∑

−1≤j≤l

Fj,lωj

where the Fj,l ∈ O, and ul = v(Fl,l) + λl = inf{v(Fj,l) + λj}.

This lemma helps us understand the structure of one-forms that have valuations that
minimally generate Λ. We see that if we can find such a γ then it must adhere to the
results in the lemma. We now state and prove our proposition.

Proposition 20. Let the minimum values in each column of a completed coordinated
Mancala game be given by p < m < λ1 < · · · < λN , which, as minimal generators produce
an increasing Γ-semimodule Λ, with Γ = ⟨p,m⟩. Then there exists a plane curve germ γ
that has value set Λ.

Proof. We will prove this by recursively generating one forms ωl with v(ωl) = λl. We will
use undetermined coefficients on the parameterization of y(t), and at each step in the
recursion we will determine a specific subset of these coefficients. At each step only higher
order coefficients compared to the previous step will need to be determined. Each recursive
step reflects a move in the coordinated Mancala game. This proof will also provide a clear
algorithm for obtaining such a curve germ. We start with the plane curve germ

γ : x = tp, y = tm +
∑
i>m

ait
i,

where the ai are yet to be determined. We see that regardless of the ai, v(dx) = p and
v(dy) = m. Therefore we set ω−1 = dx and ω0 = dy. We note that this gives u0 = m+ p,
reflecting the 0th move in the coordinated game.

Forming ω1: Step 1 of the recursion involves the Zariski one-form ω1 = pxdy − mydx.
We want to choose the ai so that v(ω1) = λ1. We use the Zariski one-form because xdy
and ydx have the minimum possible collision of valuations of one-forms. This follows along
nicely with lemma 5. Note that pulling back ω1 gives

ω1 =
∑
i>m

pai(i−m)ti+p−1dt
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so that v(ω1) is i+p where i is the smallest integer such that ai ̸= 0. In order to achieve λ1

in its value set y(t) must have the form y(t) = tm + atλ1−p +
∑

i>λ1−p ait
i, a ̸= 0 A scaling

of y and t converts a ̸= 0 to 1 so that

y(t) = tm + aλ1−pt
λ1−p +

∑
i>λ1−p

ait
i.

with
ω1 = p(λ1 − p−m)aλ1−pt

λ1−1dt+
∑

i>λ1−p

pai(i−m)ti+p−1dt,

We have determined λ1 − (m + p) = λ1 − u0 coefficients in forming ω1. Namely we set
am+1 = am+2 = . . . = aλ1−p−1 = 0 and we must insist that aλ1−p ̸= 0. Let us fix aλ−p ̸= 0.
Note that we have determined precisely j1 := λ1 − u0 coefficients for y(t).

Note also that we can give a weight to each coefficient based off of its index. We will
use the weighting

w(ai) := i−m, for all i ≥ m.

We see that the coefficients of ω1 are homogeneously weighted.
Now let us move on to forming ω2, as this will illustrate the recursive method by which

we choose the ai in a less trivial way than for ω1.

Forming ω2: Suppose now that N > 1, i.e. that λ1 does not generate Λ over Γ, here is how
we will construct ω2 with v(ω2) = λ2. We note that since λ1 /∈ Γ, then λ1 = pm−α1p−β1m
for some 1 ≤ α1 < m − 1 and 1 ≤ β1 < p − 1. We have from our coordinated Mancala
game that u1 ∈ Γ as it must be a collision between valuations of monomial one-forms, and
monomials times ω1. We thus require some minimal α ∈ Γ such that λ1 + α ∈ Γ. This is
the same as determining min{α1p, β1m}.

Let us first assume that min{α1p, β1m} = a1p. We then have u1 = pm− β1m, and

v(xα1ω1) = pm− β1m = v(d(yp−β1)).

We have that

yp−β1 =tm(p−β1) + (p− β1)t
m(p−β1−1)

∑
i≥λ1−p

ait
i

+

(
p− β1

2

)
tm(p−β1−2)

( ∑
i≥λ1−p

ait
i
)2

+ . . .

· · ·+
( ∑

i≥λ1−p

ait
i
)p−β1

.
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We see that the second term in yp−β1 consists of only linear coefficients ai, while the rest of
the terms consist of nonlinear coefficients. Therefore, once we have collected all coefficients
of the same power of t, we will always have a linear term of maximal index. The rest of
the terms will be nonlinear with weights adding up to the weight of the maximally indexed
term.

This property of course holds when we take d(yp−β1) = (p − β1)y
p−β1−1ω0. We have

that the first nonzero term in xα1ω1 is p(λ1 − p − m)aλ1−pt
u1−1dt, and the first nonzero

term for d(yp−β1) is u1t
u1−1dt. Therefore it is clear that if we multiply d(yp−β1) by p(λ1 −

p−m)aλ1−p/u1, we will resolve the collision between the two one-forms. Notice here that
we have adjusted the weighting of each coefficient in (p − β1)y

p−β1−1ω0 by the weight of
aλ1−p. It is because of this that homogeneous weighting of the coefficients remains in tact
after we take the difference

xα1ω1 − (p(λ1 − p−m)aλ1−p/u1)d(y
p−β1). (4.6)

This implies that we have not accidentally cancelled out any of our undetermined coeffi-
cients, and that they still must appear in the same way as before. Namely we have that
each undetermined coefficient must show up in a power of t and there is a minimal power
of t for which this occurs. Because of the weighting of the coefficients, it must show up
linearly in this minimal power of t. We ultimately have this property: If aik first appears in
any coefficient for say tk in our difference in (4.6), then it will do so linearly. Furthermore
we must then have that aik+1 appears linearly in tk+1, and this is the first appearance for
aik+1 as well.

Examining ω1 we see that aλ−p+1 must appear linearly on the term tu1dt, which has
valuation u1+1. From our above paragraph we can see that there must exist some value of
aλ−p+1 that will allow us to maintain the valuation of u1 + 1 and a value of aλ−p+1 which
will force the valuation to be greater than u1 + 1. If we choose the latter value, we will
then have that aλ−p+2 appears linearly in the coefficient of tu1+1dt, and we may make the
same two choices.

This can continue until we have reached λ2. We also see that this can continue until
we have reached the conductor of our semimodule generated by our Mancala game. This
is important, as we do need to consider being able to form a curve that has this property
(i.e. the case where N = 1). Once we have chosen successively (and successfully) the
appropriate number of ai, which will be precisely j2 = λ2 − u1, we can write that

ω2 := xα1ω1 − (p(λ1 − p−m)aλ1−p/u1)d(y
p−β1).

Delorme’s Lemma shows us that if we have achieved the valuation λ2 using the above
difference, then we must have found our generating one-form, which makes it appropriate
to label it ω2. Indeed we have this whole time been working with a curve in the correct
equisingularity class regardless of the coefficients. This implies whatever coefficients we
choose, we will still achieve an increasing semimodule, and it is clear that we are achieving
the one generated by the Mancala game up to move 2.
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In the case where min{α1p, β1m} = β1m, we would need the forms yβ1ω1 and d(xm−α1)
instead. This argument requires a bit less, since x = tp and so we are just subtracting a
single term. We have also shown above that yk for any k > 0 has a particular form, so
that the same arguments hold in terms of preserving the homogeneous weighting of the
coefficients. Therefore similar results hold, and we are able to form our ω2 using a similar
difference.

This concludes our work on how to construct ω2. We now move on to the general
recursion, and assure the reader that there are no new ideas that are needed to construct
our desired one-forms.

General Recursive Step: For each 1 ≤ n ≤ N, define

jn := λn − un−1, and Jn =
n∑

k=1

jk.

Suppose that we have recursively formed ωj for −1 ≤ j ≤ n − 1, and therefore have
determined Jn−1 of the ai. We have by recursion that

ωj =

Jn−1+m+p∑
k=m+p

djkt
kdt+

∑
k>Jn−1+m+p

ujkt
kdt,

where the djk consist only of determined coefficients, and the ujk have undetermined coef-
ficients. Here all of the djk = 0 for i < λj − 1. If we denote the determined coefficients of
y(t) as di, then we can write at step n that

y(t) = tm +

Jn−1+m∑
i=m+1

dit
i +

∑
i>Jn−1+m

ait
i.

We have recursively that

ujk = rjkaik + Pjk(dm+1, . . . dJn−1+m+1, aJn−1+m+2, . . . aik−1),

Where rjk ̸= 0 a constant, Pjk is a weighted homogeneous polynomial in the determined
and undetermined coefficients with indices less that ik, and ik − m is the homogeneous
weight of all terms in ujk. Furthermore aik+1

= aik+1.
Let us now observe a few more consequences of our recursion. We may assume by

recursion that so far Delorme’s lemma 5 holds for all of our ωj . Since v(ωn−1) = λn−1 we
know already that there must exist a monomial xrys such that v(xrysωn−1) = un−1, and
xrys has minimal valuation in the sense of lemma 5. It follows as well that because un−1

is the minimal collision at move n− 1, there must exist a ωj such that

v(Fjωj) = v(xrysωn−1),
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where Fj ∈ O, and can usually be considered a monomial. Therefore there is some linear
combination of the two such that

v(axrysωn−1 − bFjωj) > un−1.

This linear combination must maintain the property that each coefficient has weighted
homogeneous terms, and therefore one of them must be linear and minimal. The first
nonzero term in axrysωn−1−bFjωj must therefore have the aJn−1+m+1 show up linearly, and
all other terms are comprised of determined coefficients. The next coefficient of axrysωn−1−
bFjωj will have aJn−1+m+2 show up linearly, and all other terms will be comprised of either
determined coefficients, or lower aJn−1+m+1.

This argument continues on for each coefficient, and so it is possible to give this one-
form any valuation we so choose greater than un−1 by making a certain choice of the ai.
We start with aJn−1+m+1 and determine the higher indices recursively until we have chosen
exactly jn of them, and so that we can now call

ωn = axrysωn−1 − bFjωj ,

with v(ωn) = λn. We continue inductively until we reach λN and from there we choose
the ai up until v(ωn+1) > c(Λ), and set all other ai = 0. This will guarantee that we have
found a plane curve γ with the correct value set, completing the proof.

We note that there are other methods of finding a plane curve germ with that has a
certain given Λ. We note that there are inevitably some free choices to make in terms of the
ai, especially if the ai have i ∈ Γ− p. It is likely the case that in our actual computations
we would start out with only p undetermined coefficients for y(t) and then add more if
needed. We could also remove many of the terms in each ωj at each step n if the terms
have powers that are already in the Γ-semimodule generated by the λj for j ≤ n. Then
there are quite a few less coefficients to determine, as setting them to zero is just as good
as leaving them as free coefficients.

Now that we have proved our proposition, and in doing so provided an algorithm to
obtain the curve, let us see an example of how this works.

Example 18. Example of Λ to a curve

This concludes our section on coordinated Mancala for the coprime case. We now devote
a section to an important coordinated Mancala game for a coprime semigroup that results
in the generic value set of an equis-singularity class of plane curve germs. In this section
we will be able to give a recursive formula for the minimal generators of this value set, or
Mancala game. This new formula developed in part by Lee McEwan (see [17]) will help
complete the proof of the main result of this work.
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4.1.4 The Minimal Mancala Game and the Generic Value Set for coprime
Γ.

There is one particular game of interest to us that we will call the minimal coordinated
Mancala game. Let us first define what this means.

Definition 37. For a pair of coprime integers p,m we say the minimal coordinated Man-
cala game is the game played by choosing the λi = gi where

gi := min((N0 + ui−1) ∪ Ec
i−1).

That is gi − ui−1 is the smallest it can possibly be so that gi /∈ Ei−1.

When we compare this to the generic algorithm in Delorme’s 1974 article [10], we see
immediately that this minimal Mancala game must produce the generic value set, denoted
Λgen, of a topological class of plane curve germs with Puiseux Characteristic (p;m). We
would like to know the outcome of the minimal Mancala game for a general pair of coprime
integers p < m. The first and second move of the minimal game is not that difficult to
compute. In general we have that if m ̸≡ −1 (mod p) and m ̸= p+ 1, then

g1 = p+m+ 1. (4.7)

Indeed u0 = m+ p, and we must have p+m+ 1 ̸∈ Γ. Otherwise there exist a, b ≥ 0 such
that (a− 1)p+ (b− 1)m = 1. One of these coefficients must be negative, so either a = 0 or
b = 0. In the first case m = p+1 and in the second case m = (a− 1)p− 1. In the excluded
cases we have that g1 = p+m+ 2.

The second move must come from choosing a g2 > u1 in a minimal way. This is not so
difficult since we must have u1 ∈ Γ. We then just need to look at gaps in Γ that are also
not in Γ + g1. We illustrate this with an example:

Example 19. Consider Γ = ⟨10, 23⟩. Since 23 = 2 · 10+ 3, we see by the last remark that
u0 = m + p = 33 and g1 = u0 + 1 = 34. To find u1 = g1 + γ, write out the elements of
Γ and observe that γ = 2m = 46 is the smallest element of Γ that satisfies the condition
g1 + γ ∈ E0 = Γ∗, whence u1 = 80. Then to find g2 ∈ (N+ u1) \E1, write out the first few
elements of Γ+ g1 to check that u1+1 is not in E1, so g2 = u1+1 = 81. Find u2 = g2+ γ2
by seeing that g2 +m = 104 = g1 + 7p ∈ E1 via direct inspection of E1, and no element γ
smaller than m exists in Γ∗ such that g2 + γ ∈ E1. One can continue in this way, but the
checking becomes harder as the sets Ei become more complicated.

In general the minimal Mancala game or equivalently the Delorme algorithm is rather
difficult to compute, as it is not clear how one immediately determines both the gi and the
ui at each step. In order to develop a recursive formula, and simplify the computations in
the minimal game, we make use of the ci in Lemma 4. Let us continue the minimal game
from the above example.
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Example 20. (continued from Example 19.) For Γ = ⟨10, 23⟩ we found u0 = 33, g1 = 34,
u1 = 80, and g2 = 81. In particular, u1 = g1 + 2m, so by Delorme’s formula c1 =
c0 + (g1 − u1) = −2m = −46. To find the smallest γ ∈ Γ such that u2 = g2 + γ ∈ E1, we
can instead test:

For which γ is g2 + γ ∈ (Γ + c1)? – that is, g2 + γ − c1 ∈ Γ? (4.8)

Since g2 − c1 + γ = 127 + γ, we see that γ = m, because it verifies the condition in
(4.8) and the only smaller values of γ are p and 2p, which both fail condition (4.8). Thus
u2 = g2 +m = 104. Then to compute g3 = u2 + r we replace the algorithm’s requirement
that r be the minimal positive integer such that u2 + r /∈ E2, with the condition u2 −
c2 + r /∈ Γ. Since u2 − c2 = u2 + m = 127, and 128 /∈ Γ, we find that r = 1 and
g3 = u2 + 1 = 105. One more cycle of calculation completes the algorithm: We now have
c2 = c1 + (g2 − u2) = −3m = −69, and we seek γ3 such that g3 − c2 + γ3 ∈ Γ. Thus γ3
is the smallest element of Γ such that 174 + γ3 ∈ Γ. Since 8m = 184 = 174 + p, we have
γ3 = p. So u3 = g3 + γ3 = 115. To find g4, we seek r such that u3 + r − c3 /∈ Γ. Since
u3 − c3 = 115 + 79 = 194, we check that 194 + r ∈ Γ for r = 1, 2 and 194 + 3 /∈ Γ. Thus
g4 = u3+3 = 118. The algorithm now ceases: g4− c3+ γ4 = 118+79+ γ4 = 197+ γ4 is in
Γ if γ4 = p = 10. But then u4 = g4 + γ4 = 128 and u4 − c4 = 217 is greater than µ = 198,
so no r > 0 exists satisfying u4 − c4 + r /∈ Γ.

We see that as we choose larger p, and m our work becomes more and more difficult.
It is now that we present a recursive formula to explicitly determine these gi. We will need
some definitions and preliminaries first.

Explicit calculation of the generators: preliminaries

We introduce the ingredients of our main result, which presents explicit formulas for the
generators of Λgen. Central to our calculation is the data provided by the Euclidean
algorithm applied to m and p. Let s be the number of steps in the Euclidean algorithm
for m and p, define p0 = p, and

m = k0p0 + p1 (4.9)

p0 = k1p1 + p2

p1 = k2p2 + p3
...

ps−2 = ks−1ps−1 + 1

where 1 < pi < pi−1 for 1 ≤ i ≤ s − 1. In accordance with the above, set ps = 1. The
number s is called the level of the semigroup. The numbers pi are the divisors and ki
are the quotients for the semigroup. Sometimes we refer to ps−1 as the final divisor. It is
natural to define ks = ps−1 and ps+1 = 0, so we may conveniently write ps−1 = ksps+ps+1.
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From this sequence we derive related numbers: Let(
A0 A1

B0 B1

)
=

(
0 1
1 k0

)
(4.10)

and for 1 ≤ i < s define (
Ai+1

Bi+1

)
=

(
Ai−1 Ai

Bi−1 Bi

)(
1
ki

)
. (4.11)

Then by induction we have

pi = (−1)iBip+ (−1)i−1Aim, 1 ≤ i ≤ s. (4.12)

In particular for i = s we have

1 = (−1)sBsp+ (−1)s−1Asm. (4.13)

The following simple induction will also be useful.

Lemma 6. For 1 ≤ j ≤ s,

p = Ajpj−1 +Aj−1pj (4.14)

m = Bjpj−1 +Bj−1pj (4.15)

The case i = s in the last lemma is particularly useful:

p = Asps−1 +As−1 and m = Bsps−1 +Bs−1. (4.16)

Recalling that the final divisor ps−1 is also ks, the last equations can be seen as an extension
of (4.11) if we take As+1 = p and Bs+1 = m. The equations (4.12), (4.11), and (4.16) are
central to the proof of the main theorem.

Following Delorme, we can represent generators in a standard form: Any element of
Λ \ Γ∗ can be written uniquely as

g = pm− am− bp (4.17)

where 0 < a < p and 0 < b < m.
In addition to the numbers already defined, we set ns := ps−1, and for 1 ≤ l ≤ s, denote

Nl =
∑s

j=l nj , and Ns+1 = ns+1 = 0, where we recursively define

nl =

{
0, if 2 | Nl+1 and nl+1 ̸= 0,

kl, if 2 ∤ Nl+1 or nl+1 = 0.
(4.18)

Note that ns is never zero, and it is impossible for two consecutive values of nl to be zero.
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Explicit calculation of the generators: Main Result

As always Γ is the semigroup generated by coprime integers p and m. The case where
p = 2 is trivial, and henceforth we assume p > 2.

Theorem 18. For 1 ≤ i ≤ N1 − 1 let

ui = gi + γi, and

gi+1 = ui + pj

where j ∈ [1, s] is determined by Nj+1 ≤ i ≤ Nj − 1 and

γi =


(Bj − 1)p if 2 ∤ j and 2 ∤ i,

p if 2 ∤ j and 2 | i,
(Aj − 1)m if 2 | j and 2 ∤ i,

m if 2 | j and 2 | i.

(4.19)

Then the generic Γ-semimodule Λgen is generated by g−1 = p, g0 = m, g1 = p+m+ 1,
and by

gi+1 = gi + γi + pj (4.20)

for 1 ≤ i ≤ N1 − 1.

Our notation agrees with that used in Delorme’s algorithm, and the generators pro-
duced by recursion (4.20) are minimal except in circumstances we now explain. Some
generators produced by Theorem 18 are not minimal in two situations: (a) The first in-
equality constraining i in the statement does not build in the stopping condition: “Stop
when ui − ci ≥ µ”. (b) It is possible for particular γi defined in the theorem to be zero.
This happens when k0 = 1 or k1 = 1. In Section 4.1.4 we identify non-minimal generators
produced by the recursion in this situation. Outside of this case, the correct stopping
point for i and thus the precise identification of the set G of minimal generators is given
in Corollary 3. The correct identification of G and |G| when k0 = 1 or k1 = 1 is given in
Section 4.1.4.

A general formula for the conductor of Λgen is given in Corollary 2.
In Section 4.1.4 we present worked-out examples, and in Section 4.1.4 relate our calcu-

lation to that of the (minimal) Tjurina number.

Proof of Theorem 18. First we recapitulate the algorithm of Delorme, relying heavily on
Lemma 4. Each generator is calculated in two steps: (1) From the last generator gi, a
“collision” ui = γi + gi is computed. It is the smallest value of the form γ + gi, γ ∈ Γ,
which belongs to Ei−1, the set generated by the previous generators {gj}j≤i−1 under the
action of Γ. (2) The next generator, gi+1, is found by taking the “minimal jump” from ui;
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that is, gi+1 = ui + ri where ri is the smallest positive integer r such that ui + r is not
in Ei. The calculations of ui and gi+1 are simplified by Lemma 4, which allows us to use
Γ + ci′ in the role of Ei′ (i

′ = i − 1 or i), where ci′ = ci′−1 + gi′ − ui′ and c0 = 0. This
reduces calculating ri to finding the least r > 0 satisfying ui − ci + r ̸∈ Γ, and similarly for
γi finding the least γ ∈ Γ such that γ + gi − ci−1 ∈ Γ.

We will need two levels of induction: on the index of the generator i, and on the level j of
the Euclidean Algorithm (the latter begins at j = s and decreases). The proof will focus on
the numbers gi, ui and ci. It follows from the recursive property of ci (see Lemma 4) and the
definition of γi that ci = −

∑i
a=1 γa. We first prove the base case (j = s) for 1 ≤ i ≤ ks−1.

Base Case j = s: We assume 2 ∤ s, since the calculations for s = (even) are exactly
parallel (we will however provide the equivalent intermediate expressions). By definition
c0 = 0, and so g1 − c0 = g1. Thus we seek the smallest γ1 ∈ Γ such that g1 + γ1 ∈ E0 = Γ∗.
This is simplified by expressing g1 − c0 in standard form (4.17). First note that by (4.13)
and 2 ∤ s

1 = Asm−Bsp. (4.21)

Because g1 is given by m+ p+ 1 (see (4.7)), and p = ksAs +As−1 by (4.16), we obtain

g1 − c0 = pm− ((ks − 1)As +As−1 − 1)m− (Bs − 1)p. (4.22)

Now compare the terms of (4.22). The inequality ks = ps−1 > 1 ensures

((ks − 1)As +As−1 − 1)m ≥ Asm > Bsp > (Bs − 1)p,

and so the minimal element in Γ to add to g1 must be γ1 = (Bs−1)p, as any smaller element
would result in negative coefficients for both p and m. The algorithm sets u1 = g1 + γ1, so
we have u1 = pm− ((ks − 1)As +As−1 − 1)m and c1 = −(Bs − 1)p. Therefore

u1 − c1 = pm− ((ks − 1)As +As−1 − 1)m+ (Bs − 1)p ∈ Γ. (4.23)

We continue now to show that r1 = 1. Note that 1 = ps, as expected in the base case. By
(4.21) we have

u1 − c1 + 1 = pm− ((ks − 2)As +As−1 − 1)m− p.

If the coefficient of the middle term is zero, then u1 − c1 > µ and the algorithm stops with
g1. Otherwise u1 − c1 + 1 is not in Γ, and so r1 = 1. Thus g2 = u1 + 1 and we have

g2 − c1 = u1 − c1 + 1 = pm− ((ks − 2)As +As−1 − 1)m− p.

This establishes the first step of induction for the base case.

Remark 1. The structure of the calculation that emerges has the following form:
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1. Begin the step by expressing gi − ci−1 in standard form (4.17):

gi − ci−1 = pm− aim− bim.

2. Calculate γi as the smaller of the two terms aim and bip.

3. Because ui = gi + γi and ci = ci−1 − γi, it is simplest to think of ui − ci as obtained
from gi − ci−1 by reversing the sign of the smaller term:

ui − ci =

{
pm+ aim− bip, γi = aim < bip,

pm− aim+ bip, γi = bip < aim.

4. Find the smallest ri > 0 such that ui−ci+ri /∈ Γ. We show below that ri = pj for level
j, and compute the interval of values i belonging to this level. Then gi+1 = ui + ri
and the process repeats.

Induction step for base case. Suppose 1 ≤ i < ks, and inductively assume

gi − ci−1 = pm− ((ks − i)As +As−1 − 1)m−

{
(Bs − 1)p if 2 ∤ i,
p if 2 | i.

(4.24)

If 2 | i in (4.24) then clearly γi = p. Thus

ui − ci = pm− ((ks − i)As +As−1 − 1)m+ p,

and, provided i < ks, we check that ri = 1:

ui − ci + 1 = pm− ((ks − i− 1)As +As−1 − 1)m− (Bs − 1)p /∈ Γ (4.25)

since both coefficients are negative (here we assume As−1 > 1; see Section 4.1.4). Now
suppose 2 ∤ i. Then since ks − i > 0 we have ((ks − i)As +As−1 − 1)m > (Bs − 1)p. Hence
γi = (Bs − 1)p. A computation as above shows that ri = 1 again. Thus we have ri = 1,

γi =

{
(Bs − 1)p if 2 ∤ i,

p if 2 | i

and gi+1 − ci has the same form as equation (4.24). Thus the induction step is proved. In
particular, for i = ks − 1 we find if 2 ∤ s then

gNs − cNs−1 = pm− (As−1 − 1)m−

{
(Bs − 1)p if 2 ∤ Ns,

p if 2 | Ns.
(4.26)

75



The case 2 | s is exactly analogous with roles reversed: we now have Bsp−Asm = 1, which
provides Bsp > Asm, and so γ1 = (As − 1)m, etc. Thus if 2 | s then

gNs − cNs−1 = pm− (Bs−1 − 1)p−

{
(As − 1)m if 2 ∤ Ns,

m if 2 | Ns.
(4.27)

This establishes the case where j = s and 1 ≤ i ≤ Ns − 1. Note that in this case we need
not prove ri = 1 is the minimal jump, since ri must be positive. Lastly, if As−1 = 1, the
generator gNs belongs to Γ + cNs−1, and so is not minimal; see Section 4.1.4.

Induction on level j < s. We assume the theorem formulas for j+1 and prove them for
j. We illustrate the pattern of moving from an odd level to an even level, hence assume
2 | j. The other case will be clear with obvious reversal of roles. We will also first assume
nj+1 ̸= 0.

Assuming 2 | j, and nj+1 ̸= 0, we have by induction (compare (4.26))

gNj+1 − cNj+1−1 = pm− (Aj − 1)m−

{
(Bj+1 − 1)p if 2 ∤ Nj+1

p if 2 | Nj+1

(4.28)

Here for reference is the equivalent induction statement assuming 2 ∤ j (compare (4.27)):

gNj+1 − cNj+1−1 = pm− (Bj − 1)p−

{
(Aj+1 − 1)m if 2 ∤ Nj+1

m if 2 | Nj+1

(4.29)

We first consider the case where 2 ∤ Nj+1. Since 2 | j, by (4.12) we have

pj = Bjp−Ajm. (4.30)

This implies (Aj − 1)m < (Bj+1 − 1)p, since we always have p < m and Bj < Bj+1. Thus
(see Remark 1) we have γNj+1 = (Aj − 1)m.

It follows that

uNj+1 − cNj+1 = pm+ (Aj − 1)m− (Bj+1 − 1)p. (4.31)

We claim rNj+1 is pj . Indeed by (4.30)

uNj+1 − cNj+1 + pj = pm−m− (Bj+1 −Bj − 1)p /∈ Γ (4.32)

since Bj+1 > Bj + 1. In order to show that pj is minimal, we first relate any positive
number r to the divisors pi in the Euclidean algorithm (4.9).

Definition 38. Suppose 0 < r < pj . Set r
1 = r, and for a > 0 define {r1+a, αj+a} by the

conditions ra = αj+apj+a + r1+a and 0 ≤ r1+a < pj+a. Let h = min{j + a|r1+a = 0}.
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Returning to the proof, suppose r < pj . Then with {αi} as in Definition 38 we have

r =
∑h

i=j+1 αipi. By (4.12) we may write pi = (−1)i+1(Aim−Bip), and

r =
h∑

i=j+1

(−1)i+1αi(Aim−Bip),

=

 h∑
i=j+1

(−1)i+1αiAi

m+

 h∑
i=j+1

(−1)iαiBi

 p. (4.33)

We will apply the following lemma to the analysis of r.

Lemma 7. Let x =
∑h

i=u(−1)i+1αiAi and y =
∑h

i=u(−1)iαiBi, where u ≤ h ≤ s and
0 ≤ αi ≤ ki. Assume αh > 0.

1. x > 0 ⇔ 2 ∤ h, and y > 0 ⇔ 2 | h.

2. If in addition αi = ki ⇒ αi+1 = 0 then

(a) x > 0 ⇒ x ≥ Au, and y > 0 ⇒ y ≥ Bu.

(b) x < 0 ⇒ x > As − p, and y < 0 ⇒ y > Bs −m.

We defer the proof of Lemma 7 to the end of this section, and proceed with the proof
of the main theorem. Write r = xm + yp, where x and y are the sums in (4.33). By the
equations (4.9) for pi, and since r < pj , the recursion in Definition 38 ensures αi ≤ ki and
αi < ki unless αi+1 = 0. So x and y satisfy Part 2 of Lemma 7, with u = j + 1.

Now consider uNj+1 − cNj+1 + r with r < pj . From (4.31)

uNj+1 − cNj+1 + r = pm+ (Aj + x− 1)m− (Bj+1 − y − 1)p. (4.34)

Either x > 0 and y < 0, or the reverse (since r < p). Suppose first x > 0 and y < 0. Then

uNj+1 − cNj+1 + r = (Aj + x− 1)m+ (m−Bj+1 + y + 1)p

Then by Lemma 7 we have y > Bs −m, and both coefficients are positive. Now suppose
x < 0 and y > 0. Then

uNj+1 − cNj+1 + r = (p+Aj + x− 1)m+ (y −Bj+1 + 1)p

where Lemma 7 gives y ≥ Bj+1 and x > As − p. Thus once again both coefficients are
positive, so in either case adding r to uNj+1 − cNj+1 results in an element of Γ. Therefore
with the starting assumption 2 ∤ Nj+1, we see r = pj is the minimal jump needed to escape
Γ. Therefore rNj+1 = pj and (compare (4.32))

gNj+1+1 − cNj+1 = pm−m− (Bj+1 −Bj − 1)p. (4.35)
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The pattern is now set for kj steps. For 0 ≤ i ≤ kj − 1 we have rNj+1+i = pj ,

γNj+1+i =

{
(Aj − 1)m if 2 ∤ (Nj+1 + i),

m if 2 | (Nj+1 + i)

and gNj+1+i+1 = uNj+1+i + γNj+1+i, so

gNj+1+1+i− cNj+1+i = pm− (Bj+1− iBj −1)p−

{
(Aj − 1)m if 2 ∤ (Nj+1 + i)

m if 2 | (Nj+1 + i).
(4.36)

Now suppose instead we have that 2 | Nj+1. Then the induction statement (4.28) is

gNj+1 − cNj+1−1 = pm− (Aj − 1)m− p, (4.37)

and we can assume Aj > 1 (otherwise the algorithm ends). Hence in this case γNj+1 = p,
and we have

uNj+1 − cNj+1 = pm− (Aj − 1)m+ p.

First note that rNj+1 ̸= pj , since uNj+1 − cNj+1 + pj = (p − 2Aj + 1)m + (Bj + 1)p ∈ Γ.
However

uNj+1 − cNj+1 + pj−1 = pm− (Aj −Aj−1 − 1)m− (Bj−1 − 1)p /∈ Γ

since otherwise either k1 = 1 or Aj = 2 (in the latter case uNj+1 − cNj+1 exceeds µ). One
shows that pj−1 is the minimal value by analyzing r < pj−1 via Lemma 7, exactly as in the
last argument. It follows that in this case rNj+1 = pj−1 and gNj+1+1 = uNj+1 + pj−1, so

gNj+1+1 − cNj+1 = pm− (Aj −Aj−1 − 1)m− (Bj−1 − 1)p. (4.38)

Because Aj = kj−1Aj−1 + Aj−2 we see again by (4.12) that (Bj−1 − 1)p is the smallest
element of Γ which added to (4.38) results in an element of Γ. The previous pattern now
repeats: γNj+1+i alternates between (Bj−1 − 1)p and p, while ri = pj−1 = Aj−1m−Bj−1p
causes the coefficient of m to get closer to zero. Thus for kj−1 steps we have

gNj+1+i+1−cNj+1+i = pm−(Aj−iAj−1−1)m−

{
(Bj−1 − 1)p if 2 ∤ (Nj+1 + i),

p if 2 | (Nj+1 + i).
(4.39)

The assumption (2 | Nj+1) leads to calculations of γi and ri corresponding to level (j − 1)
instead of j for an interval of length kj−1, which justifies the definition (4.18) of nj = 0
and nj−1 = kj−1 in this case.

Now supposing that nj+1 = 0, then by (4.18) we have Nj+1 = Nj+2, and nj+2 ̸= 0.
The inductive assumption is given by (4.29), with j replaced by (j + 1):

gNj+1 − cNj+1−1 = gNj+2 − cNj+2−1

= pm− (Bj+1 − 1)p−m.
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With the same analysis used in (4.37), we have γNj+1 = m, and ri = pj . Thus level (j +1)
is empty, and level j proceeds for kj steps, justifying the definition nj = kj in this case.
Lastly, the analysis for 2 ∤ j is clearly the strict analog of the cases just presented.

We now prove Lemma 7.

Proof. We prove all the statements for x only, since the arguments for y are strictly anal-
ogous.

Proof of 1 (⇐). Suppose 2 ∤ h and proceed by induction. First suppose h = u. Then

x = αuAu > 0.

Now suppose the implication is true for h′ < h. Then

x = αhAh − αh−1Ah−1 +

h−2∑
i=u

(−1)i+1αiAi

(The sum is empty if h = u + 1.) By assumption αhAh − αh−1Ah−1 ≥ Ah − αh−1Ah−1 =
(kh−1 − αh−1)Ah−1 +Ah−2. Thus

x ≥ (kh−1 − αh−1)Ah−1 +

(
Ah−2 +

h−2∑
i=1

(−1)i+1αiAi

)
(4.40)

The first expression is non-negative since αh−1 ≤ kh−1. Adding Ah−2 to the last sum
guarantees the coefficient of the (h−2) term, namely αh−2+1, is positive, so the combined
sum is also positive by induction. (If αh−2+1 exceeds kh−2, the violation of the hypothesis
is in the positive direction.)

Proof of 1 (⇒). Suppose 2 | h. Apply the previous argument to −x, as the only use
made of the parity of h is that the highest-index term has positive coefficient.

Proof of 2(a). If h = u and x > 0 then x = αuAu ≥ Au. Suppose h > u. Then
(4.40) is true and the last sum is positive. Because αh > 0 by assumption, the additional
condition (αi = ki ⇒ αi+1 = 0) implies that (kh−1 − αh−1) is positive, so x > Ah−1 ≥ Au.

Proof of 2(b). Assume x < 0. First suppose h = u. Then 2 | u and x = −αuAu. If
u < s then

x ≥ −kuAu = −(Au+1 −Au−1) > −As > −(ks − 1)As −As−1 = As − p

(see (4.16) and recall ks = ps−1 > 1). If instead u = s, then by assumption αu = αs ≤ ks−1.
Then

x ≥ −(ks − 1)As > −(ks − 1)As −As−1 = As − p.

Now suppose h > u (and 2 | h). Then

x = −αhAh −Ah−1 +

(
Ah−1 +

h−1∑
i=u

(−1)i+1αiAi

)
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The parenthetical term is positive by Part 1. Therefore

x > −αhAh −Ah−1 ≥ −khAh −Ah−1 = −Ah+1.

If h < s then −Ah+1 ≥ −As > −(ks−1)As−As−1 = As−p. If h = s then αh = αs ≤ ks−1
and

x > −(ks − 1)As −As−1 = As − p.

Having established Lemma 7, the proof of the main theorem is now complete. We next
refine the main result with two corollaries.

Corollary 2. Let n be the index of the last minimal generator gn produced by the recursion
in Theorem 18. The conductor of Λgen is given by

c(Λgen) = µ+ cn.

Remark 2. The index n corresponds to the last minimal generator produced by Theorem
18, which may occur before the last value of i is reached. It’s value is determined in
Corollary 3 and Section 4.1.4.

Proof. By Lemma 4 we have

(N+ ūn) ∩ En = (N+ ūn) ∩ (Γ + cn). (4.41)

Recall that En = Λgen, and notice the obvious fact that the conductor of (Γ + cn) is just
µ+ cn. Part (ii) now follows from

Claim: ūn < µ+ cn.
For if the Claim is true then (4.41) implies that Λgen and Γ+cn have the same conductor.

But gn−cn−1 is of the form pm−αm−βp where α, β > 0, and γn = min{αm, βp}. Clearly
α < p and β < m, so αm ̸= βp. It follows that un−cn = gn−cn−1+2γn < pm. From Lemma
4 we have ūn = un+µ−pm, therefore ūn− cn = un− cn+µ−pm < pm+µ−pm = µ.

Remark 3. Note that cn = −
∑n

j=1 γj , so the conductor can be calculated from the
recursion of Theorem 18.

Remark 4. Except in the extreme case where either k0 and/or k1 equals 1 (discussed in
the next section), we have gn− cn = pm−m, so typically gn− (p−1) equals the conductor
of Λgen.

Corollary 3. Suppose k0, k1 ̸= 1, and let gn be the last minimal generator produced by
Theorem 18. Let G be the set of minimal generators for Λgen. Then G = {gi| − 1 ≤ i ≤ n}
with gi as in (4.20), |G| = n + 2 its cardinality, and n is either N1 or N1 − 2. More
precisely, the cardinality of G is given by

|G| =

{
N1 + 2 if n1 = 0,

N1 otherwise.
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Proof. Theorem 18 establishes that the recursion (4.20) aligns with Delorme’s algorithm.
It remains to show when the recursion should end. There are three cases for how the last
level, j = 1, can begin. If n2 ̸= 0 then taking the inductive statement (4.29) with j = 1 we
have

gN2 − cN2−1 = pm− (k0 − 1)p−

{
m if 2 | N2,

(k1 − 1)m if 2 ∤ N2.
(4.42)

If however n2 = 0 then we saw that level 2 is empty. In this case the start of level 1 is
given by (4.28) with j = 2 and N3 = N2:

gN2 − cN2−1 = pm− (k1 − 1)m− p, where 2 | N2, and n2 = 0. (4.43)

In the first case of (4.42), n1 = 0 by (4.18) and γN2 = (k0 − 1)p < m. Therefore
uN2 − cN2 = pm−m+ (k0 − 1)p exceeds the conductor µ, since we assume k0 ̸= 1. So gN2

is the final generator. Since n1 = 0 we have n = N2 = N1 and |G| = N1 + 2.
In the other two cases, we have n1 = k1. Then rN2+i = p1, and γN2+i alternates

between p and (k0 − 1)p. First suppose k1 > 2. After k1 − 2 steps we have

gN1−2 − cN1−3 = pm−m−

{
p if 2 | N1

(k0 − 1)p if 2 ∤ N1

(4.44)

and gN1−2 − cN1−2 = pm−m. Thus gN1−2 is the final generator. We have n = N1 − 2 and
|G| = n+ 2 = N1.

If on the other hand k1 = 2, we have in both cases gN2 − cN2 = pm−m. So gN2 is the
final generator, and we have n = N2 and |G| = N2 + 2. But now N1 = N2 + k1 = N2 + 2,
so again |G| = N1.

Remark 5. The recursion of Theorem 18 may stop before ui − ci ≥ µ is satisfied. Indeed
if n1 = 0 then the final ui occurs at i = N1 − 1 even though uN1−1 − cN1−1 < µ. In this
case the theorem allows the next generator to be defined, namely gN1 . Then Corollary 3
shows that the next output in Delorme’s algorithm, i.e. uN1 − cN1 , does exceed µ, and so
the algorithm also stops, and gN1 is the last minimal generator.

Non-minimal generators

In Delorme’s algorithm, γi is the least element of Γ such that ui = gi + γi ∈ Ei−1. Thus
non-minimal generators gi, i ≤ n, arise in the recursion of Theorem 18 iff γi = 0. This
occurs when Aj = 1 or Bj = 1. We always have A1 = 1 and B0 = 1, but the index for Aj

in any γi is even, and the index for any Bj is odd. It is possible however to have A2 = 1 or
B1 = 1. This is equivalent to the cases (a) k1 = 1 or (b) k0 = 1 respectively. In these cases
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non-minimal generators may arise in the recursion before we have reached the conductor
c(Λgen). Thus

G = {gi| − 1 ≤ i ≤ n and γi ̸= 0},

and the cardinality of G is decreased by the number of times γi = 0.
We summarize the effect on |G| of the various configurations of extreme k0, k1. (The

list of non-minimal generators in the last column can be empty.)

Constraints |G| Non-minimal generators

k0 = 1, k1 > 1 2 | N2 N1 −
⌊
n1−1
2

⌋
{gN2+2j−1|1 ≤ j ≤

⌊
n1−2
2

⌋
}

2 ∤ N2 N1 −
⌊
n1
2

⌋
{gN2+2j |0 ≤ j ≤

⌊
n1−3
2

⌋
}

k0 = 1, k1 = 1 n3 = 0 N1 −
⌊
n2−1
2

⌋
{gN3+2j−1|1 ≤ j ≤

⌊
n2−1
2

⌋
}

n3 ̸= 0 N1 −
⌊
n2
2

⌋
{gN3+2j |0 ≤ j ≤

⌊
n2−2
2

⌋
}

k0 > 1, k1 = 1 n1 = 0 N1 −
⌊
n2−2
2

⌋
If 2 | N3 : {gN3+2j−1|1 ≤ j ≤

⌊
n2−1
2

⌋
},

n1 ̸= 0 N1 −
⌊
n2
2

⌋
otherwise: {gN3+2j |0 ≤ j ≤

⌊
n2−2
2

⌋
}

Table 4.1: Non-minimal generators

Remark 6. In the extreme cases treated in this section, the value of the index n of the
last minimal generator given by the recursion of Theorem 18 can be deduced from Table
4.1. It is always one more than the index of the last non-minimal generator if that set is
non-empty, or |G| − 2 otherwise. Equivalently, n = |G| − 2 +# {non-minimal generators}.

Examples

Example 21. Recall Example 19 with semigroup Γ = ⟨10, 23⟩. We compute

23 = 2 · 10 + 3

10 = 3 · 3 + 1

Thus the level is s = 2, and we easily compute the following table.
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i pi ki ni Ni Ai Bi

0 10 2 - - 0 1
1 3 3 3 6 1 2
2 1 3 3 3 2 7

Here n1 ̸= 0, so by Corollary 3 there are N1 = 6 generators, including p = 10 and
m = 23 and g1 = 1 + p + m = 34. Following Theorem 18, we compute each γi with
1 ≤ i ≤ N1 − 1 = 5 and corresponding level and jump, and resulting gi and ui (while
Corollary 3 indicates we should stop at i = 4, since n = N1 − 2 in this case).

i j γi ri = pj gi ui
1 2 (A2 − 1)m = 46 1 34 80
2 2 m = 23 1 81 104
3 1 (B1 − 1)p = 10 3 105 115
4 1 p = 10 3 118 128
5 1 (B1 − 1)p = 10 3 (131) (141)

Note that c4 = −
∑4

a=1 γa = −89, so u4−c4 = 217, which is greater than the conductor
of Γ. So the algorithm stops at i = 4 and the last displayed generator is redundant, as
Corollary 3 implies it should be. Lastly we find the conductor of Λgen:

c(Λgen) = µ+ cn = (23− 1)(10− 1)− 89 = 109.

The next example shows how even large examples can be done easily by hand using the
recursion of Theorem 18.

Example 22. Consider Γ = ⟨122, 281⟩. We first compute the numbers {pi, ki, s}:

281 = 2 · 122 + 37

122 = 3 · 37 + 11

37 = 3 · 11 + 4

11 = 2 · 4 + 3

4 = 1 · 3 + 1

so s = 5, {pi} = {122, 37, 11, 4, 3, 1} and {ki} = {2, 3, 3, 2, 1, 3} for 0 ≤ i ≤ 5. Next for 1 ≤
i ≤ 5 compute via (4.11) the values {Ai} = {1, 3, 10, 23, 33} and {Bi} = {2, 7, 23, 53, 76},
and by (4.18) find {ni} = {3, 3, 0, 1, 3} and {Ni} = {10, 7, 4, 4, 3}. Next compute γi and ri
for 1 ≤ i ≤ 9 (= N1 − 1), and obeying the inequalities in the theorem; from these values
we immediately calculate the generators, starting with g1 = p+m+ 1:
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i j γi ri = pj gi ui
1 5 (B5 − 1)p = 9150 1 404 9554
2 5 p = 122 1 9555 9677
3 4 (A4 − 1)m = 6182 3 9678 15860
4 2 m = 281 11 15863 16144
5 2 (A2 − 1)m = 562 11 16155 16717
6 2 m = 281 11 16728 17009
7 1 p = 122 37 17020 17142
8 1 (B1 − 1)p = 122 37 17179 17301
9 1 p = 122 37 17338 17460

Notice that g9 = g6+5p. The last generator is therefore redundant (in fact u9− c9 exceeds
µ). Including g−1 = p and g0 = m, we see that Λgen has 10 (= N1) generators, including
two belonging to Γ.

In order to relate the generators to the Tjurina number, we write them in two ways:
numerically and in standard form (4.17). To compute the standard form, apply (4.12) to
each pj and use the recursion of the theorem, i.e. g1 = p+m+ 1 and gi+1 = gi + γi + pj .

i pm− αim− βip = gi i pm− αim− βip = gi
1 pm− 88m− 75p = 404 5 pm− 25m− 91p = 16155
2 pm− 55m− 76p = 9555 6 pm− 26m− 84p = 16728
3 pm− 22m− 151p = 9678 7 pm− 28m− 77p = 17020
4 pm− 23m− 98p = 15863 8 pm− 27m− 78p = 17179

We can now easily compute the Tjurina number for Λgen. Consider the set of integer pairs
(αi, βi) induced by the generators gi in standard form, 1 ≤ i ≤ 8. We re-index the pairs so
that αi < αi+1. Then by necessity the second coordinate is decreasing:

{(αi, βi)} = {(22, 151), (23, 98), (25, 91), (26, 84), (27, 78), (28, 77), (55, 76), (88, 75)}

These first-quadrant points enclose rectangles of strictly positive values (α, β) ≤ (αi, βi)
which represent elements of Λgen − Γ∗, and all such elements are represented in this way.
Thus the sum of areas of these rectangles counts |Λgen−Γ∗| = µ− τgen. Letting (α0, β0) =
(0, 0), the area sum is

∑8
1(αi − αi−1)βi. Thus

µ− τgen = 22 · 151 + 1 · 98 + 2 · 91 + 1 · 84 + 1 · 78 + 1 · 77 + 27 · 76 + 33 · 75 = 8368.

A formula for the minimal Tjurina number

In [2] an explicit formula is given for the minimal (i.e. generic) Tjurina number τgen of
any irreducible plane curve germ. We present the output of this formula in the case of a
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2-generator semigroup, in terms of the notions defined in this article.

Theorem 19. Let Γ = ⟨p,m⟩ as above, µ = (p− 1)(m− 1) the conductor of Γ, and denote
by ⌊x⌋ the floor of x. Then

τgen = µ−
⌊m
p

⌋⌊(p− 1)2

4

⌋
+
⌊p− 1

2

⌋
+
⌊p1
2

⌋
−

s−1∑
i=1

⌊pi−1

pi

⌋⌊p2i
4

⌋
. (4.45)

The theorem follows easily from the more general formula of [2] and the fact that
the multiplicity sequence of Γ is read off from the Euclidean algorithm. Note that the
coefficients in the sum are the same as the numbers ki, i.e.⌊pi−1

pi

⌋
= ki.

Example 23. In Example 22 we computed for the generic value set of semigroup Γ =
⟨122, 281⟩ the formula µ− τgen = 8368. On the other hand, Theorem 19 calculates

µ− τgen =
⌊m
p

⌋⌊(p− 1)2

4

⌋
−
⌊p− 1

2

⌋
−
⌊p1
2

⌋
+

4∑
i=1

⌊pi−1

pi

⌋⌊p2i
4

⌋
=
⌊281
122

⌋⌊1212
4

⌋
−
⌊121

2

⌋
−
⌊37
2

⌋
+
⌊122
37

⌋⌊372
4

⌋
+
⌊37
11

⌋⌊112
4

⌋
+
⌊11
4

⌋⌊42
4

⌋
+
⌊4
3

⌋⌊32
4

⌋
= 2 · 3660− 60− 18 + 3 · 342 + 3 · 30 + 2 · 4 + 1 · 2 = 8368.

We have not yet investigated the path that connects these two approaches to calculating
the generic Tjurina number.

A Lower Bound for the Number of Value Sets

The minimal Mancala game gives us a lower bound on the number of value sets for coprime
Γ in the following way. Since we are looking for all possible increasing Γ-semimodules with
the first two generators equal to p and m, we can consider any gap in Γ that is greater
than m+p for our Zariski invariant. This gives us our first crude lower bound. Since there
are µ/2 gaps in Γ, we can subtract the number of gaps in Γ that are less than m+ p which
is rather simple to calculate.

If m = kp+ p1, then we note that there are only k+1 elements in Γ that are less than
m, since 0 ∈ Γ. Thus taking these out we have that there are precisely m− k − 1 gaps in
Γ less than m. Between m and m+ p there are precisely p− 2 gaps. This gives a total of
p+m− k − 3 gaps that are less than p+m. We subtract this from µ/2 to get that there
are

|(N0 +m+ p) \ Γ| = µ

2
−m− p+ k + 3. (4.46)
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We can choose any element in the above set difference as our λ1, or we could choose to
throw the bead to infinity for our first move. These would all be increasing Γ-semimodules
themselves, and so must be a valid Λ for some plane curve germ.

We can continue with this logic, and see that for each Zariski invariant that we choose
we have a resulting u1. For each u1 we can play at least as many different games as there
are gaps above u1. Following along with this we can do the same for u2 so on.

If we choose the minimal λ1, we now have a recursive formula for the for the minimal
generators in the minimal Mancala game, and so we can calculate the number of gaps
above ui remaining after each minimal move. This will give us yet another lower bound on
the number of value sets there are for a coprime Γ. At the very least there are µ

2 −m− p+
k+3+ |G| value sets for any coprime Γ where |G| is the number of minimal generators. If
Gi is the number of gaps above ui after each minimal move, then a stronger lower bound
on the number of Λ is given by

µ

2
−m− p+ k + 3 +

|G|∑
i=1

Gi.

These Gi are not simple to calculate, but can be done recursively in a similar way that the
|Λgen − Γ∗| was calculated in Example 22. We do not attempt to give a recursive formula
for the Gi at this time.

The author wishes to thank Lee McEwan for a large contribution to the above results,
and Patricio Almirón, Gary Kennedy, and Richard Montgomery for several useful conver-
sations regarding this work.

This concludes the section on the minimal Mancala game and the generic value set of a
plane curve germ with coprime semigroup. We now wish to explore the more general case
of value sets of plane curve germs where we do not restrict Γ to being a coprime semigroup,
equivalently we have a Puiseux characteristic of length greater than 1. We will start by
giving some characterizations of the RVT code words that have only one associated value
set.

4.2 Λ-Simple Code Words: A Partial Description

Let us begin this section with a definition.

Definition 39. Let W be a critical RVT code word. Then we will call W Λ-simple if all
of the curve germs with code word W share the same Λ, i.e. the same set of valuations of
differential one-forms.

We would like to know which W are Λ-simple. We will make use of the main result
in Section 5 of [1] to prove the following useful lemma that will help us determine these
words.
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Lemma 8. Let W be an RVT code word that ends in a critical symbol (a V or T) such
that the corresponding Puiseux Characteristic is Λ-simple. Then for any q > 0 the Puiseux
Characteristic corresponding to the word WRqV is also Λ-simple.

Proof. This is a straight forward application of the main theorem of Abreu and Hernandes
in Section 5 of [1]. Indeed, suppose that φ is any curve germ with Puiseux Characteristic
corresponding to the word WRqV . We assume the Puiseux Characteristic to be of length
g. Then any g − 1 semi-root of φ will have code Puiseux Characteristic corresponding to
the RVT code word W, with unique set of valuations of differential one-forms denoted Λg−1.
Since extending the word W by RqV results in ng = 2 we have by Abreu and Hernandes
that

Λφ \ Γφ =ρg−1(Λg−1 \ Γg−1)∪̇{vg − 2δ : δ ∈ N∗ \ Λg−1}
∪̇{vg + 2δ : δ ∈ N \ Γg−1}.

Now consider any other curve germ φ̃ with Puiseux Characteristic corresponding to the
word WRqV. Then likewise for φ̃ we have that any g − 1 semi-root will be a curve germ
with Puiseux Characteristic corresponding to the word W. Thus will have the same set of
valuations of differential one-forms Λg−1 as any g − 1 semi-root of φ, as W was assumed
to be Λ-simple.

Again by application of Abreu and Hernandes we have that

Λφ̃ \ Γφ̃ =ρg−1(Λg−1 \ Γg−1)∪̇{vg − 2δ : δ ∈ N∗ \ Λg−1}
∪̇{vg + 2δ : δ ∈ N \ Γg−1}.

Since φ and φ̃ were arbitrary, it follows that any two curve germs with Puiseux Characteris-
tic corresponding to the wordWRqV will share the same set of valuations of differential

Due to this lemma we can now prove the following theorem in regards to Λ-simple code
words.

Theorem 20. Any set of analytic plane curve germ with Puiseux Characteristic corre-
sponding to a code word with isolated single V’s will share the same set of valuations of
differential one forms.

Proof. We go by induction on g (equiv. by induction on the number of V’s). Let g = 1, then
we have the word RkV , with k > 0. The Puiseux Characteristic of this word is (2; 2k+ 1).
Every curve germ with this Puiseux Characteristic is know to be analytically equivalent to
the curve germ (x(t), y(t)) = (t2, t2k+1). Therefore there can only be one Λ.

Now suppose g > 1 and the claim holds true for 1 ≤ i < g. Note that by our inductive
hypothesis any Puiseux Characteristic corresponding to a word with g − 1 isolated V ’s is
Λ-simple. Thus by Lemma 8 we have that so is any word with g isolated V ’s, as desired.
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A Special Case: The code word (RV)g, g ≥ 1 corresponds to the Puiseux Characteristic
with g + 1 generators given by (2g;β(1,g), . . . , β(g,g)) where

β(i,g) = 3 · 2g−1 +
i∑

j=1

2g−(j+1)

One can construct this series iteratively. We have β(i,g) = 2 · β(i,g−1) for 1 ≤ i ≤ g − 1 and
β(g,g) = 2 · β(g−1,g−1) + 1. We have the immediate corollary of Theorem 20:

Corollary 4. For any g ≥ 0, the word (RV)g corresponds to a class of plane curve germs
φ : (C, 0) → (C2, 0) which all share the same set of valuations of differential one forms.
These plane curves germs are precisely the curves that have the above Puisuex character-
istic.

Further Characterizations: One can check from Example 9 that the code words RV T
and RV V are Λ-simple. We to wish give yet another infinite set of code words that are Λ
simple.

Proposition 21. Let W be any critical code word with one critical block. That is, let C be
an entirely critical word of only V’s and T’s and let W = RqC. Then the code word WRV
is also Λ-simple.

Proof. We need to show that all curve germs with word WRV have the same Λ. Let Γ
be the semigroup associated to WRV and therefore Γ1 the word associated to W . Since
W has only one critical block there exists p1, m1 coprime such that Γ1 = ⟨p1,m1⟩. This
implies Γ = ⟨2p1, 2m1, 2p1m1 + 1⟩. Let γ be any plane curve germ with word WRV. Then
we note that there is some parametrization of γ such that

γ : x(t) = t2p1 , y(t) = t2m1 + at2m1+1 + h.o.t.

Consider the quasi-homogeneous curve given by Y p1 −Xm1 = 0. We have

y(t)p1 − x(t)m1 = at2p1m1+1 + h.o.t.,

which implies vf (y
p1 −xm1) = 2p1m1+1. It is therefore clear that the curve (tp, tm) will be

a 1-semiroot of γ. Since γ was arbitrary, this must be true of any curve with critical word
WRV. Since we are extending W by an RV, we get a complete description of our value
set of any curve germ with word WRV from [1]. Since all the curve germs with this word
share the same 1-semiroot we can use this semiroot to completely characterize our Λ, and
hence they must all be equal. This implies the word WRV is indeed Λ-simple.

For W, and W̃ RVT words, let us from now on use the notation W · W̃ := WW̃. With
this notation we have the following corollary.
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Corollary 5. Let W be any critical code word with a single critical block. Then the word

WRV ·Πn
k=1R

qkV

with qk > 0 is Λ-simple for all n ≥ 0.

Proof. This is a direct result of Lemma 8, and the last proposition.

One can speculate if there are more ways for us to construct Λ-simple code words. The
author speculates that there indeed are. One such type of word that is worthy of note is
the word given by

Rq · (Πn
k=1RCk) ·RV,

where the Ck are entirely critical, q ≥ 0, and n ≥ 1. Any curve germ γ with this word will
admit in some coordinates a parameterization a nth-semiroot of the form

γn : xn(t) = tpn , yn(t) = tmn +
n∑

k=2

akt
βk/2 + h.o.t.,

where the βk are the usual PC generators for γ and pn = p/2, mn = m/2. In other words,
there is no room for nonessential exponents in between the essential ones for γn. To show
that the wordWRV ·Πn

k=1R
qkV is Λ simple then comes down to showing that for any choice

of the ak the curve (tpn , tmn +
∑n

k=2 akt
βk/2) has the same value set, where we intentionally

leave out the higher order terms.
Though the author currently has no formal proof of this, it is highly plausible that this

is the case when one considers that a value set is generated using some notion of weighted
homogeneous coordinates, and collisions as those presented in the Mancala game. In that
light we give the conjecture that in the future we hope to formally prove.

Conjecture 1. The word
Rq · (Πn

k=1RCk) ·RV

is Λ-simple for any Ck entirely critical, q ≥ 0, and n ≥ 1.

To end this section on Λ-simple code words, we wish to give a proof of some sort of a
converse to our above theorems. That is, we wish to give a condition for a critical RVT
code word so that it is not Λ-simple. We do so with the following conjecture.

Conjecture 2. Let W be any regular (ending in R) code word of length greater than 2,
and C an entirely critical word of length greater than 1. Then WC is not Λ-simple.

We present some evidence to support our conjecture. If there is only one critical block,
namely C, we then refer the reader to Theorem 18 which shows that with our conditions
on C and W we must have p > 2, and enough R’s to ensure that there is a Zariski invariant
for the generic value set that is less than ∞. We then note that the quasi-homogeneous
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value set for WC indeed has that the Zariski invariant is ∞, and so there must be at least
2 value sets. Thus WC is not simple in this case.

Now suppose WC has more than one critical block. Suppose WC has corresponding
PC given by (p;m,β2, . . . , βg). We note that in this case, since |C| > 1 we must have
eg−1 > 2. We also note that eg−1 is in fact the multiplicity of any curve germ with code
word RjC, for any j > 0, and that βi ≡ 0 (mod eg−1) for any 0 ≤ i ≤ g−1, but not for βg.

Suppose first that βg ̸≡ −1 (mod eg−1). Then we claim that there exists some a ̸= 0
such that the two curves given by

γ : x = tp, y = tm +

g∑
i=2

tβi , (4.47)

γ̃ : x̃ = tp, ỹ = tm +

g∑
i=2

tβi + atβg+1 (4.48)

have different value sets. That is, there is some value of a so that either νg + p + 1 is in
the value set of γ and not in γ̃ or vice-versa.

Let us prove this for the case where WC has only two critical blocks. Let us first start
with the case where β2 = m+ 1. In this case we have the two curves

γ : x = tp, y = tm + tm+1, (4.49)

γ̃ : x̃ = tp, ỹ = tm + tm+1 + atm+2. (4.50)

We have that our first semiroot for γ is

s = yp/e1 − xm/e1 =
p

e1
t
pm
e1

+1
+

( p
e1

2

)
t
pm
e1

+2
+ h.o.t.

Whereas

s̃ =
p

e1
t
pm
e1

+1
+

( p
e1

2

)
t
pm
e1

+2
+

ap

e1
t
pm
e1

+2
+ h.o.t.

We now start to consider the valuations of one-forms. We have that v(dx) = v(dx̃) = p,
v(dy) = v(dỹ) = m and v(ds) = v(ds̃) = pm/e1 + 1.

Our next step is to use the Zariski one-form to see that

ω = pxdy −mydx = ptm+pdt

and
ω̃ = ptm+p + 2patm+p+1dt.

Thus both v(ω) = v(ω̃) = m+p+1. Let us now consider that all of the valuations in either
value set that are between 0 and pm/e1+1 can be obtained either from monomials in x and
y times dx and dy, or monomials times ω or ω̃. This is due to the fact that v(s) = pm/e1+1
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is the first time we can obtain a valuation that is not a result of a valuation of a monomial
in x and y, and that therefore every collision of one-forms between 0 and pm/e1 + 1 is a
result of monomial one-forms with valuations v(xiyjdx) = v(xkyldy). Going through what
the equality implies we see that if for some b, c ∈ C v(bxiyjdx − cxkyldy) > v(xiyjdx)
we must have bxiyjdx − cxkyldy = (xrys)ω + h.v.t., where h.v.t. stands for higher valued
terms.

There can be no collisions of one forms that are a result of monomials times z and
monomials times dx or dy that are less than pm/e1 + 1. This is key to our argument, and
comes from the fact that we do not have matching congruency of any of those monomial
one forms (mod e1) until we reach ν1 + p. Therefore all values of Λ and Λ̃ that are less
than pm/e1 + 1 consist precisely of the values in ⟨p,m⟩∗ ∪ (⟨p,m⟩ + m + p + 1) that are
less than pm/e1 + 1. Here we note that Γ ̸= ⟨p,m⟩.

However, once we have gone past pm/e1+1 we find that v(yp/e1−1z) = ν1+p = v(sdx).
This will be the place where we will find our minimal collision of one-forms that are not
exact, and resolve them to get our next generator. We consider the form

ω2 = pxds− (pm/e1 + 1)sdx = p

( p
e1

2

)
tpm/e1+p+1dt+ h.o.t.dt,

and similarly

ω̃2 =

(
p

( p
e1

2

)
+

ap2

e1

)
tpm/e1+p+1dt+ h.o.t.dt,

for our curve γ̃. For the value a = − e1
p

( p
e1
2

)
we have pm/e1 + p+ 2 /∈ Λ̃. This is due to the

fact that for this value of a we have v(ω̃2) > pm/e1 + p+ 2, and the fact that there is no
other way to get a value of Λ̃ that is congruent to 2 (mod e1). It is immediate from our
assessment as well that there is no other way to form one-forms of valuation pm/e1+ p+2
as we would need to find a collision that was less than this, and all of these involve the
Zariski one-form or ω̃2.

On the other hand it is clear that pm/e1 + p2 ∈ Λ for our curve γ, and from the
argument above, we must have that pm/e1 + p + 2 is a minimal generator for Λ, since
e1 > 2. This concludes our argument for the case where β2 = m+ 1.

The case for which β2 > m+1 is not so different in terms of computations and arguments
about minimal collisions, only this time we argue that any nonzero value of a will result
in the opposite effect for our Λ̃ versus our Λ. That is, in this case if a ̸= 0 we have that
pm/e1 + β2 −m+ p+ 1 ∈ Λ̃ and pm/e1 + β2 −m+ p+ 1 /∈ Λ. This gives us the following
proposition

Proposition 22. If W is a regular code word of length greater than or equal to 2 containing
at most one critical block, and C is an entirely critical word of length greater than 1 then
WC is not Λ-simple.

Let us finish this section with an example:
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Example 24. The word RV RV T is not Λ-simple. Let us show this using the two forms
we used above. The code word corresponds to the semigroup Γ = ⟨6, 9, 19⟩, and e1 = 3.
We consider the parameterizations

γ : x = t6, y = t9 + t10, (4.51)

γ̃ : x̃ = t6, ỹ = t9 + t10 − 1
2 t

11. (4.52)

We note that v(ω) = v(ω̃) = 16 and so

(Γ∗ ∪ (Γ + 16))µ = {0, 6, 9, 12, 15, 16, 18, 19, 21, 22, 24, 25, 27, 28, 30,
31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42}

We have that ω2 = 6t25dt, whereas ω̃2 = −12t26dt+ 9
2 t

27dt. Since there is no other way
to form a collision of the appropriate valuation we conclude that they must have differing
value sets, since 26 ∈ Λ, and not in Λ̃. Therefore the word RV RV T is not Λ-simple.

One can conclude via further analysis that the code word has in fact 4 different value
sets. This requires the use of yet another coefficient for the power of t13 in the parametriza-
tion of ỹ(t). We will not go further into the computations to show these results in this
example.

This concludes our example, and section on Λ-simple code words. We look forward
to working more on formalizing proofs for the conjectures in this section at a later date.
With this section concluded we also have come to the send of our chapter on value sets of
singular plane curve germs. We now move on to the invariants of singular curves at the
first level of the Monster Tower. We have previously named these contact curve germs or
Legendrian curve germs. We devote the next chapter to results concerning the discrete
contact invariants of the contact curves.
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Chapter 5

Legendrian Semigroups

5.1 Introduction

5.1.1 Goals and Main Questions of the Chapter

It has already been established that for a contact class of Legendrian Curve germs there is a
well-defined RVT code word for any contact projection (see directional blowup in Chapter
8 of [19]).

We start with the notion of directional blowup at the first level (see Definition 12), and
define what we mean by a contact projection of a Legendrian curve germ. We recall that
directional blowup of any plane curve germ at any level n in the Monster Tower gives us
a pair of active coordinates (x(i), y(j)). One can ask, what are the invariants attached to
directional blowups under symmetries of the Monster tower. By [19] we then really only
need to ask what is invariant for the directional blowup(s) of a curve under lifted contact
symmetries of the first level. A natural discrete invariant to study is then the semigroups,
or valuations of functions, of Legendrian curve germs.

Our first task is to consider Legendrian curve germs in level 1 of the Monster M(1) =
C2 ×CP 1. We would like to define what a contact projection is, and do so in a coordinate
free way. Before we do this, let us first consider a Legendrian curve γ(t) = (x(t), y(t), y′(t)),
where y′(t) = dy/dx, v(x) < v(y′(t)) < v(y). In general, what we are thinking of when we
consider a contact projection is the plane curve germ given by (x(t), y′(t)), which is what
we would call the directional blowup of the plane curve germ (x(t), y(t)) at level one.

There are many other ways to project a Legendrian curve onto a plane. We would like
to select a set of them that has a special property.

Definition 40. Let γ : (C, 0) → (M(1), 0) be a Legendrian curve germ with respect to the
contact distribution defined by contact form α. A contact projection of γ is a projection
down to a C2 in any direction that is locally transverse to the contact plane.

In general we will start with coordinates so that α = dy− y′dx and the chosen contact
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projection is given by (x(t), y′(t)). We can also make things more convenient by choosing
representatives of contact germs that have a nice form in x and y′. This is really only to
help us cleanly work with the curves in our proof.

We have now reached one of the main question of this chapter: what, if any, are
the invariants of a contact projection of a Legendrian curve? That is, if we are given a
class of Legendrian curve germs under contact transformations and choose two different
representatives of this class, what information might a contact projection of one curve share
with another? Perhaps more restrictively, if we consider the contact projection (x, y′) of our
curve germ γ and apply any local contact transformation Φ to γ, what does the new curve
Φ((x(t), y′(t)) have in common in terms of the analytic type of the two contact projection
plane curves?

We will attempt to answer the last question, at least partially, in this chapter. For now
let us state what appears to be the case. Firstly by counter example we can show that
the analytic type of the contact projection (x, y′) is not a contact invariant. We can even
demonstrate that the value set of the contact projection (x, y′) is also not an invariant.
All would seem lost then. However, there seems to be some discrete analytic information,
that is information beyond just the semigroup of the contact projection, that is a contact
invariant of the contact projection (x, y′). Namely in any case the Zariski invariant λ of
the contact projection is preserved. We also find that the (λ + p − 1)-jet of the contact
projection is preserved up to analytic equivalence. In the case where we find the topological
class of contact projections is given by (p;m) with gcd(p,m) = 1 the latter result gives
further results in terms of value sets and what information in them is preserved via contact
transformation.

The general case still has more room for exploration. Using similar methods γ should
have some similar statements available in relation to each critical block defining the Puiseux
characteristic of a (and hence any) contact projection.

5.1.2 More Questions

A few questions to keep in mind while we explore the different possibilities for our contact
projections: Is there a notion of “generic” value set for any possible choice of Zariski
invariant, given a topological class? If so, at least in the case where our PC is of length 1,
does this value set form a semigroup if we adjoin 0? If it does or does not, how close is it
to the valuations of Γ(γ), the Legendrian semigroup of γ?

We could take this even further, and ask, what is the generic value set of a given jet of
a curve? That is, if we are give an r-jet of a plane curve germ, what are the possible value
sets for any curve germ with that r-jet?

For the value sets are semigroup questions, there are cases where the value set of a
curve with 0 is not a semigroup. This is because of the fact that thanks to P. Almirón we
can take any increasing semimodule in the coprime case, and it will correspond to some
curve [3]. In light of this, let Γ = ⟨5, 31⟩ and take the Γ-semimodule Λ = Γ∗∪(Γ+47). This

94



Γ-semimodule does not contain 2 × 47 = 94. Hence it cannot become a semigroup simply
by adjoining 0 to it. This somewhat suggests that we need to take some sort of “minimal
jump” to resolve collisions of valuations of one-forms, once we have obtained our Zariski
invariant, in order to form a semigroup.

We now head to our next section to give a counterexample to show that the value set
of a contact projection is not necessarily preserved under contact transformation.

5.2 Counterexample to Invariance of Λ

We are looking for a case where two Legendrian curves in the same contact class will yield
different value sets for their contact projections. Let us provide an example where this is
the case using the topological class (5; 31) for our contact projections.

Example 25. Consider the Legendrian curve germ with respect to α = dy − y′dx given
by x(t) = t5, y(0) = 0 and

y′(t) =t31 + t32 +
63

62
t33 +

3, 008

2, 883
t34 +

771, 875

714, 984
t35

+
5, 189, 184

4, 617, 605
t36 +

24, 232, 125, 907

20, 612, 988, 720
t37

+
49, 317, 194, 752

39, 937, 665, 645
t38 +

22, 921, 120, 093, 113

17, 608, 073, 031, 040
t39.

We will explain the complicated coefficients later, but let us consider for now the contact
transformation that takes y′ 7→ y′ + y + xy′, and leaves x alone. By [5] this is a valid
contact transformation. Using Delorme’s Lemma 14 in [11] and coordinated mancala game
(or Delorme’s algortihm) we can find the value set of our first contact projection c1 := (x, y′)
to be given by Γ∗ ∪ (Γ + 37) ∪ (Γ + 74).

On the other hand the value set of c2 := (x, y′+y+xy′) is given by Γ∗∪(Γ+37)∪(Γ+69).
One can quickly check that 69 is not in the value set of c1.

Let us look more closely at this example and try to extract a bit of what is going on
here. Clearly we have a very complicated set of coefficients for y′(t), and this would make
one think that we would need to search far for any example of this. In reality the goal was
clear from the outset: form a curve that has a value set with a small (in this case smallest)
Zariski invariant, and from there make it rather sparse. In terms of the mancala game this
would be like throwing the beads further at the next collision of valuations of one forms.
We again know that we can do this by [3], which also shows that forming a value set for
the coprime case is an increasing, step-by-step process.

The next task is to find a curve with this value set, and in particular one that has
achieved this value set using coefficients of powers of t in y′(t) that are greater than 31 +
5 = 36. This is due to the claim that contact transformations locally cannot change the
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(m+ p− 1)-jet of a contact projection up to analytic equivalence. This also means that we
need to have enough gaps so that we can jump high enough above our next collision. This
relates to how the jump sizes are made, as the size of each jump corresponds to the number
of successive coefficients that need to be fixed in order to make that jump in valuation past
that collision. Recall from Definition 35 (also see Delorme in [11]) the ui values that we call
minimal collisions, and the λi+1 values that we call minimal generators. Here the jumps
we mention are given by ji = λi+1 − ui.

What we now have done is formed a rather non-generic value set for the given Zariski
invariant, and done so by choosing non-generic coefficients for y′(t). Since we cannot change
the (m+p)-jet, we try to use y to change the higher order coefficients, all the time knowing
that we will move important non-generic coefficients that affect value set of our curve by
construction. Though complicated in explanation, one can assume that with rather large
multiplicity p one can do this quite regularly. Either way we have shown that the value set
is not an invariant under contact transformation.

With our counterexample above we are ready to state our first result of this chapter.

Proposition 23. Let γ and γ′ be two contact equivalent Legendrian curve germs. It is not
necessarily the case that the value sets of contact projections of each curve will be equal.

We now move on to finding what invariants we can given the contact projection (x, y′)
and any contact transformation of the Legendrian curve germ.

5.3 Contact Invariants of The Contact Projection

This section is dedicated to proving several facts about the invariants of contact projections
of a single class of Legendrian curves. We will attempt to start with great generality, then
move to the case where the contact projections have coprime PC. Finally we will devote a
bit more time to the general case. We also see if that there is more about the generic case
that we can say.

We so far have seen that the analytic type of a contact projection is not an invari-
ant under contact transformations. We will now prove a theorem that gives us a partial
description of what are the invariants of the set of contact projections.

Theorem 21. All contact projections of any single class of Legendrian curve germs have
the same λ+ p− 1-jet up to analytic equivalence, where λ is the Zariski invariant and p is
the multiplicity of any contact projection in that class.

Proof. Let us start with a Legendrian curve germ γ of the form

x(t) = tp, y′(t) = tm + tλ +
∑
i>λ

i/∈Λ−p

ait
i, y(0) = 0.
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Here we assume (by abuse of notation) that y′ = dy/dx and that Λ is the set of valuations
of one-forms on the contact projection (x, y′). Using Neto’s description in [6] of contact
transformations we see that we need only consider transformations of the form

(x, y′) 7→ (x, y′ + a(y + xy′) + h.v.t.) =: (x, ỹ′),

where higher valued terms are to be understood as terms of higher valuation than v(y) =
m+p. It is important to note that any polynomial in x and y′ alone is incapable of changing
the λ + p-jet beyond analytic equivalence. Thus it could only be terms involving nonzero
powers of y(t) that could possibly have an effect on the jets of our contact projection.

We have by integration that

y(t) =
p

m+ p
tm+p +

p

λ+ p
tλ+p + p

∑
i>λ

i/∈Λ−p

ai
i+ p

ti+p

We will first consider the simple case where the h.v.t. are zero in our contact transfor-
mation. Since ỹ′ = y′ + a(y + xy′) in this case, we haver that the only power of t added
to y′ that is less than λ + p is tm+p. We also have that m + p is in the semigroup of
the contact projection (x, ỹ′) and therefore can be removed by the analytic isomorphism
(x, ỹ′) 7→ (x, ỹ′ − a( p

m+p + 1)xỹ′).
Of course now we have introduced an m + 2p term from our original y(t), but this is

also in the semigroup. All other terms that we have added are powers of t greater than
λ + p. We can continue to remove these terms with x2ỹ′, x3ỹ′ etc. until we have reached
λ < m + kp < λ + p. In this case we can do our final adjustment to this coefficient again
using xkỹ′ all the while only adding in terms higher than λ+ p otherwise. In this way we
have gotten back identically to our original λ+ p− 1 jet of our original contact projection,
all through analytic isomorphism. This proves our theorem in the case where the h.v.t.
are all 0.

It is not difficult now to see that a similar argument holds if we were to add higher
powers of y(t) to our original contact projection. For instance y2 has valuation 2m + 2p
and the next power of t is λ+m+2p. Thus a nearly identical argument holds as above for
any power of y. Similarly any polynomial given yP (x, y, y′) will have the same property,
and the argument still holds. This is essentially all possible contact transformations (even
really all local analytic transformations of our space M(1)) of γ, and so we have proved
our theorem.

Notice that in our proof we have shown that it is impossible to affect the λ+ p− 1-jet
by contact transformation, so it is impossible to change analytic equivalence of the λ-jet
as well. This implies all contact projections of a single class do have a well-defined Zariski
invariant. This gives us the following corollary.

Corollary 6. The Zariski invariants of any contact projections of any Legendrian curve
germs of the same contact class are equal.
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In [10] Delorme gives a criterion for which a plane curve germ with a coprime PC has
a generic value set Λgen, which can be inferred by his lemma 14 in his later work [11].
He states in [10] that for a curve germ with coprime PC to have generic value set, the
coefficients of its parameterization between m and m + p must satisfy a certain weighted
homogeneous polynomial equation. Namely this given polynomial must be nonzero when
evaluated at the coefficients. This is telling us that the generic value set is determined at
most by the m+ p jet of the plane curve germ. We now can state the following corollary:

Corollary 7. If a contact projection of Legendrian curve has a two generator semigroup
and the generic value set for its topological class, then every contact projection of every
curve in the same class has generic value set of the same topological class.

Proof. This follows from Delorme’s generic polynomial in [11], and the theorem above,
along with the work by R&Z in [19], which assure us that the topological class of a contact
projection is a contact invariant.

Note that Theorem 18 gives a recursive formula for the generic value set of a contact
projection of the above type.

5.3.1 The General Generic Case

We would like to have a similar statement for the general PC generic value set case, but
this would require us to know something more about how the generic value set in these
cases depends on the coefficients of a parameterization of y′. There is an algorithm to
determine the generic value set of any PC given by [21]. In this article the author does give
some criterion for the coefficients, and it may be beneficial to dig deeper into this paper.

There is also the consideration of the fact that any parameterization of y(t) has only
nonzero coefficients in the same congruency class as y′(t) (mod p) that are of higher order
precisely by adding p. It is strongly suspected that the generic coefficients that generate
the generic value set have already been determined by the coefficients of y′. It would
seemingly be difficult for a higher order term of the same congruency class (mod p) to
somehow change the outcome of the generic case. One should think that is the lowest
order term of that congruency class that will determine if the plane curve germ is possibly
in the generic case.

This leads us to the conjecture that Corollary 7 is in fact true in all cases, but Theorem
21 no longer helps us prove this. We may need instead a stronger version of Theorem 21
that dives more deeply into how the coefficents of y(t) can affect the coefficients of y′(t)
close to the essential exponents of y′(t) in terms of Puiseux Characteristic.

Regardless of the speculation for the general case, from this section we now have the
ability to discuss what a Zariski invariant of a contact curve might be. The next section is
dedicated precisely to this idea.
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5.4 The Zariski Invariant and Zariski One-Form of Contact
Projections

In general, analytic plane curve germs (x, y) have a Zariski invariant. One definition of
the Zariski invariant is the exponent of the smallest nonzero power of t in the Zariski
short parameterization of the curve that is greater than m, where m is again the order of
vanishing of y. This is very coordinate dependent, so another, perhaps better definition is
as follows:

Definition 41. Let γ be a singular plane curve germ at the origin with semigroup Γ and
value set Λ. Then the Zariski invariant of the curve is given by λ := min{Λ \ Γ∗} − p, or
∞ if Λ \ Γ∗ = ∅

5.4.1 Directional Blowup and the Zariski Invariant

Let us now continue this section with the assumption that 2v(x) < v(y), or in RVT
language, a code word with two R’s at the beginning. We would now like to state some
facts about the Zariski invariant of a contact projection, given a Legendrian curve germ.
As we have shown in Theorem 21 the set of contact projections of any class of Legendrian
curve all share the same λ + p − 1-jet up to analytic equivalence, and so they must share
the same Zariski invariant. This is the case since any contact projection of the given class
must be equivalent to a curve germ of the form x(t) = tp, y′(t) = tm + tλ + h.o.t., which
clearly has λ as its Zariski invariant (see Cor. 6).

Since part of this chapter is intended to address invariants of directional blowup, let us
first ask the question: Given a plane curve germ (x, y) and the Legendrian lift (x, y, y′),
does the Zariski invariant of (x, y) determine the Zariski invariant of (x, y′), or vice-versa?
Unfortunately the answer to both of these questions is no. Let us now see why this is the
case.

First we give a general example to illustrate that we do not necessarily know the Zariski
invariant of the plane curve germ we started with, given the Zariski invariant of any contact
projection. We do so by showing contact equivalence of two lifted plane curve germs that
do not have the same analytic type.

Example 26. Let us start with the topological class (p;m). Within this class, there are
always at least two analytic types whenever p ≥ 3 and we avoid smaller values of m. These
two types we will denote γf for Frobenious, and γQH for the quasi-homogeneous.

The defining trait for γf is that Λf \Γf = c−1 the maximum integer Zariski invariant for
the topological class. The quasi-homogeneous curve is defined by the property that Λ = Γ∗.
According to [13] γf is completely determined analytically by its Zariski invariant, hence
its value set, and so there are no moduli for γf . Let us take the normal form representatives
of [13] for our curves:

γf : x = tp, y = tm + tc−p−1
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and
γQH : x = tp, y = tm

We now show that the lifts of these two curves are in fact contactomorphic. We have

γ1f : x = tp, y = tm + tc−p−1 y′ =
m

p
tm−p +

c− p− 1

p
tc−2p−1

γ1QH : x = tp, y = tm y′ =
m

p
tm−p

Let us consider the contact projection of γf given by (x, y′) = (tp, mp t
m−p + c−p−1

p tc−2p−1).

A quick check show that the valuation of pxdy′ − (m − p)y′dx is given by c − p − 1 =
mp−m− 2p ≥ mp−m− p2 + 1 = c′ the conductor of any contact projection. Therefore
there is an analytic transformation of the plane taking the curve

(tp, mp t
m−p + c−p−1

p tc−2p−1) 7→ (tp, mp t
m−p).

We can also use local analytic transformations of M(1) (of 3-space) to take the curve
γ1f 7→ γQH since the tc−p−1 term can be moved away due to c−p−1 > c′. By Zhitomirskii’s
lemma in [27] we have that the two curves must therefore also be contactomorphic. This
concludes our example.

What we have shown in this example is that there are two different analytic types of
plane curve germs that both lift to Legendrian curve germs that have ∞ for the Zariski
invariant of any contact projection. These two analytic types of plane curve germs have
themselves different Zariski invariants. It is therefore impossible to tell which Zariski
invariant we started with.

Now we give a short example to show that the both directions fail even if the Zariski
invariant of any contact projection is not infinite..

Example 27. Consider the curves

γ1 : x = t4, y = t13 + t18 + at23, a /∈
{
0,

18

13
,
31

26

}
, (5.1)

γ2 : x = t4, y = t13 + t23. (5.2)

For our first curve Λ1 \ Γ∗
1 = {22, 31, 35}, and for our second curve Λ2 \ Γ∗

2 = {27, 31, 35}.
Going over to the usual contact projection (x, y′) of the lift of each plane curve above
we find that they both have Zariski invariant 19. This implies they both have contact
projections that are equivalent to the Frobenious curve, which also implies that we cannot
determine the Zariski invariant of our original curve even if the Zariski invariant of any
contact projection is finite.

Now consider the curve

γ3 : x = t4, y = t13 + t18 + at19, a ̸= 0.
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This curve has Zariski invariant 18, as does γ1. However, this curve does not have the same
value set, as it contains 27. Upon lifting the curve and taking the contact projection (x, y′)
we find that the Zariski invariant is 15, rather than that of γ′1, which is 19 . This shows we
cannot even hope to determine the Zarsiki invariant of the contact projection if we know
the Zariski invariant of the original plane curve.

The issue here arose when we had that the Zariski invariant of the plane curve was
already in the semigroup of the contact projection. One then can say that in this case we
generally cannot tell what the Zariski invariant of the contact projections will be given the
Zariski invariant of the original plane curve germ.

Let us denote the semigroup of our plane curve germ as Γ and the semigroup of any
contact projection Γ′. We would now like to show that if the Zariski invariant λ of our
original curve is such that λ /∈ Γ′ then we do in fact have that the Zariski invariant of any
contact projection is determined by the Zariski invariant of our original plane curve germ.
Indeed we can always find coordinates for which our curve γ1 has the form

γ1 : x = tp, y = tm + tλ + h.o.t., y′ =
m

p
tm−p +

λ

p
tλ−p + h.o.t.

It follows that the Zariski 1-form for the contact projection (x, y′) is given by

pxdy′ − (m− p)xdy′ = λ(λ−m)tλ−1 + h.o.t. dt,

which has valuation λ /∈ Γ′. This implies λ− p /∈ Γ′. Since the Zariski 1-form has given us
a valuation outside of Γ′ it must be the minimal one in Λ′, the value set of (x, y′). This
implies λ− p is the Zariski invariant of any contact projection by Corollary 6. This gives
us the following result:

Proposition 24. Let γ be a plane curve germ with semigroup Γ, so that any contact
projection has semigroup Γ′. Further suppose the Zariski invariant λ of γ is such that
λ /∈ Γ′. Then the Zariski invariant of any contact projection is given by λ − p, where p is
the multiplicity of γ.

In general there seems to be no reverse direction that we can formulate, at least at this
time. We would then like to move on to how the Zariski invariant of any contact projection
relates to the Legendrian semigroup of the original Legendrian curve germ.

5.4.2 The Zariski Invariant of a Contact Projection and The Semigroup
of the Legendrian Curve Germ

In this section we would like to start to address the question of how much of the Legendrian
semigroup of a Legendrian curve is determined by value set information of a contact pro-
jection. We know here that we have to be careful, as not every contact projection has the
same value set. However, given Theorem 21 we certainly retain some analytic information.
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One piece of this information is the Zariski invariant of any contact projection. We
would now like to state a few basic properties in hopes that we can say something about
how the possible value sets of the set of contact projections relate, if at all, to the Legendrian
semigroup. Let us begin with a proposition.

Proposition 25. Let γ = (x, y, y′) be a Legendrian curve germ with semigroup Γ1 such
that v(x) = p, v(y′) = m. Then the Zariski 1-form of the contact projection γ′ = (x, y′)
is an exact form in the set of differential 1-forms on the Legendrian curve. Therefore the
value λ′+p is in the Legendrian semigroup where λ′ is the Zariski invariant of any contact
projection of γ.

Proof. We acknowledge the fact that y′dx = dy. Therefore if the Zariski 1-form of γ′ is
given by pxdy′ − my′dx then we find that taking the differential of the regular function
z := pxy′ − (m+ p)y we get

dz = d(pxy′ − (m+ p)y) = pxdy′ −my′dx.

Thus we have shown that the Zariski 1-form is an exact differential. Should we find
a contact projection such that the Zariski 1-form has valuation outside Γ′ our contact
projection semigroup (which is always possible to find unless λ′ = ∞), then by exactness
of our Zariski 1-form, it follows that λ′ + p must be in the Legendrian semigroup.

If we restrict our set of Legendrian curves to those that have contact projections with
coprime semigroup Γ = ⟨p,m⟩, then we can use Lemma 5 (12(b) in[11]) to help us determine
if we can continue this argument for other minimal generators of the semimodule Λ′ and
their relation to the Legendrian semigroup of γ.

We see that Lemma 5 provides us with some useful information about our next minimal
generator of Λ′. Indeed we must now have that the next generator has a term in it of the
form xiy′jdz. We recall from the previous chapter that v(dz) = pm − ap − bm for some
a, b > 0. It follows that the next possible minimal collision in Λ′ must occur between xiy′jdz
and something in Γ′. If we suppose that a < b then we must have that v(xadz) = d(xaz) =
pm−bm = m(p−b) = v(d(y′p−b)). Hence there must be some linear combination of xaz and
y′p−b, such that the valuation of this linear combination is greater than v(y′p−b) = (p−b)m.
There is also a linear combination of xadz and y′p−b−1dy′ that has a valuation greater than
(p− b)m as well.

The question becomes: If these two linear combinations have valuations that are mini-
mal generators of the Legendrian semigroup and value set Λ′, respectively, when are they
equal? If the valuations do agree we have found our next minimal generator of Λ′ according
to Delorme. It is also our next minimal generator of our Legendrian semigroup. This is
due to the fact that powers of y cannot generate anything that powers of xy′ themselves
cannot generate. Thus we are again looking for valuations of functions on γ that agree, but
this clearly must involve z. It is clear that we have involved z above in the most minimal
way.
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We can continue according to Delorme’s Lemma 12(b) for each new generator of Λ′, as
long as we find that the last generator was exact in the differentials of the Legendrian curve
γ. The arguments follow along closely to the above, and we note that if the last generator
was from an exact form, then our next minimal collision will be obtained using the same
monomials, whether in the one-forms of γ′ or the regular functions on γ. We note that by
Example 25, we certainly cannot have that this process works out in our favor every time.
There must be cases where our generators of our Legendrian semigroup do not agree with
the generators of Γ′. Thus the word when is appropriate in our line of questioning. We will
speculate on this in the following chapter.
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Chapter 6

Conclusion and Further Questions

6.1 Summary of Results

In summary this work has dedicated itself to several novel results in the field of singular
plane curve germs, and Legendrian curve germs, along with new results pertaining to the
stratification of points in the Monster Tower.

In Chapter 3 we were able to establish a connection between points p ∈ M(n) in the
Monster Tower at level n, and value sets of plane curve germs. In some cases if the point
in the tower was regular, and at a sufficiently high level, we could assign to a single value
set. In any case where the point was regular, we associated to it a set of plane curve germs,
Pl(p), that all had the same topological type.

We found that it was possible for Pl(p) to have curves with differing value sets. We
called a point generic if we found that one of the curves in Pl(p) had the value set Λgen.
We then gave a criterion for which points had the generic value set associated to them.

In Chapter 4 we introduced the coordinated Mancala game for coprime semigroups,
and defined the minimal game. This minimal game corresponds to the generic value set
Λgen. We then gave a recursive formula for the minimal generators of the value set Λgen,
which completed the description of the points in the Monster that had generic value set
associated to them. We consider this the main result of our work.

From there we began to classify the equi-singularity classes of l=plane curve germs that
had only one value set associated to them. In other words the topological classes of curves
that had at most only moduli as their analytic invariants. This concluded chapter 4.

Finally Chapter 5, the last of new results, examined Legendrian curve germs in M(1)
and gave results on contact invariants of these curve germs. The chapter worked heavily
with the notion of the contact projection. We found that some analytic jet information
of any contact projection is preserved up to analytic equivalence of the contact projection
plane under local contact transformations of M(1). This showed that their is a legitimate
notion of the Zariski invariant of a contact curve germ in M(1). We then finally explored
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to some extent the connection between the value set Λ′ of a contact projection, and the
Legendrian semigroup of the original curve germ.

We now look forward to future directions of research on the subjects of the Monster
Tower, plane curve germs, and Legendrian curve germs.

6.2 Future Directions

6.2.1 The Monster Tower

We have now established that regular points in the Monster tower can be stratified by not
only an RVT code word, but also a set of value sets of plane curve germs, which is at times
a singleton. These latter results relied on a-equivalence. Under contact equivalence, we
still recover the notion of an RVT code word for the point, but in our convention this RVT
code word must start with 2 R’s.

We could call this the contact RVT code word, and stratify the Monster Tower via
these code words as well. We have seen already in Chapter 5 that Legendrian curve germs
can have the same RVT code word, but not the same Legendrian semigroup. In [19] they
assign a set of Legendrian curve germs to a point in M(n), similarly to the way we assign
plane curve germs, and call this set Leg(p). We can then ask a similar question as we did in
Chapter 3, but instead about Legendrian curves, and their semigroups. Namely, when is it
that Leg(p) consists of Legendrian curve germs all sharing the same Legendrian semigroup?
This is another way that we could consider a finer stratification of points under contact
equivalence using a discrete contact invariant.

6.2.2 Plane Curve Germs

There are many future research opportunities for plane curve germs and their analytic
invariants. We of course would like to prove both Conjecture 1 and Conjecture 2. We
would also like to give a formula for the generic value set of a plane curve germ with 3
generator semigroup, and ultimately n generators. All of this will likely require the notion
of semiroots of plane curve germs.

Another question we would like to answer, which is somewhat on the opposite end of
the above, is: What is the value set associated to the prototype curve, that is, the curve
germ in normal form consisting of only essential Puiseux exponents, each with coefficient
1. We would also like to know if the coefficients of the essential exponents can have an
effect on the value set of the curve, if all other nonessential exponent coefficients in the
parameterization for y(t) are set to 0. The answer to these questions will greatly facilitate
completing the classification of Λ-simple code words.
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6.2.3 Legendrian Curve Germs

As mentioned at the end of the previous chapter, we would like to know how closely related
the minimal generators are to each other between the minimal generators of the Legendrian
semigroup, and the minimal generators of a contact projection. It is clear that the Zariski
one-form is exact, and so in the case of our curve having contact projections with coprime
semigroups, we can try to use Delorme’s Lemma 12(b) to explore this further.

We note that there is some notion of a generic contact projection. Indeed when we
look at what contact transformations do to a given contact projection, we see there must
be notion of generic one in the sense of obtaining a generic curve germ with fixed λ′+p-jet,
in terms of the notation of Chapter 5. Since we cannot guarantee that any higher jet is
preserved under contact transformation, it makes sense to speculate that the generic λ′+p-
jet will have a value set Λ′ that most closely coincides with our Legendrian semigroup. We
then have the conjecture:

Conjecture 3. Suppose we have a Legendrian curve germ γ in M(1) such that the contact
projection γ′ of the curve has generic contact projection (that is, γ′ is a generic curve with
a fixed λ′ + p-jet). Then the minimal generators of the value set Λ′ of γ′ are the same as
the nonzero minimal generators of the Legendrian semigroup L(γ).

It is not clear if the result is true in the greatest of generality, that is, in the case of an
arbitrary number of generators for the semigroup of the contact projection. However there
is much more reason to believe that it is true in the case where the contact projection has
coprime semigroup. This reasoning follows from the discussion at the end of Chapter 5
in Section 5.4.2. In the future we hope to dedicate more time to proving this conjecture
in both the coprime and general case. A good place to start is looking at Legendrian
curve germs with multiplicity 4. Some of this work has already been started recently by
Montgomery in [18], concerning the embedding dimension of semigroups with multiplicity
4.
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