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Abstract

Free Homotopy classes in some N-body problems

by

Connor Fox Jackman

In this thesis we study two types of planar N-body problems: the motion of N point

masses in a plane under a strong force law of attraction and under Newton’s law of attraction.

We aim to understand these orbits by which free homotopy classes are realized in the configu-

ration space.

The first part looks at the strong force law of attraction: where the force is proportional

to the inverse cube of the mutual distances. This problem is especially suited to the Jacobi-

Maupertuis principle, which reformulates the problem as a complete geodesic flow in CPN−2

with collisions deleted. Montgomery [54] found negatively curved circumstances for such a 3-

body problem, and consequently the orbits could be described effectively by symbolic dynamics

and free homotopy classes are realized uniquely. Here we show that the extension to N > 3

is not so straightforward: the sectional curvatures have mixed signs, positive in some places

and negative in others however, when restricting attention to the collinear 4-body strong force

problem we do find negatively curved circumstances allowing us to describe such orbits as

geodesics in the hyperbolic plane.

The second part examines the force law of Newton: where the force is proportional

to the inverse square of the mutual distances. This classic problem has been well studied.

Féjoz [25, 26] has established the existence of periodic and quasiperiodic orbits in the lunar

v



regions using perturbation methods. Here we describe these orbits using ‘syzygy sequences’

to represent the homotopy classes realized in these lunar regions. Our method of proof is to

show that orbits of the unperturbed problem that avoid certain isolated tangencies retain their

homotopy class in the full perturbed problem.
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Chapter 1

Introduction

In the following we consider questions relating to ‘shapes’ of orbits in some planar N-

body problems. When there are three bodies this shape is captured by the oriented triangle they

form: changing orientation requires an instant of syzygy, an astronomical term for collinearity

(see figure 1.1). Therefore to keep track of an orbit’s shape one may list the syzygy types in

temporal order.

Figure 1.1 Changing orientation by passing through a ‘2’ syzygy.
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1.1 Some history

Before jumping into the mathematics, let us take a moment to appreciate the gravity

of our situation. Celestial mechanics and the N-body problem have an interesting development

and strong influence on science and mathematics (see for example [21, 16, 17, 23, 24]). In this

section, we recall a few seminal points.

One encounters the interplay of observation and theory in the imaginative explana-

tions of the motions of the wandering stars. These explanations were refined as observations

became more precise −notably Galileo’s observation of Jupiter’s moons and Brahe’s careful

records of the motion of Mars, which culminate with Kepler’s laws. Kepler’s laws will be seen

as consequences of Newton’s inverse square attraction, which succeeded in giving a complete

picture of a two body system and confirmed, for example, the prediction of Halley’s comet.

However, more than two body systems will continue to give ‘headaches’ until the development

of perturbation theory, which will lead to a great confirmation of Newton’s equations. Le Ver-

rier and Adams predict the coordinates of a new planet by analyzing perturbations in the orbit

of Uranus. Galle then observes the planet Neptune at these predicted coordinates! Peculiarities

in the perihelion position of Mercury are analyzed as well, leading to the search for another

inner planet, Vulcan, which is never found. Mercury’s peculiarities will be understood as the

scientific frontier extends to relativity theory.

Nevertheless, while a theory may lose its relevance for dealing with the general case,

it need not lose its charm or usefulness. Indeed, Poincaré demonstrates that the classical three

body problem exhibits complicated behavior, drawing the focus towards a qualitative under-
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standing of the orbits. This has influenced the development of dynamical systems, analysis,

and topology for instance. Moreover, the classic theory continues to hold interest not just for

mathematics, but for space exploration and science fiction (e.g. [20, 46]) as well.

The evolution of an orbit’s ‘shape’ is part of this qualitative study initiated by Poincaré

[61]. Hadamard [33] found that the orbit of a free particle on a surface was strongly influenced

by the curvature of the surface, in particular obtaining strong qualitative results for negatively

curved surfaces and posing:

“Les circonstances que nous venons de recontrer se retrouveront-elles dans d’autres

problèmes de Mécanique? Se prèsenteront-elles, en particulier, dans l’étude des mouvements

des courps célestes? C’est ce qu’on ne saurait affirmer. Il est probable, cependant, que les

résulatats obtenus dans ces cas difficiles seront analogues aux précédents, au moins par leur

complexité.”1

Montgomery in [54] found such negatively curved circumstances for a certain strong

force 3-body problem. In this work we first examine the curvature for a strong force 4-body

problem, finding some negatively curved circumstances. Next we consider a Newtonian force

and study the shapes arising from orbits in the classical lunar regions as described by Féjoz in

[26].

In the remaining sections of this introduction, we will state our results regarding these

two approaches. But first we define the shape sphere.
1May the circumstances which we have encountered be found in other mechanical problems? Do they appear

for example in celestial mechanics? It is difficult to be certain. However, it is likely that the results obtained in these

difficult cases are similar to the preceding ones, at least as regards their complexity.
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1.2 Shape sphere

Details on the shape sphere can be found in [55, 52]. The goal is to track the positions

of N ∈ N weighted points in a plane as they move according to a law of motion.

First identify the plane with the complex numbers C and write the position of the

body of mass m j as q j ∈ C for j = 1, ...,N. In what follows, the law of motion consists of

taking some homogeneous of degree −α potential function1 such as Uα =
∑

i< j
mim j
|qi−q j|α , then

the equations of motion can be written as

q̈ = ∇Uα, (1.1)

where q = (q1, ...,qN) ∈ CN\{q : U(q) = ∞} and ∇ is the gradient with respect to the mass

metric on CN :

〈v1, ...,vN ;w1, ...,wN〉mm := ℜ(
N∑

j=1

m jv jw j).

Curves in this configuration space can be represented by braids (see figure 1.2).

Figure 1.2 One may lift the curve γ(t) = (γ1(t), ...,γN(t)) to the braid with strands (γi(t), t) ∈ C× [0,1].

Note that deleting the collisions ensures that the braid remains free from self-intersections.

1For α = 0 it is more interesting to take U0 =
∑

i< j mim j log |qi−q j|.
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However, as space has no preferred coordinate system, it is more natural to consider

the reduced configuration space, up to choice of origin

q 7→ q+(λ, ...,λ), λ ∈ C,

and once an origin is chosen up to choice of axes from this origin

q 7→ (eiθq1, ...,eiθqN), θ ∈ S1.

Via the mass metric, we will identify CN/C with the center of mass zero space: (1, ...,1)⊥ ∼=

CN−1, and then CN−1/S1 with CPN−2×R≥0 by z 7→ (C∗z,‖z‖mm), where C∗z is the complex

line spanned by z. Recall that having deleted the collisions ∆ := {q : U(q) = ∞} from CN , the

corresponding points are deleted from these quotients as well. We call

CPN−2\P∆

the shape sphere and keep track of an orbits shape by projecting it down to a curve on the shape

sphere. What sorts of curves arise from projecting down solutions of eq. (1.1)?

EXAMPLE: When N = 3 the shape sphere is CP1 minus three points (for the
(3

2
)

binary

collisions). We may see the reductions in coordinates as follows. Projecting orthogonally onto

the center of mass zero space in Jacobi coordinates:

(q0,q1,q2)
Jacobi7→ (

q0−q1»
1/m0 +1/m1

,
q2− m0q0+m1q1

m0+m1»
1/(m0 +m1)+1/m3

) = (z1,z2) ∈ C2,

takes care of translations. For rotations and dilations, the coordinates on CP1 arising from the

Hopf map: (z1,z2)
a f f ine7→ z1/z2 = w stereo7→ ( |w|

2−1
1+|w2| ,

2w
1+|w|2 ), or

(z1,z2)
Hop f7→ (

|z1|2−|z2|2

|z1|2 + |z2|2
,

2z1z2

|z1|2 + |z2|2
) ∈ S2
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will coordinatize our shape sphere. In these coordinates, the equator of the sphere represents

collinear configurations (see figure 1.3). A curve on this shape sphere is coded by its syzygy

sequence: we list in temporal order the crossings with the collinear equator, giving each arc of

the equator the symbol representing the body in the middle.

Figure 1.3 The shape sphere when N = 3. Here the poles represent oriented equilateral triangles and the

equator corresponds to the collinear shapes. We have drawn two homotopic curves having syzygy types

12 and 1222.

We will mainly be interested in the closed curves that arise as solutions of eq. 1.1 up to

homotopy. For syzygies this amounts to canceling consecutive symbols or stutters, e.g. 1222∼

12. With N = 3 and a strong force it was found in [54] that almost every class (more specifically

the tied classes, see figure 1.4 below) is realized uniquely by a stutter free solution. As for the

N = 3 Newtonian force case it was found in [53] that (provided the angular momentum is non-

zero) every class is realized by some solution.
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1.3 Overview of strong force results

In §2 we will study the strong force problem (taking α = 2 in eq. 1.1). This represents

an inverse cube force which possesses some convenient features other than not being as heavily

studied as the Newtonian force. First, any force field which is homogeneous of degree −3 can

be reduced by a scaling (see [1]), which allows us to reduce the dimension by one as well as to

focus on the zero energy level to find periodic orbits. Second, as noticed by Poincaré [60] (see

also [29, 30]) the action goes to infinity as one approaches a collision.

Indeed let r be the mutual distance going to zero and note that the dominant term of

r̈ is like −1/r3 so that r̈ṙ ∼ −ṙ/r3 and integrating gives (ṙ)2 ∼ 1/r2 or rdr ∼ dt. The action

∫
(h+2U) dt is dominated by the term 1/r2 of U and so behaves like:

∫
r−2dt ∼

∫
r−1dr ∼ log(r),

which goes to infinity as r → 0. Consequently, minimizing over a tied homotopy class (see

figure 1.4) yields at least one solution in this homotopy class.

Figure 1.4 A tied homotopy class versus an untied class on a surface. Informally, a class is tied if it

cannot be moved to infinity without its length becoming infinite (see [29] def 1.2).
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Similarly, in spherical coordinates near a collision the Jacobi-Maupertuis (or JM-

metric see §2 below) metric has length as r→ 0 asymptotic to

∫ »
(h+ r−2)(dr2 +O(r2))∼

∫
r−1 dr,

which goes to infinity as we approach collision and so is complete in this case (see [54]).

In [54], the curvature of this strong force JM-metric on the shape sphere with three

equal masses was shown to be negative almost everywhere. Geodesic flows on negatively

curved surfaces have long been studied [33, 35, 8] as examples of symbolic dynamics and

sensitive dependence on initial conditions (see also appendix B). In particular a consequence of

Montgomery’s computation is that the minimizing periodic orbits which realize the tied classes

are unique, i.e. the (stutter free) syzygy sequence of a periodic orbit is unique to it.

The goal is then to extend Montgomery’s results by relating the differential geometry

of this JM-metric to dynamical properties of the strong force zero energy problem for N > 3.

We first find:

Theorem 1. ([39]) The sectional curvatures of the JM-metric on the shape sphere have mixed

signs for N > 3.

Which is somewhat disappointing, as manifolds of mixed curvature are not as widely

studied as those of fixed sign. The positive curvature is found in the orthogonal directions to the

collinear configurations. However, this mixed curvature does not preclude the possibility that

realizing orbits of a homotopy class may be unique, which remains an open question.

We next find some dynamical consequences of our curvature computations by focus-

ing on some totally geodesic surfaces of the equal masses N = 4 case. These surfaces arise as
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the fixed point sets of isometries.

Theorem 2. ([38]) The JM-metric restricted to the reduced collinear 4-body strong force prob-

lem has strictly negative curvature. Consequently, there exists a unique collinear solution con-

necting any two realizable binary (or double binary) collisions.

Also in [38] Josué Meléndez computed the curvature for the parallelogram 4-body

problem, showing it is a ‘shirt’ (see figure 1.4) of negative curvature.

Last we return upstairs to the configuration space, CN\{collisions} and in a more

general setting find a relation between the curvature over certain complex planes and central

configurations:

Theorem 3. ([37]) Consider any α 6= 0 and masses mi > 0 and endow CN\∆ with the JM-metric

at energy level H = h. Then q0 is a central configuration if and only if the holomorphic sectional

curvature and Kobayashi sectional curvatures agree on the plane Cq0. These curvatures then

have the value

− hα2U(q0)

2(h+U(q0))3‖q0‖2 .

REMARKS: One can use these computations to extend the instability results of [7] to

conclude the instability of certain homographic motions: namely those with negative sectional

curvatures over their motion, or in other words the sectional curvatures are negative through

some family of planes σ(t) 3 q̇(t).

When h = 0, the holomorphic sectional curvature is non-positive and vanishes exactly

along the fibers (complex span) of central configurations. When α = 2 and h = 0 we may
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quotient out these fibers of zero curvature to get a metric on the shape sphere: does the non-

positive holomorphic sectional curvature persist on the shape space for h = 0,α = 2 and would

there be any dynamical consequences of this?

1.4 Overview of Newtonian force results

In §3, we will examine some syzygy sequences arising in the classical 3-body problem

(that is with α = 1 in eq. (1.1)). In the Newtonian case the existence of orbits realizing given

free homotopy classes was solved positively by Montgomery and Moeckel [53] using blowup

techniques (see [49]). For small non-zero angular momentum and equal or nearly equal masses,

they show that every class is realized.

Figure 1.5 The realizing solutions of [53] in the space S2×R≥0 where we draw the triple collision

sphere S2×{0} enlarged. By wobbling around an Euler central configuration, these solutions pick up

many stutters of a certain type. They transfer to another Euler configuration to wobble around by passing

close to triple collision near a Lagrange central configuration.

On the other hand, there are many known periodic or quasi-periodic solutions arising
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out of perturbation methods. Such solutions will differ from those of [53], in that they will be far

from triple collision. Can we find which syzygy sequences are realized from these perturbation

methods? We are also motivated by Montgomery’s existence question:

Does there exist a solution to the Newtonian three body problem with zero angular momentum

and equal masses realizing the syzygy sequence (01)K for some K ∈ N?

If one considers two uncoupled Kepler problems with equal masses, then the angular

momentum will be zero only when the two orbits intersect, continuing such orbits to the full

three-body problem would involve analyzing the ‘second species solutions’ (see [47]). Here,

as a first step, we examine some syzygy sequences arising from the orbits described by Féjoz

[25, 26] in the ‘perturbing region’. This region’s configurations consist of certain nested ellipses

where the outer body is far away (the lunar region) or an outer and inner mass are small (the

planetary region). As the ellipses are nested, the orbits remaining in the perturbing region can

only reduce to a sequence 01 or the empty sequence.

Theorem 4. For angular momentum zero there exist periodic orbits realizing the sequence

(01)K without stutters. These solutions have an outer body with small mass and an inner orbit

that is nearly a circular Keplerian orbit.

In the lunar regions there are near inner collision orbits where the inner body switches

from prograde to retrograde motion by passing through a degenerate collision ellipse. Such

orbits have angular momentum non-zero and syzygy sequences of the form

...(10)a0(01)a1(10)a2 ...

with ai ∈ N and ai = O(a−3) where a << 1.

11



REMARKS: The near inner collision orbits can be seen as an extended description

of the orbits found in [41], where the near innner collision syzygy sequences of theorem 4

are established on a finite time scale whereas in theorem 4 we show that in certain cases such

sequences can be continued for all time.

In the lunar regions there are also quasi-periodic or periodic orbits realizing the se-

quence (01)K , some of which may have equal masses and non-zero angular momentum. The

syzygy sequences of these orbits have the same forms as in theorem 4. In general one may

continue a syzygy sequence of the Keplerian or secular dynamics from these lunar regions,

provided one avoids certain isolated ‘tangencies’ that cause extra stutters in the sequences of

theorem 4. Is it possible any of these continued solutions could reduce to the empty sequence,

or in other words: can we find an orbit which unwinds itself?

12



Chapter 2

Strong Force

Here we present the proofs of results outlined in §1.3, taking the ‘metric approach’.

Our motivation [54] takes this metric approach in the case N = 3 and we are concerned primarily

with examining this approach in the N = 4 case. The first order of business is to define the metric

of interest.

2.1 The metric on the reduced space

The Jacobi-Maupertuis (or JM) principle is a least action principle for Hamiltonian

flows restricted to a regular level set of the energy.

JM-principle: Let (M,ω) be a symplectic manifold and consider the Hamiltonian

flow of H ∈ C∞(M). Then on a regular level set of H, and for a (local) primitive λ of ω, the

Hamiltonian flow lines are extremals of the action γ 7→
∫

γ
λ among fixed endpoint variations

13



staying in this level set.

Proof: In local coordinates, the flow on a regular level set H = h is the Reeb flow

of λ. Take local Darboux coordinates (x1,y1, ...,xn−1,yn−1,z), with λ =
∑

xidyi + hdz and the

Hamiltonian vector field given by ∂

∂z (see [4]).

Figure 2.1

Let γ(t)= (x,y,z(t)) be a solution curve in these coordinates and γ+δ a fixed endpoint

variation of γ (see figure 2.1). Take a surface σ with ∂σ = {γ}∪ {γ+ δ}, so that by Stokes’

theorem

∫
γ+δ

λ−
∫

γ

λ =

∫
σ

ω = sum of areas of projections onto (x,y) planes = O(δ2).

When we have a natural system, the Legendre transform renders the Lagrangian or

Hamiltonian frameworks equivalent, and the JM-principle can be restated as follows (see [4]

pg. 247):

14



Metric form: Consider a manifold Q with Riemannian metric g and potential func-

tion U ∈C∞(Q). The extremals associated to the Lagrangian L = 1
2 g+U having fixed energy

h = H = 1
2 g#−U are up to reparametrization geodesics of the metric (h+U)g on Q.

Applying these considerations to the strong force with our mind towards periodic

solutions, we find the zero energy level of interest. Due to the potential’s homogeneity of

degree −2, the virial identity reads as

Ï = 4H,

where I = ‖q‖2
mm is the moment of inertia. In particular, periodic orbits are only possible when

H = 0. With equal masses, this zero energy metric of interest is then the conformally flat

ds2 =Uds2
Eucl (2.1)

on CN\∆.

We will also study the curvature of this metric after reductions by translations and

complex scaling:

CN\∆→ CN−1\∆→ CPN−2\P∆,

where the first submersion is due to the metric’s invariance under translations and the second

due to the invariance under complex scaling. Note that the homogeneity of degree −2 for the

strong force allows the additional dilation symmetry.

As each reduction is a symmetry of the metric ds2, we may define a metric, ds2
JM,

on the shape sphere via Riemannian submersion. Such geodesics then correspond to the push

15



down of horizontal geodesics upstairs i.e. perpendicular to the fibers. The translation fiber is

spanC{(1, ...,1)}, so that we may simply consider solutions in center of mass zero coordinates.

The second quotient has fiber Vq = spanC{q}, so that horizontal geodesics satisfy the additional

conditions

İ = 〈q, q̇〉= 0, C = 〈iq, q̇〉= 0,

where C is the angular momentum.

Upstairs on CN or CN−1 we will denote the sectional curvature of ds2 at q through

the plane σ by Kq(σ). Downstairs on CPN−2, we must add in the bracket term from O’Neill’s

submersion formula (see appendix B eq. 3.9) and denote the downstairs sectional curvature of

ds2
JM by K[q]([σ]).

2.2 Curvature computations

We first consider sectional curvatures on the reduced space, CPN−2\P∆. The compu-

tations may be manageably done over some invariant surfaces, for instance when N = 4 over

the collinear configurations, which are the fixed set of the isometry q 7→ q and project down to

an RP2\P∆.

Proposition 2.2. For N = 4, we have KRP2(TRP2)< 0 and at the collinear central configura-

tions that KRP2(iTRP2)> 0.

Proof: We will first show that KRP2(TRP2)< 0. Take the coordinates:

2ξ1 = q1−q2−q3 +q4, 2ξ2 = q1−q2 +q3−q4, 2ξ3 = q1 +q2−q3−q4, (2.3)

16



where we have

U =
∑

1≤i< j≤3

1
|ξi−ξ j|2

+
1

|ξi +ξ j|2
,

for ξ j = x j + iy j ∈ C and j = 1,2,3.

Reducing the collinear configurations by dilations and rotations amounts to restricting

the metric

U |R3(dx2
1 +dx2

2 +dx2
3)

to the sphere I = 1 (with antipodal points identified).

That is, in the usual spherical coordinates (I = ρ2), we wish to compute the curvature,

KC, of

ÛI(dφ
2 + cos2

φdθ
2),

where Û :=U |R3 . Set u = ÛI =U |S2 .

Using isothermal coordinates and that the general formula for the curvature of φ(dx2+

dy2) is −∆ logφ

2φ
, we have:

uKC = 1− 1
2

∆S2 logu,

where ∆S2 is the Laplacian on the sphere.

As:

∆S2 logu = (∆ logρ
2Û)|S2 = (∆ logÛ)|S2 +2,

where ∆ is the standard Laplacian on R3, we see KC < 0 is equivalent to (∆ logÛ)|S2 > 0.

Hence it suffices to show that ∆ logÛ > 0.

It is easy to check that when V ⊂ CM is an affine subvariety and f : CM\V → CM′\0

is holomorphic, that
∑M

j=1
∂2 log‖ f‖2

∂z j∂z j
≥ 0. Moreover, the inequality is strict when M′ > 1 and

17



∂ f
∂z j
6= λ f for any λ ∈ C and some j ∈ {1, ..,M} (see eq. 2.7 below).

Hence setting f−i j (ξ1,ξ2,ξ3)= 1/(ξi−ξ j), f+i j (ξ1,ξ2,ξ3)= 1/(ξ1+ξ j) and φ= logU =

log‖ f‖2 we have

∆C3φ :=
3∑

j=1

∂2φ

∂x2
j
+

∂2φ

∂y2
j
> 0.

Take x = (x1,x2,x3) and y = (y1,y2,y3). The symmetry φ(x,y) = φ(y,x) implies

∂kφ

∂xk
j
(x,y) =

∂kφ

∂yk
j
(y,x).

Now since φ(x,0) = φ(0,x) = φ(x,x)+ const., we have

2(
∂2φ

∂x2
j
(x,x)+

∂2φ

∂y2
j
(x,x)) =

∂2φ

∂x2
j
(x,0),

and so

∆ logÛ = 2∆C3φ(x,x)> 0

as desired.

It remains to demonstrate some positive curvature. Let va = vi
a∂xi be orthonormal and

tangent to the I = 1 sphere contained in R3 = (x,0). We will use the equation (see appendix B

eq. 3.8)

U3K (σ) =−U
2
(∂2

1U +∂
2
2U)+

3
4
((∂1U)2 +(∂2U)2)−‖∇U/2‖2,

where σ⊂Cq⊥ is spanned by the ds2 orthonormal vectors ua = iva, and ∂a f = d f (ua). Note that

O’Neill’s bracket term (eq. 3.10 in appendix B) is zero because of the u1 · iu2 factor vanishing

at these real planes.

Observe that ∇U |(x,0) is totally real, i.e. it is in the span of v1,v2 and q = (x,0). Hence

U3K (iTRP2) =−U
2

∆yU−
1
4
‖∇U‖2
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and

U3K (TRP2) =−U
2

∆xU +
1
2
‖∇U‖2− 3

4
(∇U ·q)2.

Adding these last two expressions we have

U3(K (iTRP2)+K (TRP2)) =−U
2

∆U +
1
4
‖∇U‖2−3U2. (2.4)

We conjecture that eq. 2.4 is non-negative over all of RP2 but will only show it here at the

central configurations, where ∇U =−2U(q)q (recall ‖q‖= 1).

At such points eq. 2.4 becomes

−U
2

∆U−2U2

and one computes that ∆U = (4−2n)U so that eq. 2.4 is

(n−4)U2,

which is zero here since n = 4. Hence at the collinear central configurations we have:

KRP2(iTRP2) =−KRP2(TRP2)> 0,

since we showed previously that KRP2(TRP2)< 0.

Proof of theorem 1: Proposition 2.2 proves theorem 1 for N = 4. For N > 4, and

configurations near a quadruple collision the metric is dominated by the JM-metric terms corre-

sponding to N = 4. Hence the signs of the sectional curvatures in these directions will retain the

mixed signs found in proposition 2.2. For N = 3 and non-equal masses, it was shown in [54]
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that the curvatures are mixed. Hence for N > 3 and non-equal masses we retain these mixed

signs near triple collisions.

REMARK: In [38] Josué Melendez has also shown the curvature to be negative over

the invariant parallelogram surfaces (see [15]: these are the fixed point set of (q1,q2,q3,q4) 7→

(−q2,−q1,−q4,−q3) and project down to a sphere minus 4 points). Recently, Melendez has

computed that the invariant trapezoid surface (the fixed point set of (q1,q2,q3,q4) 7→ (q2,q1,q4,q3))

has negative curvature as well.

Now we consider sectional curvatures upstairs through complex planes. By using a

‘Schwartz-type principle’ from [44] the computations over these complex planes become much

more manageable. In what follows we may just as easily treat the general case and even obtain

some explicit formulas for the sectional curvatures. Consider then any masses mi > 0 with a

general 1/rα potential and fix the energy at some level H = h.

For a complex plane σ define

Hq(σ) := sup
f∈H (D,CN\∆) with f (0)=q,C f ′(0)=σ

{Gaussian curvature at z = 0 of f ∗ds2
JM}, (2.5)

where D⊂C is a disk. We call Hq(σ) Kobayashi’s sectional curvature at q through σ (see [44]).

The main tool for the proof of theorem 3 is the following:

Lemma 2.6. Let q ∈ CN\∆ and v ∈ CN . Complete v to an orthonormal complex mass metric

basis v1 = v/‖v‖,v2, ...,vN . Then

Kq(Cv) = Hq(Cv)−
∑N

j=2 |∂ jU |2

(h+U)3 .
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Proof: See appendix B.

A central configuration (see [50]) is a configuration q0 for which z(t)q0 is a so-

lution for some z(t) ∈ C, i.e. the solution keeps the same shape, q0, for all time evolving

only by dilations and rotations. Substitution into the equations of motion yields the conditions

∇U(q0) = λq0 for some constant λ and z(t) satisfies a 1/rα central force problem. Note that the

rotation invariance of U implies the constant λ above is real.

For a central configuration q0, the space Cq0 is invariant and carries dynamics of a

1/rα central force problem. This problem has the JM-metric (h+ r−α)dzdz, which has curva-

ture − α2hr2α−2

2(hrα+1)3 , making one direction of theorem 3 not too strange. It was a pleasant surprise

to find that conversely a certain curvature value can in fact determine a central configuration!

Proof of theorem 3: As in Lemma 2.6, take an orthonormal basis with v1 = q/‖q‖.

Now we have:

Hq(Cq) = Kq(Cq) ⇐⇒ 0 = ∂ jU(q) = 〈∇U(q),v j〉, for j > 1 ⇐⇒ ∇U(q) = λq.

It remains then to find the explicit value for the curvature at such configurations. We will make

use of the following general formula in the proof: let g = (g1, ...,gk) : D→Ck be holomorphic,

then

−∂∂ log(c+‖g‖2) =
|〈g,g′〉|2−‖g‖2‖g′‖2− c‖g′‖2

(c+‖g‖2)2 . (2.7)

Let f : D→ CN be a holomorphic map with f (0) = q and f ′(0) = λv (later we will set v = q).

Then Kobayahi’s holomorphic sectional curvature (eq. 2.5) is the supremum over all such maps
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of the Gaussian curvature of f ∗(h+U)ds2 = (h+U( f (z))‖ f ′(z)‖2dzdz =: 2ρ f dzdz at z = 0.

This Gaussian curvature is given by − ∂∂ logρ f
ρ f
|z=0.

First we can see that the supremum is attained by a linear map z 7→ q+ zv by consid-

ering

− ∂∂ logρ f

ρ f
=−∂∂ log(h+U( f (z))

ρ f
− ∂∂ log‖ f ′(z)‖2

ρ f
. (2.8)

Using that f = ( f1, ..., fN) is holomorphic (so ∂ fk = 0), the first term of (2.8) is

ρ
−1
f (

(
∑

∂ jU∂ f j)(
∑

∂kU∂ fk)

(h+U)2 −
∑

∂k∂ jU∂ fk∂ f j

h+U
),

which contains no second derivatives of f . As we have fixed f (0) and f ′(0) up to complex

scaling, when evaluated at z = 0 this first term is then independent of choice of f .

By applying eq. 2.7 to the second term of (2.8), we obtain

|〈 f ′, f ′′〉|2−‖ f ′‖2‖ f ′′‖2

‖ f ′‖4 ,

which by Cauchy-Schwartz achieves its supremum of 0 exactly when f ′′(0) = λ f ′(0), for in-

stance when f (z) = q+ zv.

To evaluate Hq(Cv) =−2 ∂∂ log(h+U(q+zv))
(h+U(q))‖v‖2 |z=0, set

gi j(z) =
√mim j

(qi−q j + z(vi− v j))α/2 ,

so that U(q+ zv) = ‖g‖2 and

g′i j(z) =−
α

2

√mim j(vi− v j)

(qi−q j + z(vi− v j))1+α/2 .

Now taking v = q we have g′(0) =−α

2 gi j(0), and so by eq. 2.7

−∂∂ log(h+U(q+ zq))|z=0 =−
hα2U(q)

4(h+U(q))2 .
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Hence when q is a central configuration:

Kq(Cq) = Hq(Cq) =− hα2U(q)
2(h+U(q))3‖q‖2 .

2.3 The Collinear 4-body problem

Now we will enjoy a few fruits of our labor by finding some dynamical consequences

of our curvature computations in the collinear 4-body problem. Roughly, since the collinear

4-body problem is a surface split up into invariant disks (each disk corresponding to an ordering

of the masses) and each disk is negatively curved, we can show that the geodesics on each disk

behave as in the hyperbolic plane.

Proof of theorem 2: Continue with the coordinates ξ j = x j + iy j of eq. 2.3. After the

spherical projection:

u =
x1 + x2

1− x3
,v =

x1− x2

1− x3

of the I = 1 sphere, our metric U(
∑

dx2
i )|S2 becomes λ

2 (du2 +dv2) with:

λ =
1
u2 +

1
v2 +

16
((u−1)2 +(v−1)2−4)2

+
16

((u+1)2 +(v+1)2−4)2 +
16

((u+1)2 +(v−1)2−4)2

+
16

((u−1)2 +(v+1)2−4)2 .
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The RP2 of collinear shapes is divided into 12 = 4!/2 open domains by the collision

locus. All of these domains are isometric and resemble triangles, the interiors of which are

specified by an ordering of the masses on the line (mod an overall flip due to a rotation by π) (see

figure 2.2). We focus on one such domain T corresponding to the ordering q1 ≤ q2 ≤ q3 ≤ q4.

Here the boundary in u,v coordinates translates to:

u = 0 ⇐⇒ q1 = q2,

v = 0 ⇐⇒ q3 = q4,

w = (u−1)2 +(v+1)2−4 = 0 ⇐⇒ q2 = q3.

T
u

v

Figure 2.2 The region T we are focusing on in u,v coordinates.
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Near a binary collision point interior to T (for example near q1 = q2 in a region

0 <−u << 1 and v,−w≥ δ > 0) the metric takes the form

(
1

2u2 +O(1))(du2 +dv2). (2.9)

Near the simultaneous binary collision, i.e. in the region 0 <−u,v << 1, through the

change of variable u+ iv = z 7→ z2, the metric takes the same form as eq. 2.9.

Fix our attention on unit speed geodesics and note that by eq. 2.9 above if a geodesic

γ passes sufficiently close to the boundary it behaves as a geodesic in the hyperbolic plane −

for instance α(γ)∩∂T must be a point (see figure 2.3).

u = 0

Figure 2.3 Sufficiently near the boundary geodesics behave as in the upper half plane.

Now fix some q∈ ∂T\{ triple collisions} and p∈ ∂T\{q}. We first show the existence

of a geodesic from p to q.

Near q (by eq. 2.9), we have that every geodesic γ with ω(γ) sufficiently near p and

α(γ) near q intersects some compact set I, see figure 2.4.

Next take a sequence of points qi ∈ T o with qi→ q and a sequence of points pi ∈ T o

with pi → p. Let γi be the unique geodesic from pi to qi. Then for i large enough all such

geodesics intersect I in some point xi = γi(ti). Let vi = γ̇i(ti). Now due to the compactness,

(xi,vi)→ (x,v) ∈ I×R2 and the geodesic γ(x,v) goes from p to q.
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I

q p

Figure 2.4 The compact set I.

For uniqueness, note that when we have both p,q ∈ ∂T\{ triple collisions } then the

angles at the boundary between any two geodesics from p to q are zero. So if there were two

such geodesics bounding a region R, the Gauss-Bonnet theorem yields

2π =

∫
R

K dA+

∫
∂R

κg ds =
∫

R
KdA+π+π,

which is impossible by the negative curvature (proposition 1). Hence in this case such a geodesic

is unique.

REMARKS: Due to the covering of the exponential map, every geodesic passes suf-

ficiently close to the boundary and hence is characterized uniquely by the points α(γ),ω(γ)

(except possibly for geodesics beginning or ending in triple collision). The dynamics here on

this collinear problem are an attractive case of the integrable Calogero-Moser system. In [38]

we also observe dynamical consequences from our curvature computations in the parallelogram

4-body problem. The parallelogram problem is an invariant ‘shirt’, or sphere with 4 punctures.

As a consequence of the negative curvature, every tied class on this shirt is realized by a unique

periodic solution.

26



QUESTION: Is there a unique collinear solution connecting two triple collisions? A

binary collision to a triple collision?
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Chapter 3

Newtonian Force

Here we will examine the syzygy sequences of some orbits arising out of perturbation

methods in the planar 3-body problem that were established by Féjoz in [25, 26]. We begin

by setting up the unperturbed first approximations or main problems ([50], §7.1) we will study.

In this section we use notations and computations from appendix A for our Kepler problem

coordinates and perturbation expansions.

3.1 The main problems

Let qi ∈ C, i = 0,1,2 represent the position of the bodies of mass µi, and pi = µiq̇i

their momenta. The three-body problem flow is the Hamiltonian flow of

H =
2∑

i=0

|pi|2

2µi
−
∑
i< j

µiµ j

|qi−q j|
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on T ∗(C3\∆) with ω = ℜ(
∑

d pi∧dqi). In the symplectic Jacobi coordinates (see appendix A)

with the center of mass zero, we may write H = HKep +Hper where

HKep =
2∑

i=1

|Pi|2

2mi
− miMi

|Qi|

is a Hamiltonian for two uncoupled Kepler problems and

Hper =
m2M2

|Q2|
− µ1µ2

|Q2−σ0Q1|
− µ0µ2

|Q2 +σ1Q1|

is the perturbing part. The new mass constants are given by 1
m1

= 1
µ0
+ 1

µ1
, 1

m2
= 1

µ0+µ1
+ 1

µ2
and

M1 = µ0 +µ1,M2 = µ0 +µ1 +µ2.

In order to justify its name we impose some conditions from [25] on our configu-

rations so that the perturbing part will be small. The condition |Q2| > max{σi}|Q1| prevents

the perturbing part from blowing up, and can be ensured by taking initial conditions leading to

nested osculating ellipses mod rotations: a1(1+e1)< a2(1−e2). We are considering here q2 as

the outer body, which we will always take to be rotating counterclockwise around the center of

mass of the q0,q1 system. Note that for the ellipses to not intersect we must exclude a collision

outer ellipse, which we do by imposing the condition e2 ≤ eM
2 < 1 for some constant eM

2 . Finally

the condition

µa =
(m1 +µ2)M2

M2
1

a1

a2
< ε

ensures the perturbing part is uniformly ε-small, where we take µ = (m1+µ2)M2
M2

1
and a = a1

a2
< 1

2 .

The parameter a is small in the lunar region where the outer body is distant while the parameter

µ is small exactly in the planetary region where µ2 and one of the inner masses are small. The

region of configurations satisfying the above conditions is called the perturbing region.

29



By taking symplectic action-angle coordinates (Delaunay or Poincaré, see appendix

A) for the Kepler problems, one has the ‘fast’ angles λi, where i = 1,2 for the inner or outer

Kepler problem with corresponding actions Λi. How does the perturbing part disturb this situa-

tion?

As the syzygies occur over time scales in the fast variables, λi, HKep will still serve

usefully for analyzing the syzygy sequences. However HKep(Λ1,Λ2) does not take account

of how the ellipses slowly deform and as it depends on only two of the three actions is too

degenerate to continue solutions. To see how the orbits behave when their mutual attractions

are taken into account we will use the study of the secular dynamics (from siécle=century) by

Féjoz [26]. The main approximation for the secular dynamics is the averaged Hamiltonian:

〈H〉= HKep + 〈Hper〉,

where 〈Hper〉 := 1
(2π)2

∫
T 2 Hper dλ1dλ2. These secular averaged terms are those which cannot be

annihilated through symplectic flows of auxiliary Hamiltonians.

In the lunar region, Hper has an expansion in powers of a, which renders a represen-

tation of this secular dynamics by averaging some of the leading powers in this expansion as

carried out in [26]’s appendix.

3.2 Some syzygy sequences of the main problems

As ε→ 0, the deformations of the ellipses from the secular dynamics is much slower

than the motions along the ellipses, so it will still be useful to determine the syzygy sequences

arising from just HKep.
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Syzygy sequences for two uncoupled Kepler problems:

In Delaunay coordinates, HKep =−
m3

1M2
1

2Λ2
1
− m3

2M2
1

2Λ2
2

and the flow is a line of slope n1/n2

on the mean anomaly (`2, `1) torus, where ni =
∂HKep

∂Λi
are the mean motions. The syzygy loci

form curves on this torus, and hitting one of these curves results in a certain syzygy. To sketch

these curves it is helpful to consider separately the cases of prograde motion, when G1/G2 > 0

and both ellipses are traversed in the same direction, versus retrograde motion, when G1/G2 < 0

and they are traversed in opposite directions.

Consider first the case of retrograde motion and let g = g1−g2. As we sweep out the

ray of the bodies being alligned (a 1 syzygy) in the direction of increasing `2 (and so decreasing

`1), we pass from `1 = 0, `2 = `2(g) to `1 = −2π, `2 = `2(g)+ 2π and so oscillate around the

line

`2(g) = `2 + `1

(see figure 3.1). Likewise, when sweeping out the ray of the bodies being in opposition (a 0

syzygy) we oscillate around the line

`2(g)+π = `2 + `1.

Similarly, for prograde motion the 1 syzygy locus oscillates around the line `2(g) = `2− `1 and

the 0 locus around the line `2(g)+π = `2− `1.

Proposition 3.1. Consider two nested Keplerian ellipses with eccentricities ei ∈ [0,1). Then
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Figure 3.1 Sweeping out a ‘1’ syzygy ray with retrograde motion (the inner ellipse is say more eccentric

than the outer ellipse). On the right is the corresponding curve on the (`2, `1) torus.

the uncoupled Keplerian flow has a syzygy sequence of the form

...1a−10b−11a00b01a10b1 ...

If the motion is prograde the sequence of exponents ai,bi may be determined by rotation maps

(eqs. 3.2, 3.3), while if the motion is retrograde we have ai = bi = 1. In the special case that

n1/n2 = 1 and the motion is prograde, the syzygy sequence is either empty or consists of a single

symbol.

Proof: The prograde n1/n2 = 1 case is clear: we either miss the loci entirely or

repeatedly intersect one of them. Suppose in the prograde case that n1/n2 > 1. The syzygy

sequence will then alternate between hitting the 0 locus and the 1 locus, and it remains to

describe the stutters via the sequences ai,bi of exponents.

Stutters occur when it is possible for the flow line to be tangent to these syzygy loci.

To compute the slope of the syzygy loci, first note that in polar coordinates, the syzygy loci are

given by θ1 = θ2 or θ1 = θ2+π. Now by dθi =
Gi

mir2
i
dt = Gi

mir2
i ni

d`i we have that the slope 1 = dθ1
dθ2
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along the syzygy loci is transformed to

d`1

d`2
=

m1G2|Q1|2

m2G1|Q2|2
n1

n2
.

When the motion is retrograde then, since the syzygy loci have negative slope and the

flow has positive slope, we alternate between the two symbols 0 and 1, i.e. ai = bi = 1.

To analyze the syzygies for prograde motion, we ‘project the tangencies’. Tangencies

of the flow line to the syzygy locus occur when n1
n2

= m1G2|Q1|2
m2G1|Q2|2

n1
n2

, which is at the intersection of

the ellipses:

r = α1x+β1y+ γ1, r = α
′x+β

′y+ γ
′,

where α′ =
√

m2G1
m1G2

α2,β
′ =

√
m2G1
m1G2

β2,γ
′ =

√
m2G1
m1G2

γ2. In particular, there are either zero, one or

two tangencies.

When there are one or zero possible tangencies, then the syzygies alternate between

the 0 and 1 syzygy loci as in the retrograde case and hence ai = bi = 1. The remaining case

therefore is when there are two possible tangencies.

Consider the universal cover R2 of our torus and two consecutive tangency points of

the ‘1’ syzygy locus. Project these along the flow lines to the ‘base line’, which the syzygy loci

oscillate around to obtain points T1,T2 ∈ {`2(g) = `2− `1} (see figure 3.2).

The rotation map R(x) = x + π√
2

n1+n2
n1−n2

mod 2π
√

2 determines where the flow line

successively intersects the base line. One may use this map to determine the sequences ai,bi as

follows.

Let k be the least integer s.t. |T1−T2| ≤ 2π
√

2k and 0≤ τ1 ≤ τ2 < 2π
√

2 be represen-

tatives of Ti measured along the base line `2(g) = `2− `1.
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Figure 3.2 Projecting tangencies onto the base line.

We first show by induction that:

If τ1 = τ2 then ai = 2k+1. (3.2)

When k = 0 there is one tangency, and we have already seen that here there are no

stutters, i.e. ai = 1.

Passing from k to k+1 is accomplished by considering figure 3.3.

Figure 3.3 When τ1 = τ2, the stutter count is unaffected by a shift (top). Passing from k to k+1 increases

the intersections by 2 (bottom).

When τ1 6= τ2, we may shift the τ1 = τ2 case as in figure 3.4 to obtain:
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Figure 3.4 At the tangency, passing from |T1−T2|= 2π
√

2k to |T1−T2|> 2π
√

2k adds one stutter from

the τ1 = τ2 case. Shifting the flow line to either side increases or decreases the stutter count by one.

If τ1 6= τ2 then ai =



2k+1 Ri(x0) ∈ [0,τ1)∪ (τ2,2π
√

2]

2k Ri(x0) ∈ {τi}

2k−1 Ri(x0) ∈ (τ1,τ2)

, (3.3)

where x0 ∈ [0,2π
√

2) is some distance measured along the baseline where the orbit of interest

intersects at the initial time. Likewise one may determine the sequence bi by projecting the ‘0’

tangencies onto the baseline `2(g)+π = `2− `1.

REMARK: Although they are not admitted into the perturbing region, the syzygy se-

quences for intersecting ellipses can be determined as well by the above method of ‘projecting

tangencies’ and using a rotation map; one just needs to divide the baseline into more subinter-

vals.

35



Some secular syzygy sequences:

The secular dynamics are that of 〈H〉= 1
(2π)2

∫
T 2 Hd`1d`2. As the fast angles `i have

been averaged out, the secular dynamics take place on the space of ellipses with fixed semi-

major axes and a common focus. The system is integrable, having the additional integral G =

G1 +G2. Fixing Λi and G and modding by rotations, we have a Hamiltonian flow on a sphere.

This sphere has symplectic Delaunay coordinates G1,g = g1− g2 away from the poles. It can

be parametrized in non-symplectic spherical coordinates as (e1 cosg,e1 sing,ε1), where e1 =

sinφ1,ε1 = cosφ1 for φ ∈ [0,π]. These secular dynamics in the perturbing region are described

in [26] (see figure 3.5).

Figure 3.5 This figure from [26] shows a few cases of the singular points of the secular dynamics on the

(e1 cosg,e1 sing,ε1)-parametrized sphere. The equator corresponds to collision inner ellipses dividing

the sphere into upper and lower hemispheres of prograde or retrograde motion.

We will focus in what follows on the lunar region, by letting a = a1
a2
→ 0 to enter the

perturbing region. Because the slow secular variables change only after the inner ellipse has

completed many orbits, the syzygy sequences we have found for uncoupled Kepler problems

are preserved provided we stay far from the tangencies to the syzygy locus.
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Proposition 3.4. In the lunar region tangencies are possible only when the inner ellipse is

oriented prograde and near a degenerate collision ellipse. Angular momentum zero is possible

only when the outer mass or the outer and one inner mass are small.

Proof: The condition for tangencies ˙̀1
˙̀2
= m1G2|Q1|2

m2G1|Q2|2
n1
n2

can be written as

1+O(a) = a3/2

 
M2

M1

(1+ e2 cos f2)
2(1− e2

1)
3/2

(1+ e1 cos f1)2(1− e2
2)

3/2 ,

where the O(a) term comes from the secular dynamics. Recall that we have bounded the outer

eccentricity above, e2 ≤ eM
2 < 1, from which it follows that

1≤Cst.

 
M2

M1

a3/2
√

1− e1
,

where Cst. is a constant depending on eM
2 .

Normalize the masses so that M2 = µ0+µ1+µ2 = 1, and suppose that 1−e1 = O(ak)

and M1 = O(am) for some k,m ≥ 0 with k +m = 3. If we wish to remain in the perturbing

region as a→ 0, then we must have a µ0µ1+µ2M1
M3

1
→ 0 as a→ 0, which only holds if m < 1

2 .

Hence the only way to satisfy the tangency condition and remain in the lunar regime is when

e1 = 1−O(ak) for some k ∈ (5
2 ,3].

Imposing angular momentum zero and staying in the perturbing region (where e2 ≤

eM
2 < 1) forces us to remain in the retrograde hemisphere of figure 3.5. In particular we will be

far from stutters if the orbit remains in the perturbing region. In fact we may rewrite G1+G2 = 0

as

a≥Cst.
µ2

2M2
1

µ2
0µ2

1(1− e1)
,

where Cst. depends on eM
2 . It follows that angular momentum remains possible in the lu-

nar regions provided we take µ2 = O(am/2),µ0 = O(a`/2),e1 = 1−O(ak) with k, `,m ≥ 0 and
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m− `− k ≥ 1.

To analyze the syzygy sequences for orbits passing near inner collisions, we use the

Levi-Civita regularization.

Proposition 3.5. If a near inner collision orbit of the secular dynamics has e1 = 1−O(ak) and

k /∈ (5
2 ,3], then it has a syzygy sequence of the form

...(10)a0(01)a1(10)a2 ...,

where ai ∈ N are O(a−3).

Proof: Levi-Civita regularize the inner body (appendix 3.3). Then we have Q1 = z2,

where z solves a Harmonic oscillator. By shifting the origin of the regularized time, τ, we may

write

z = acos(bτ)+ iccos(bτ+d),

for some constants a,c,d and b =
√

M1
2
√

a1
. Let θi = arg(Qi).

A ‘1’ syzygy occurs when we have θ1 = θ2, i.e.

tan
θ2

2
=

ccos(bτ+d)
acos(bτ)

,

while a ‘0’ syzygy occurs when

tan
θ2 +π

2
=

ccos(bτ+d)
acos(bτ)

.

In figure 3.6 we sketch the syzygy curves for small G1-values on the torus coordina-

tized by (θ2,bτ). The flow line on these tori is not straight, but tangent to the direction field

38



dθ2
bdτ

= r1C2
br2

2
. In the lunar regions this solution curve is then increasing, but very slowly: dθ

bdτ
is on

the order of O(a3/2).

Figure 3.6 The syzygy loci on the regularized (θ2,bτ) tori for different values of G1. We sketch for

values of bτ ∈ [0,π] as the picture is identical (double cover) for τ ∈ [π,2π]. When G1 = 0 the inner

collisions occur along the vertical line bτ = π/2.

Note that when G1 6= 0 we may determine the syzygy sequences without Levi-Civita

regularization by proposition 3.1. Namely during prograde motion there are at most two tan-

gency points of the flow to the syzygy curves, and we only pick up an even number of syzygies

of a certain type by hitting these tangency points.

Now we consider the syzygy sequence of a near inner collision orbits (see [25, 26]).

The secular dynamics of such an orbit are that it switches between prograde motion and retro-

grade motion (figure 3.7). We also sketch the syzygy loci on the torus T 3 = (θ2,bτ,g) where

the full orbit flows in figure 3.7.

This secular system is integrable, and the loci of collision curves and tangencies to

the syzygy curves is one dimensional. Hence it is always possible to choose initial conditions

to avoid this set, and one obtains a syzygy sequence of the form

...(1n00m0)a0(01)a1(1n10m0)a2(01)a2 ...,
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Figure 3.7 On the left is an inner collision secular orbit (G1 and g’s slow change) drawn on a sphere

whose height is like G1 and equatorial angle is like g. On the right are some sections of the (θ2,bτ,g)

torus over the secular dynamics with the syzygy curves depicted.

where the ni,mi are odd (avoiding the tangencies) and determined as in proposition 3.1 over the

prograde part of the motion. As the ni,mi are odd, by cancelling their stutters we find a syzygy

sequence of the form

...(10)a0(01)a1(10)a2 ...,

where the ai occur on the time scale (dg
dt )
−1, which is O(a−3).

Finally, recalling the proof of proposition 3.4, provided one chooses e1 = 1−O(ak)

for k /∈ (5
2 ,3] there will be no prograde tangencies and thus no stutters. In this case the true

syzygy sequence will be of the form ...(10)a0(01)a1 ... Furthermore these orbits are ‘far from

tangencies’ in the sense that the orbit always intersects the syzygy locus at an angle bounded

below by a fixed constant.
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3.3 Some syzygy sequences in the lunar regions

In this section we will verify some non-degeneracy conditions, which allow the sec-

ular orbits in the lunar regions to be continued to the full 3-body problem. These arguments

are well known (cf. [25, 28]). The only contribution here is the description of these orbits by

their syzygy sequences. Having verified in the previous section certain cases when the unper-

turbed orbits are far from tangencies to the syzygy loci, we may conclude that these continued

solutions, which remain in the perturbing region, retain the same syzygy sequences of §3.2 es-

tablishing theorem 4.

Quasi-periodic orbits:

We will apply a KAM theorem in order to continue quasi-periodic, angular momen-

tum zero orbits over the fixed point of the secular dynamics near a circular inner ellipse (near a

pole on the secular dynamics sphere of figure 3.5).

To state this theorem, let us recall that a vector α ∈ Rn is called Diophantine if there

exist constants γ,τ > 0 s.t. for every k ∈ Zn\0, we have

|α · k| ≥ γ

|k|τ
.

We write Dγ,τ for the set of all such vectors with the constants γ,τ (see figure 3.8). Also we let

(r,θ) ∈ Rn×T n be conjugate coordinates and Bk be the unit ball in Rk.

Theorem 5. [28]. Fix γ > 0 and τ≥ n−1. Consider an analytic family of Hamiltonians of the
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Figure 3.8 A depiction of the set Dγ,τ in R2. Note that if α ∈ Dγ,τ then so is λα for λ≥ 1. Dγ,τ forms a

‘transversally Cantor set’ that is like C×R+, where C is the Cantor set.

form

Fo
s = co

s +α
o
s · r+O(r2;θ),

where s ∈ Bk are the parameters of the family and co
s ∈R,αo

s ∈Rn. If αo
0 ∈Dγ,τ then there exists

a constant Cst. > 0 (depending on τ and the analycity width of Fo
s ) such that whenever a family

of analytic Hamiltonians Fs satisfies

|Fs−Fo
s |Bk ≤Cst.γ2

then it follows that:

(i) There exists a map Bk→ Rn,s 7→ αs with |αs−αo
s |<< 1.

(ii) Whenever αs ∈Dγ,τ, then Fs = cs+αs ·r+O(r2;θ) (i.e. Fs has an invariant torus).

REMARKS: The criteria αs ∈Dγ,τ of (ii) may be vacuous! It is to ensure the hypothe-

ses of (ii) hold that one imposes some non-degeneracy assumptions on αo
s so that (i) implies
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that condition (ii) is not vacuous. Two such non-degeneracy conditions are illustrated in figure

3.9.

It is not necessary that αo be Diophantine at the center of the ball, but rather it suffices

to know αo
s0
∈Dγ,τ for some s0 ∈ Bk. Moreover the parameters s may vary only over some open

set that is topologically Bk provided the estimates hold uniformly over this open set.

Figure 3.9 The Kolmogorov nondegeneracy condition is that s 7→ αo
s is a diffeomorphism. In this case

α near αo implies we also find Diophantine frequencies for α. The Pyartli condition is that αo should be

a skew map: its image is not contained in any hyperplane. This condition also ensures that sufficiently

close α will have some Diophantine frequencies as well (see figure 3.8).

Our task in applying theorem 5 to the Kepler problem is first to determine what to

take for Fo
s and Fs. To do this let us recall from the appendix 3.3 the expansion

H = HKep +HQuad +O(ε4),

where a1/a2 ∼ ε since we are exploring the lunar regions. In the ‘polar Poincaré’ variables and

with angular momentum C = 0 we have (see appendix §3.3 eq. 3.7)

HQuad = c1 +α1ρ1 +O(ρ2
1),
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where c1 = cm
Λ1
Λ3

2
and α1 = αm

1
Λ3

2
for some constants cm,αm depending on the masses.

If we set r = (Λi −Λo
i ,ρ1) and take Fo

s as the Taylor expansion of HKep + HQuad

around Λi = Λo
i ,ρ1 = 0, we have

Fo
s = co

s +α
o
s · r+O(r2),

for co
s = HKep(Λ

o
i ) + c1(Λ

o
i ) and αo

s = (no
1 + cm

1
(Λo

2)
3 ,no

2 − 3cm
Λo

1
(Λo

2)
4 ,αm

1
(Λo

2)
3 ). By taking s =

(u,v) = ( 1
Λo

1
, 1

Λo
2
) as our parameters we have

α
o
s = (au3 +bv3,v3(c+dv/u),ev3),

where a,b,c,d,e are some mass constants. Taking an expansion of H in the same parameters

for Fs, we have |Fs−Fo
s |= O(ε4).

The next item to take care of is that αo
s satisfies a non-degeneracy condition. We will

check the ‘Pyartli condition’, that the frequency map is skew for angular momentum zero. This

is equivalent to (see [28] §7) the non-vanishing of

det[∂2
uα

o
s ∂

2
uvα

o
s ∂

2
vα

o
s ].

A quick computation gives this determinant as adev4/u 6= 0, so indeed the frequency map is

skew.

Finally, although it is tempting to fix γ,τ and let ε→ 0, this may be problematic

because the frequency αo
s depends on ε. Namely, we have

α
o
s = O(1,ε3/2,ε3/2).

There is a Lemma of Rüssman ([28] pg. 24) that states that the measure of {s : αo
s /∈ Dγ,τ}
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is O((γ/ε3/2)1/µ) for some µ > 0. Hence as ε→ 0 we have no way to ensure that there exist

αo
s ∈ Dγ,τ for a fixed γ,τ!

We may circumvent this issue by scaling γ since we know that the closeness required

in theorem 5 is O(γ2). Hence take γ = εmγ and fix τ > n− 1. Then the closeness required

for theorem 5 is O(ε2m), while Rüssman’s Lemma implies that the measure of {s : αo
s /∈Dγ,τ} is

O(ε(m−3/2)/µ). Recalling our Legendre polynomial expansion has shown that |Fs−Fo
s |= O(ε4),

we can see a nice choice of m is between 3/2 and 2.

In summary, if we take m ∈ (3/2,2), then as ε→ 0, we find that the closeness of

the three body problem to the approximation HKep +HQuad becomes sufficient to apply theo-

rem 5 (since O(ε4)< O(ε2m)). Finally, the skew condition has been verified and by Rüssman’s

Lemma there are some frequencies of αo
s ∈ Dγ,τ (the measure of their complement nearby such

frequencies is O(ε(m−3/2)/µ) and goes to zero). Again by the skew condition and the fact that

αs is near αo
s , there are some frequencies of αs ∈ Dγ,τ, so that condition (ii) of theorem 5 is not

vacuous!

Periodic orbits:

Here we apply an implicit function theorem argument similar to that in Poincaré [63]

§42 to continue periodic orbits over fixed points of the secular dynamics. This ‘averaging

approach’ is also described in [57, 65].

Let us begin with the scaled coordinates of Féjoz ([25] pg. 10), defined by choosing

a Λ0 such that in the limit as ε→ 0 one has min{Λi}
Λ0

∈ (0,∞). The rescaled coordinates are

45



Λ j = Λ0Λ̃ j,ξ j =
√

Λ0ξ̃ j,η j =
√

Λ0η̃ j,λ j = λ̃ j, which by abuse of notation we continue to write

without the twiddle’s. We will write the rescaled Hamiltonian as F = H/Λ0. Now fix the

angular momentum C. Féjoz has shown that this rescaled Hamiltonian has an expansion over

the asynchronous region (contained inside the lunar region) as:

F = FKep(Λi)+ 〈F〉(Λi,ξ1,η1)+Fcomp(Λi,λi,ξ1,η1),

where FKep is a Hamiltonian for two uncoupled Kepler problems and 〈F〉= O(ε) is the average

of F over the fast λi variables and Fcomp = O(ε2).

Consider a periodic orbit of F when ε = 0, i.e. an orbit of FKep and initial conditions

Λo
i yielding resonant frequencies:

k1no
1 + k2no

2 = 0,

for some (k1,k2) ∈ Z2\0. We will take ξo
1,η

o
1 to correspond to the fixed point of the secular

dynamics near the inner circular ellipse.

To continue this orbit we will examine a first return or Poincaré map in the following

flow straightening coordinates. Since k1,k2 may be chosen relatively prime, there exist h1,h2 ∈

Z\0 s.t. k1h2− k2h1 = 1. That is to say

ϕ =

ϕ1

ϕ2

=

k1 k2

h1 h2


λ1

λ2

= Mλ

defines a map from (R/2πZ)2 to itself. Take

MtJ = Λ−Λ
o

as the translated symplectic lift (so that J = 0 corresponds to Λo).
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The equations of motion for FKep are then

J̇ = 0, ϕ̇ = ω(J) =

ω1

ω2

=

 αoJ1 + γoJ2

ωo
2 +βoJ2 + γoJ1

+O(J2), (3.6)

where αo = −no
1k2

1
Λo

1
− no

2k2
2

Λo
2
6= 0. In particular our periodic orbit of FKep has been ‘straightened’

into an orbit of period 2π/ωo
2 given by:

J = 0, ϕ1 = ϕ
o
1, ϕ2 = ω

o
2t +ϕ

o
2.

Our Poincaré section will be ϕ2 = 0 with Poincaré map Pε (see figure 3.10). Note

that since ∂J2F 6= 0 in a neighborhood of the periodic orbit, the implicit function theorem gives

J2(J1,ξ1,η1,ϕi) on a fixed energy surface. So by keeping the energy fixed, it suffices to consider

the returns of the variables J1,ξ1,η1,ϕ1 to the ϕ2 = 0 section.

Figure 3.10 The Poincaré return map to the ϕ2 = 0 section.

The goal is now to show that at ε = 0, the map ψ = P0− id has a non-degenerate

zero, allowing us to continue this root and hence periodic solution for small ε by the implicit

function theorem. However when ε = 0 we have ψ(J1,ξ1,η1,ϕ1) = (0,0,0,2πω1/ω2), which
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is very degenerate due to all of Ji,ξ1,η1 being constant under the Keplerian flow. We will use

the following ‘scaling’ of Poincaré to see the higher order terms in a modified return map.

Consider J1; since J̇1 =−∂ϕ1Fcomp we have

Jt
1− Jo

1 =−∂ϕ1

∫ t

0
Fcomp(Js

1,J2(Js
1,ξ

s
1,η

s
1,ϕ

s
i ),ξ

s
1,η

s
1,ϕ

s
i ) ds,

where Fcomp = O(ε2) and wish to continue zeroes of this map from ε = 0. However it suffices

to continue a zero of Jt
1−J0

1
ε2 , since this is a stronger condition. Hence take F2 := Fcomp/ε2 and

send ε→ 0. We arrive at the map

J1 7→ −
∫ 2π/ω2

0
∂ϕ1F2(J1,J2(J1),ξ1,η1,ω1s+ϕ1,ω2s) ds =:−∂ϕ1Fres(J1,ξ1,η1,ϕ1).

Likewise for the other variables in this scaled return map (take F1 := 〈F〉/ε) we have:

ϕ1 7→ 2π
ω1

ω2
,

ξ1 7→ −∂η1F1(J1,ξ1,η1),

η1 7→ ∂ξ1F1(J1,ξ1,η1),

and call this map ψ = P0− id, whose non-degenerate zeroes we seek.

The linearization of ψ is:

∗ −∂2
ϕ1

Fres ∗ ∗

2π∂J1
ω1
ω2

0 0 0

∗ 0 −∂ξ1∂η1F1 −∂2
η1

F1

∗ 0 ∂2
ξ1

F1 ∂η1∂ξ1F1


,
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which mod signs has determinant

2π∂J1(
ω1

ω2
)∂2

ϕ1
(Fres)det

 ∂2
ξ1

F1 ∂ξ1∂η1F1

∂ξ1∂η1F1 ∂2
η1

F1

 .
It remains to verify this expression is non-zero when J = 0 and ξo

1,η
o
1 are at the secular

fixed point near the circular inner ellipse in order to continue the Keplerian periodic orbit we

began this section with.

The dominant term of the secular dynamics is HQuad , and we have HQuad = c1 +

α1
2 (ξ2

1 +η2
1)+O(ρ2

1), where α1 6= 0, so that this near inner ellipse critical point (near ξ1 = η1 =

0) is non-degenerate.

Next, by differentiating cst.=ωo
2J2+

αo

2 J2
1 +

βo

2 J2
2 +γoJ1J2+ ... and setting J1 = J2 = 0

we obtain dJ2
dJ1
|J=0 = 0. And so from the expansions eq. 3.6 for ωi, we have

∂J1(
ω1

ω2
)|J=0 =

αo

ωo
2
6= 0.

Finally we need to check that Fres(0,ξo
1,η

o
1,ϕ1) as a function of ϕ1 ∈ S1 has a non-

degenerate critical point. We carry out this computation in appendix A. Writing ≈ for terms

that are equivalent modulo terms not depending on ϕ1, we find

Fres(0,ξo
1,η

o
1,ϕ1)≈ cos(2(h1 +h2)ϕ1)+O(ei),

which, since the secular fixed point we are considering is near circular ellipses (ei << 1), is

non-degenerate!

In [25] similar averaging arguments as above are carried out with Levi-Civita co-

ordinates, which regularize the inner collision and allow one to continue the periodic and
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quasi-periodic orbits that satisfy the requirements of proposition 3.5. Again, as these syzygy

sequences occur far from tangencies, the continued solutions will have the same syzygy se-

quences. Obtaining better estimates on the ai from proposition 3.5 would be essential in deter-

mining whether such near inner-collision solutions unwind themselves to reduce to the empty

class.
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Appendix A

This appendix contains some mechanics background and the notations used in §3. I

mainly follow the nice references [4, 9, 50, 27, 16].

Mechanics

As we learn in physics, force is proportional to mass times acceleration. That is the

differential equations of physics are second order:

ẍ = F(m,x, ẋ, t), (3.1)

where m stands for mass constants. Such differential equations do not correspond to vector

fields on a configuration space, X 3 x, but rather as certain vector fields on the tangent bundle

T X .

Indeed, elements of T T X are represented by variations of curves. Let γs(t) be a

family of curves. To this variation we have the curve (γs,
dγs
dt ) in T X and the tangent vector

(γs,
dγs
dt ,

dγs
ds ,

d2γs
dsdt ) ∈ T T X . The acceleration or 2-jet of a curve x(t) ∈ X can be seen in T T X as
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arising from the variation γs(t) = x(s+ t) = x(τ), which gives

(x,
dx
dτ

,
dx
dτ

,
d2x
dτ2 ) ∈ T T X .

The reference [9] has a nice description of T T X and the relationship between the Lagrangian

and Hamiltonian formulations of eq. 3.1.

In this appendix we will take a more concrete approach to describe the parts of the

Hamiltonian framework that we use above. Consider the case when eq. 3.1 has the form

ẍ = ∂U
∂x (x) for some potential function U : X → R. The standard process for converting this

second order differential equation into a first order one gives the system

ẋ = y, ẏ =
∂U
∂x

.

The Hamiltonian form of these equations consists of taking the energy or Hamiltonian function

H(x,y) =
1
2
|y|2−U(x),

for which we have

ẋ =
∂H
∂y

, ẏ =−∂H
∂x

.

More cryptically, but compactly, one may consider H : T ∗X→R as generating the Hamiltonian

vector field XH defined by

−dH = iXH ω, (3.2)

where ω = dλ and λ is the canonical 1-form1 on T ∗X .

1For π : T ∗X → X the canonical projection, and ξ ∈ TpT ∗X take λp(ξ) := p(dπξ).
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EXAMPLE: For X = Rn we take coordinates (x, p) ∈ R2n for T ∗Rn. Then λ = pidxi

and ω = d pi ∧ dxi. One computes that XH =
∑ ∂H

∂pk
∂xk − ∂H

∂xk
∂pk and that the matrix expression

for ω is 〈J·, ·〉, where J =

0 −In

In 0

 and 〈·, ·〉 is the standard Euclidean inner product on R2n.

Now in studying equations of motion under the Hamiltonian framework, we should

only consider changing coordinates that preserve the form1 of eq. 3.2. Such coordinate changes

are called canonical or symplectic.

EXAMPLE: Let us lift the change of variables ξ = Ax on X = Rn to a symplectic

change of variables on T ∗X . In order for π = Bp to accomplish this we need: ω(Cu,Cv) =

ω(u,v) for all u,v where C =

A 0

0 B

. This is equivalent to CtJC = J, which implies B−1 = At .

This process is called the symplectic lift of A.

The Lagrange parentheses and Poisson brackets (see [23]) are useful to determine

whether a coordinate change will by canonical, and they are defined as follows. Let ζ =

(ζ1, ...,ζ2n) be some coordinates on T ∗X and

ω =
∑
i< j

ωi jdζi∧dζ j.

Then the Lagrange parentheses are defined as (ζi,ζ j) = ωi j (and ω ji =−ωi j), so the

1Meaning if (ξ,π) = φ(x, p) is a change of coordinates on T ∗X then with H ◦ φ−1 =: K we have ξ̇ = ∂K
∂π

, π̇ =

− ∂K
∂ξ

. This is equivalent to φ∗ω = ω.
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differential equations associated to the Hamiltonian flow of H, ζ̇ = XH take the form:

∑
j

(ζ j,ζk)ζ̇ j = i
ζ̇
ω(∂ζk) =−

∂H
∂ζk

,

and the change is symplectic when (ζ j,ζn+k) = δ jk,(ζ j,ζk) = 0 for 1≤ j,k ≤ n.

Likewise we define the Poisson brackets by:

ζ̇ j =
∑

k

{ζ j,ζk}
∂H
∂ζk

,

and can again see that the change of variables is canonical when {ζ j,ζn+k}= δ jk,{ζ j,ζk}= 0,

for 1≤ j,k ≤ n.

The Poisson brackets have another nice interpretation. Writing Xζk = X `
k ∂ζ`

we have:

δi j = dζi(∂ζ j) =−ω(Xζi ,∂ζ j) =−X `
i ω` j,

so that −[X j
i ] = [ωk`]

−1, i.e. X j
i = {ζi,ζ j}. And now

ω(Xζi ,Xζ j) =−dζ j(X `
i ∂ζ`

) = X j
i = {ζi,ζ j}. (3.3)

This eq. (3.3) allows one to see the connection between symmetries and integrals and can be

more convenient for computation as we will see next in following Féjoz’s exposition [27] of the

classic coordinates of celestial mechanics.

Kepler problem

One calls a particle attracted to a fixed center according to Newton’s law the Ke-

pler problem. The equation of motion is: mq̈ = −mM
|q|3 q, where q ∈ C\0. In polar coordinates,

q= reiθ, we find the angular momentum G :=ℑ(qp) =mr2θ̇= const. and r̈ = −Mr+G2

r3 . So there
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exists a solution to this equation giving r(t), and as noted by Lagrange (see [23]), the compo-

nents of q = x+ iy are solutions to the homogeneous part of the same differential equation:

Ẍ =
−MX
r(t)3 +

G2

r(t)3 .

Hence

r = αx+βy+G2/M

(r = G2/M being a particular solution) for some constants α,β, which is a conic section. We

consider elliptical orbits in what follows.

Take a as the semi-major axis, e as the eccentricity and g as the argument of pericenter

of this ellipse (figure 3.11) and write this ellipse in polar coordinates as

r =
a(1− e2)

1+ ecos f
,

where f = θ−g is the true anomaly.

Figure 3.11 An ellipse, ae is the distance from the focus to the center.

In Hamiltonian form we have H = |p|2
2m −

mM
|q| , and again in polar coordinates, H =
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m ṙ2

2 + G2

2mr2 − mM
r , so that the extremal values of r (where ṙ = 0) are roots of the equation r2 +

mM
H r− G2

2mH = 0, which we already know to be a(1− e) and a(1+ e). Hence

2a =−mM
H

, a(1− e2) =
G2

m2M
.

It remains to express the position on the conic in a nice way. As area is swept at the

constant rate G/2m, define the mean anomaly,

` := 2π
Area(t)

Area(ellipse)
.

Then d`
dt = n where n2 = G2

m2a4(1−e2)
= Ma−3 and we choose n to be positive (n is called the mean

motion, note that the meaning of n for the position on the ellipse depends on the sign of G e.g.

G > 0 then area swept out counterclockwise is increasing).

Figure 3.12 The eccentric anomaly is the usual parametrization of the ellipse from the center:

(acosu,bsinu) where b = a
√

1− e2. We have acosu−ae = r cos f and bsinu = r sin f .

To relate f to ` we use the eccentric anomaly, u, which is an angle defined mod 2π

by parametrizing from the center of the ellipse as (acosu,a
√

1− e2 sinu) and so relates to f by

figure 3.12. To relate u to ` we compute area using Stoke’s formula: the area swept out by the
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curve (acosu−ae,bsinu) is

1
2

∫ u

0
xdy− ydx =

ab
2
(u− esinu),

which compared with the defining equation for ` gives

`= u− esinu.

Hence to define position on the ellipse in terms of time one finds u in terms of ` and then f in

terms of u through tan f
2 =
»

1+e
1−e tan u

2 .

The goal is to have some geometric coordinates for the positions of the bodies that

also preserve the canonical form of the equations. For eccentricities e ∈ (0,1) the Delaunay

coordinates do this trick.

Since ` is already so nice, we seek a variable Λ(H) conjugate to it, i.e. dΛ∧ d` =

dH ∧dt or dΛ

dH = n−1, which yields, according to the formulas above,

Λ
2 =−m3M2

2H
,

and we choose Λ to be positive. Now the Delaunay coordinates are

(Λ,G, `,g)

which are canonical. This can be computed nicely via the Poisson brackets, as done by Féjoz

in [27]: {Λ, `}= 1 by definition, and {Λ,G}= 0,{Λ,g}= 0 since G,g are constants under the

Hamiltonian flow of H (or Λ(H)); {G,g}= 1 since g is an angle and the Hamiltonian flow of G

is just rotation. Also {G, `}= 0 since rotating an ellipse does not change position on the ellipse.

Finally, we show {g, `} = 0. Jacobi’s identity yields {·,{g, `}} = 0 and, in particular, {g, `} is
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constant under the Hamiltonian flow of G and Λ. Under these flows any point always passes

through g = 0, `= 0 (we can rotate the ellipse so that g = 0 under the flow of G and then move

along the ellipse under the flow of Λ until we are at pericenter). At such a point, gx = 0, `x = 0

and gpy , `py = 0, since varying x or py just changes the size of the ellipse but does not move the

pericenter direction. Hence:

{g, `}= gx`px−gpx`x +gy`py−gpy`y = 0.

When e = 0 and the orbits are circular the Delaunay coordinates break down, ` and

g are no longer well defined! In the neighborhood of these regions the Poincaré coordinates

take care of business (again see [27] for a nice motivation). Take λ = `+ g and ξ + iη =»
2(Λ−|G|)e−ig. Then the Poincaré coordinates are

(Λ,ξ,λ,η),

with ‘polar version’ as

(Λ,ρ,λ,φ),

where ρ = Λ−|G|,φ = g.

Finally, when e = 1 we have a collision ellipse and invoke the Levi-Civita regulariza-

tion ([25, 41]). Recall we identify p ∈ C with the 1-form pdq+ pdq. Then the cotangent lift

of the double cover l(z) = z2 = q is defined by l∗p = w or wdz+wdz = 2zpdz+2zpdz, that is

p = w
2z and this is the Levi-Civita map:

LC : T ∗C\{0}→ T ∗C\{0},(z,w) 7→ (z2,
w
2z
) = (q, p).
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As a cotangent lift, the map is symplectic and for H = |p|2
2m −

mM
|q| we have LC∗H = |w|2

8m|z|2 −
mM
|z|2 ,

so that

LC∗|q|(H +h) =
|w|2

8m
−mM+h|z|2

is a nice harmonic oscillator (having no problems with z = 0). Taking K = |q|(H +h) we have

dLC∗K = (dLC∗|q|)LC∗(H +h)+ |z|2dLC∗H. (3.4)

And from equation (3.4) it follows that the Hamiltonian flow of LC∗K on the level set

LC∗K = 0 and z 6= 0 (corresponding to H = −h) is just the Kepler flow at energy −h in (z,w)

coordinates reparametrized:

dLC∗K = |z|2dLC∗H⇒ XLC∗K = |z|2XLC∗H .

In particular if t is the time parameter along the Kepler flow, then at this energy and for x =

(z,w),

|z|2 dx
dt

= |z|2XLC∗H = XLC∗K ,

so the time τ along the harmonic oscillator flow of LC∗K is reparametrized according to dt
dτ

=

|z|2.

Perturbations

The world is a complicated place and it may be overwhelming to try to understand

everything. With the perturbation approach, one neglects some features of a complicated sys-

tem, taking instead an approximation in its place. A good approximation should possess at least
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two features. First of all, it should be simpler than the complicated system so that we can un-

derstand something about it. Second, the neglected features of the complicated system should

have a sufficiently small effect so that some properties of the approximation continue to hold

for the complicated system. A good approximation can then lead to some understanding of the

complicated system.

For example one may have a vector field of the form ẋ = Xµ(x) = X0(x)+µX1(x)+ ...,

where the vector field X0 is understood in some way. Which properties of X0 will persist for

orbits of Xµ for µ sufficiently small? In the Hamiltonian setting, Poincaré’s general problem of

dynamics is to understand the orbits of a Hamiltonian of the form:

Fµ = F0(r)+µF1(r,θ)+µ2F2(r,θ)+ ...,

where (r,θ) ∈ Rn×T n are conjugate coordinates. In [63], Poincaré applied implicit function

theorem methods to such a problem to obtain the existence of periodic solutions to the three

body problem. It took many years until Kolmogorov [45] gave conditions for quasi-periodic

tori of F0 to survive for Fµ as well.

Now we will carry out some coordinate transformations that render the three-body

problem applicable to such a perturbation philosophy.

The Jacobi coordinates are given by figure 3.13. Taking the symplectic lift we have

P0 = p0 + p1 + p2, P1 = p1 +σ1 p2, and P2 = p2. Note that P0 is the linear momentum, which

we will set to zero. Then the Hamiltonian for the three body problem

H =
2∑

i=0

|pi|2

2µi
−
∑
i< j

µiµ j

|qi−q j|
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Figure 3.13 The Jacobi coordinates: Q0 = q0 and Q1 = q1 − q0 and Q2 = q2 − σ1q1 − σ0q0 where

σi =
µi

µ0+µ1
.

becomes

H =
2∑

i=1

|Pi|2

2mi
− µ0µ1

|Q1|
− µ0µ2

|Q2 +σ1Q1|
− µ1µ2

|Q2−σ0Q1|
,

where 1
m1

= 1
µ0
+ 1

µ1
, 1

m2
= 1

µ2
+ 1

µ0+µ1
.

We aim to view H as HKep +Hper, where HKep is the Hamiltonian for two uncoupled

Kepler problems in (Qi,Pi). This leads us to set µ0µ1 = m1M1, from which M1 = µ0 +µ1. Now

we artificially introduce an m2M2
|Q2| term and have

H =
2∑

i=1

(
|Pi|2

2mi
− miMi

|Qi|
)+

m2M2

|Q2|
− µ0µ2

|Q2 +σ1Q1|
− µ1µ2

|Q2−σ0Q1|
,

which is of the form HKep +Hper by setting Hper =
m2M2
|Q2| −

µ0µ2
|Q2+σ1Q1| −

µ1µ2
|Q2−σ0Q1| .

So far we are free to choose the mass constant M2. We will now expand Hper in

Legendre polynomials and see that the best choice for M2 is µ0 +µ1 +µ2.

A nice reference for the Legendre polynomials is [40]. Relevant for us here is to recall

that for z = reiθ ∈ C, we have

1
|1− z|

=
∑
n≥0

Pn(cosθ)rn, (3.5)

where Pn(x) := 1
2nn!

dn

dxn (x2−1)n are the Legendre polynomials. For example, P0(x) = 1,P1(x) =

x,P2(x) = 1
2(3x2−1). They also have the property that Pn is an even function for n even and an
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odd function for n odd i.e. Pn(−x) = (−1)nPn(x).

Now we write Hper =
m2M2
|Q2| (1−

(µ1µ2)/(m2M2)
|1−σ0z| − (µ0µ2)/(m2M2)

|1+σ1z| ), where z = Q1/Q2 and

expand using eq. 3.5. Then

Hper =
m2M2

|Q2|
(1−

∑
n≥0

Pn(cosθ)rn(σn
0

µ1µ2

m2M2
+(−1)n

σ
n
1

µ0µ2

m2M2
)).

Recall that we are going to be interested in the lunar regions: when |Q2|>> |Q1|. This expan-

sion is nicer if we choose M2 so that the leading term will cancel out: that is to say

1− µ1µ2

m2M2
− µ0µ2

m2M2
= 0,

which implies M2 =
µ2(µ0+µ1)

m2
= µ0 + µ1 + µ2. It is also nice that the next order term vanishes

with this choice of M2:

σ0σ1−σ1σ0 = 0.

Hence taking M2 = µ0 +µ1 +µ2, we have

Hper =−
m2M2

|Q2|
(
∑
n≥2

Pn(cosθ)rn(σn
0σ1 +(−1)n

σ0σ
n
1)),

or by setting σn = σ
n−1
0 +(−1)nσ

n−1
1 and pulling out a σ0σ1 factor, this is

Hper =−µ2m1
∑
n≥2

σnPn(cosθ)
|Q1|n

|Q2|n+1 ,

where θ = ∠(Q1,Q2).

Next we will consider some averaging arguments in the lunar regions, where a1
a2

=

O(ε). First, however, let us observe that this ‘averaging method’ is really based off a nice

canonical change of coordinates, namely those coming from the Hamiltonian flows of auxillary

functions. To illustrate let us consider Poincaré’s general problem of dynamics Fµ = F0(r)+
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µF1(r,θ)+ ... and let G be an auxillary Hamiltonian with Hamiltonian flow φt . Then a Taylor

expansion of Fµ ◦φµ in µ leads to

Fµ ◦φµ = Fµ +µ{Fµ,G}+
µ2

2
{Fµ,{Fµ,G}}+O(µ3)

= F0 +µ(F1 +{F0,G})+µ2(F2 +{F1,G}+
1
2
{F0,{F0,G}})+O(µ3).

If we expand F1 =
∑

fkeik·θ,G =
∑

gkeik·θ in Fourier series, then the µ-order term is

∑
( fk +(∂rF0 · ik)gk)eik·θ.

If F1 is analytic in a strip of width σ then fk = O(e−σ|k|) (see [5] §5). In particular fk = O(µ2)

for |k| ≥ K sufficiently large. Hence provided ∂rF0 · ik 6= 0 for |k|< K we may define G by the

finite Fourier series gk =− fk
∂rF0·ik for |k|< K and gk = 0 for |k| ≥ K to obtain

Fµ ◦φµ = F0 +µ f0 +µ2(F2 +{F1,G}−
1
2
{F0,F1})+O(µ3), (3.6)

where f0 =
1

(2π)n

∫
T n F1 dθ is the average of F1.

Now let us return to the lunar regions. The Legendre polynomials have brought us

to an expansion H = HKep +H3 +H4 + ..., where Hi = O(εi). In [25] Féjoz has considered the

asynchronous regime1, showing that there is a change of coordinates through some auxiliary

Hamiltonian taking us to the form

H = HKep +HQuad +O(ε4),

1Where the inner body rotates much faster than the outer body. The lunar regions are contained in this asyn-

chronous regime when the angular momentum is zero.
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where HQuad = 1
(2π)2

∫
T 2 H3 dλ1dλ2 is the average of H3 over the fast variables. Moreover in

[25] Appendix C, he computes

HQuad =−µ2m1

8
a2

1

a3
2

2+3e2
1

ε3
2

.

In the lunar regions, this term is the dominant term of the secular dynamics and

one can compute from the dynamics of HKep + HQuad that ˙̀1 = n1(1 + O(a3)), ˙̀2 = n2(1 +

O(a2)), ġ = O(a3), which we will use in some estimates above.

We will also use above the following expansion of HQuad in ‘polar Poincaré’ variables

obtained as follows. Define εi by e2
i + ε2

i = 1 with εi chosen to have the same sign as Gi. Then

Gi = Λiεi,ρi = Λi(1+εi) and C = Λ1ε1+Λ2ε2. Taking angular momentum zero, C = 0, implies

that ε2 =−Λ1
Λ2

ε1, where ε1 =
ρ1
Λ1
−1, so that HQuad =−m1µ2

8
a2

1
a3

2

5−3ε2
1

ε3
2

where

5−3ε
2
1 = 2+6

ρ1

Λ1
−3

ρ2
1

Λ2
1

and

1
ε3

2
=

Λ3
2

Λ3
1

1
(1− ρ1

Λ1
)

3
=

Λ3
2

Λ3
1
(1+3

ρ1

Λ1
+6

ρ2
1

Λ2
1
+ ...).

Hence

HQuad =−m1µ2

8
a2

1

a3
2

Λ3
2

Λ3
1
(2+12

ρ1

Λ1
+15

ρ2
1

Λ2
1
+ ...),

or as we use above:

HQuad =m(
Λ1

Λ3
2
+

6
Λ3

2
ρ1 +O(ρ2

1)), (3.7)

where m is some constant depending on the masses.

Last in this appendix, we will do some computations used above for the continuation

of periodic orbits. Namely, we will compute Fres’s dependence on ϕ1. This involves averaging
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Λ0Fcomp, which in the lunar regions has dominant terms (see eq. 3.6)

H4 +{H3,G}−
1
2
{HKep,H3},

where we take the Legendre expansion of Hper = H3 +H4 + ...

Let us average these terms over the orbit (eq. 3.6 from §3) to obtain Fres(J1 =

0,ξo
1,η

o
1,ϕ1). Since we only need to show this function has a non-degenerate zero as a function

of ϕ1, we write ≈ for terms that are equivalent mod terms that do not depend on ϕ1. First, we

have ∫ 2π/ωo
2

0
H4 ds≈

∫ 2π/ωo
2

0
P3(cos((k1 + k2)ω

o
2s− (h1 +h1)ϕ1) ds+O(ei),

since θ= λ2−λ1+O(ei) = (k1+k2)ϕ2−(h1+h2)ϕ1+O(ei). Now a change of variables yields

∫ 2π/ωo
2

0
H4 ds≈

∫ 2π(k1+k2)−(h1+h2)ϕ1

−(h1+h2)ϕ1

P3(cosθ) dθ+O(ei)≈
∫ 2π(k1+k2)

0
P3(cosθ) dθ+O(ei)≈O(ei).

Likewise, we have

∫ 2π/ωo
2

0
{HKep,H3} ds≈ O(ei).

Now let φt be the flow of G so that {H3,G} = d
dt |0H3 ◦φt . We will average first and

then compute the derivative. That is, we will compute

∫ 2π/ωt
2

0
H3(Jt

1,J2(Jt
1),ξ

t
1,η

t
1,ω

t
1s+ϕ

t
1,ω

t
2s) ds,

where the t superscripts denote the flow of G with initial conditions J1 = 0,ξo
1,η

o
1,ϕ1. This

integral is equivalent mod terms not depending on ϕ1 to

∫ 2π/ωt
2

0
cos(2((k1 + k2)ω

t
2− (h1 +h2)ω

t
1)s−2(h1 +h2)ϕ

t
1) ds+O(ei)
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≈ sin(2(h1 +h2)ϕ
t
1)− sin(2(h1 +h2)(2πω

t
1/ω

t
2 +ϕ

t
1)+O(ei).

Under the flow of G we expand ϕt
1 = ϕ1 + tϕ̇+ ..., ωt

1 = tω̇1 + ..., ωt
2 = ωo

2 + tω̇2 + .... Then

expanding this integral in t we have

2π(h1 +h2)
ω̇1

ωo
2

cos(2(h1 +h2)ϕ1) t +O(t2)+O(ei).

Now we differentiate at t = 0 to obtain

∫ 2π/ωo
2

0
{H3,G} ds≈ cos(2(h1 +h2)ϕ1)+O(ei).
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Appendix B

This appendix follows [42, 32, 14], and contains some computations used for the

JM-metric in §2. Most of the details are skipped and can be found in the references.

Some geometry

In this section we will define the curvature tensor for a Riemannian manifold and give

formulas relating the curvature of conformal metrics and O’Neill’s submersion formula. These

are used to compute curvatures of the JM-metric.

First we will consider the geodesics and connections of differential geometry, which

are based off the more familiar notions of lines and angle as determined by the metric (see figure

3.14).

A Riemannian manifold is a manifold M having a metric1 g, which allows us to

measure lengths and angles in the tangent space. A geodesic from p to q on M is an extremal of

1A smooth assignment of a symmetric positive definite bilinear form gp on T Mp×T Mp for each p ∈M, i.e. a

smooth section of T ∗M⊗T ∗M that is symmetric and positive definite.
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Figure 3.14 A line from p to q has minimal length among all other curves from p to q. On the right

when we move objects around without changing their orientation, we use the concept of angle (it is quite

difficult to do with a cat!).

the action

γ 7→ `(γ) =

∫ q

p
‖γ̇‖=

∫ q

p

»
gγ(γ̇, γ̇)

among all curves γ from p to q.

In order to compare objects in M that have been ‘moved around’, one needs a means

to compare the tangent spaces of M at different points. A method to achieve this comparison of

tangent spaces is called a connection on M and can be described in several ways.

Given a connection we can parallel transport a vector v ∈ Tc(0)M over a curve c(t) by

requiring v(t) ∈ Tc(t)M to be equivalent to v through comparison by the connection.

From a parallel transport one can define a covariant derivative, ∇ : XM×XM→XM

by (X ,Y ) 7→∇XY := d
dt

p−1YXt−Y
t , where p is parallel transport along the flow X t of X . Covariant

derivatives are derivations in the second slot and F M linear in the first slot. Of particular interest

is the Levi-Civita connection associated to g by imposing the following additional conditions.

The first is that the associated connection maps (TpM,gp)→ (TqM,gq) should be isometries,
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and reads as

Xg(Y,Z) = g(∇XY,Z)+g(Y,∇X Z).

The second is that the connection be ‘torsion free’ or that

∇XY −∇Y X = [X ,Y ],

which geometrically prevents ‘twisting’ of vectors under parallel transport (see [32] pg. 41).

Each of the above concepts determines the connection, which is not too surprising

except that a covariant derivative determines a connection. This is seen by writing out the

differential equations for parallel transport (Y is parallel over c(t) if ∇ċY = 0) in coordinates.

The curvature tensor will measure how the parallel transport changes vectors that are

transported around loops. To define it let us give this connection concept on M,g in more detail.

Consider the vector bundle π : T M→ M, in a local trivialization we can take an orthonormal

frame ei with dual forms ωi. In this local frame the parallel transport of a vector v along c(t)

is given by v(t) = A(t)v, where A(t) ∈ SO(n) since we wish to preserve the angles of g in

our identifications of tangent spaces. Now if we take a curve with ċ(0) = e j and differentiate

ei(t) = ak
i (t)ek, we find

∇e j ei = ω
k
i (e j)ek,

where [ωk
i (e j)] = [ȧk

i ] ∈ so(n) so that

(∗) ω
j
i +ω

i
j = 0.

These functions ω
j
i : T M→ R are actually 1-forms from the covariant derivative’s linearity in
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the 1st slot. The torsion free condition on the covariant derivative implies that

(∗∗) dωi = ω
j
i ∧ω j.

The two equations (∗) and (∗∗) are called Cartan’s structural equations and determine the forms

ω
j
i uniquely, which is another way to say that the Levi-Civita connection associated to g is

unique.

There is yet another more general geometric interpretation of connection that will

help us to better ‘see’ the curvature tensor. Consider a vector bundle τ : E→M. An Ehresmann

connection on E is a horizontal subbundle H of dτ : T E→ T M, which is complementary to the

vertical subbundle V = kerdτ, i.e. E = H⊕V . The distribution H allows us to take horizontal

lifts (see figure 3.15) of a curve c(t)∈M to a curve c̃(t)∈E determined by τ◦ c̃= c and d
dt c̃∈H.

Upon specifying a basepoint (c̃(0)), these horizontal lifts are unique. This is related to parallel

transport in that having H one can define the parallel transport of c̃(0) ∈ Ec(0) along c to be

c̃(t) ∈ Ec(t).

In our case we have the vector bundle T M→M and the covariant derivatives given

in a local frame by the ω
j
i ’s. Let x = (xi) be coordinates on M and (x,v) coordinates on T M,

with vi = g(v,ei). Then we have coordinates on T T M as (x,v,X ,V ), where ξ ∈ T T M has the

form X ∂x+V ∂v. In these coordinates V(x,v) = (x,v,0,V ) and H(x,v) = (x,v,X ,ω(X )v) where

ω(X ) is the matrix [ω
j
i (X )].

Now take a closed curve c in M: its lift c̃ being horizontal means c̃(t) = (c(t),v(t))

has H 3 d
dt c̃ = (c,v, ċ, v̇) or v̇ = ω(ċ)v. Hence v(1)−v(0) =

∫
c̃ dV =

∫ 1
0 ω(ċ)v dt measures how

v has changed around this loop. Note that we can view ωv as a vector valued 1-form on T T M
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Figure 3.15 Horizontal lift in an Ehresmann connection.

with ω(X ∂x +V ∂v) := ω(X ∂x), and then through the matrix multiplication ωv we have a

vector valued 1-form.

Take cε to be the ‘parallelogram’ with vertices in M coordinates x,x+ εu,x+ εw and

ν a vertical curve closing up v(1) to v(0). Then by definition of exterior derivative we have

∫
c̃ε∪ν

ωv = ε2d(ωv)(ũ, w̃)+o(ε2). Now d(ωv) has ith component dv j∧ω
j
i +v jdω

j
i , which when

evaluated on ũ, w̃ gives (dω
j
i (u,v)+ω

j
k ∧ωk

i (u,v))v j and captures the infinitesimal change of v

upon being transported around a loop in the u,w directions. The curvature 2-forms are

(∗∗∗) Ω
j
i := dω

j
i −ω

k
i ∧ω

j
k,

and because of sign conventions we define the curvature tensor by Ri jkl = −Ωi j(ek,el). By

using the definitions of ω
j
i , we have Ri jkl = g(∇ei∇e j ek−∇e j ∇ek ek−∇[ei,e j]ek,el), which is the

usual way to introduce the curvature tensor and is the contraction of R(u,v)w := ∇u∇vw−

∇v∇uw−∇[u,v]w. There is also an expression for Ri jkl in terms of derivatives of the components

of g (see [32]).
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In the case that M is two dimensional, Cartan’s structural equations are nice: only

ω2
1 is non-zero. Consequently, up to symmetries, only the component R1212 of the curvature

tensor is non-zero. This quantity is called the Gaussian curvature. When n > 2 we can define

sectional curvatures of 2-planes as follows. Namely, given a point m∈M and vectors u,v∈ TpM

the set of all geodesics tangent to σ = span{u,v} ⊂ TpM locally forms a surface. The Gaussian

curvature of this surface is given by Ri ji j, where ∂i,∂ j are an orthonormal basis for σ. We call

K(σ) :=Ri ji j the sectional curvature of g through the plane σ. Knowing the sectional curvatures

through all 2-planes determines the full curvature tensor Ri jkl (see [14] pg. 13).

Figure 3.16 Another geometric interpretation of curvature: compared with rays in flat R2, geodesic rays

spread slower with positive curvature and faster with negative curvature.

Before undertaking the computations relevant to §2, let us mention a few geometrical

interpretations of these sectional curvatures so that we have some motivation to compute them.

A one parameter family of geodesics, γs satisfies

∇γ̇∇γ̇V = R(γ̇,J)γ̇,

where V = d
ds γs. Such vector fields along a geodesic γ are called Jacobi fields (see [51]).

Since the sectional curvatures are Gaussian curvatures through certain surfaces, we

will now just consider the 2-dimensional case and interpret the Gaussian curvature K. The
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equation for Jacobi-fields reads

ÿ+Ky = 0,

where we write the Jacobi field as J = a(t)γ̇(t)+ y(t)γ(t)⊥. The Sturm-Liouville comparison

theorem now allows us to see families of geodesics as in figure 3.16. Using the Jacobi fields,

one can also show that the Gaussian curvature relates length and area defect of disks ([42] 5.4),

that is

K(p) = lim
r→0

2πr−L(r)
r3

3
π
= lim

r→0

πr2−A(r)
r4

12
π
,

where if we let Dp(r) = {q ∈M : dg(q, p)≤ r} then L(r) is the length of the boundary of Dp(r)

measured with g and A(r) is Dp(r)’s area measured with g.

Now we will use Cartan’s structural equations ((∗), (∗∗)) and (∗ ∗ ∗) to relate the

curvatures of conformal metrics. Let g = f 2g, where f =: eu is the conformal factor. Then if ωi

are dual to an orthonormal frame ei of g, we have ωi = f ωi are dual to an orthonormal frame

for g. It follows that

dωi = du∧ωi + eudωi,

or with du = u jω j we have

dωi = (−u j
ωi +ω

j
i )∧ω j

by using eqs. (∗∗) for dωi and that ω j ∧ωi = ω j ∧ωi. However, the forms −u jωi +ω
j
i are not

skew (they do not satisfy (∗)), but we can introduce the term uiω j, which cancels upon wedging

with ω j, and take

ω
j
i :=−u j

ωi +ui
ω j +ω

j
i

as the unique solution to (∗),(∗∗) for g.
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To see the relation between the sectional curvatures, we compute in normal coordi-

nates centered at p ∈M, so that (dωi)p = (ω
j
i )p = 0. Then one has at p that

Ω
j
i (ei,e j) = Ω

j
i (ei,e j)+du j(e j)+dui(ei)+

∑
k 6=i, j

(uk)2,

or

f 2K(ei,e j) = K(e1,e2)−dui(ei)−du j(e j)−
∑
k 6=i, j

(uk)
2,

where we have lowered the index (ul = e j(u)) so as not to confuse any sums.

Applying this formula to the metric Uds2 = ds2 of §2 with u = logU
2 , we have

U3K(σ) =−U
2
(∂2

1U +∂
2
2U)+

3
4
((∂1U)2 +(∂2U)2)−‖∇U/2‖2, (3.8)

where ∂1,∂2 are a ds2 orthonormal basis for σ and ‖ · ‖ and ∇ are taken with respect to the ds2

metric.

The last curvature relation in this section is O’Neill’s equation for Riemannian sub-

mersions. A Riemannian submersion π : (M̃, g̃)→ (M,g) is a submersion (dπ is onto) such that

by taking H := ker(dπ)⊥ we have dπm̃ : Hm̃→ T Mm is an isometry for each m̃ ∈ π−1(m). Then

(see [14]) one has

K(σ) = K̃(σ̃)+
3
4
|[ũ, ṽ]V |2, (3.9)

where ũ, ṽ are horizontal lifts of an orthonormal basis u,v of σ and |[ũ, ṽ]V |2 is the g norm of the

bracket of ũ and ṽ projected onto the vertical subspace.

To compute O’Neill’s Lie bracket term of §2, we write our standard coordinates on

C3 as (x1 + ix2, ...,x5 + ix6).
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Let H1 = X j∂x j , H2 =Y j∂x j ∈Cq⊥ be any horizontal vector fields and take E = x j∂x j .

Then H j ·E = H j · iE = 0 and

[H1,H2] ·E =
∑

k

X jxk
∂x jY k−Y jxk

∂x j Xk =

=
∑

k

X j(∂x j(xkY k)−δ
k
jY

k)−Y j(∂x j(xkXk)−δ
k
jX

k) =
∑

k

XkY k−Y kXk = 0.

Likewise,

[H1,H2] · iE =
∑
k odd

(Y j
∂x j Xk−X j

∂x jY k)xk+1 +(X j
∂x jY k+1−Y j

∂x j Xk+1)xk =

= 2
∑
k odd

−XkY k+1 +Xk+1Y k = 2H1 · iH2.

Now if Va = va/
√

U are horizontal and ds2 orthonormal vectors (so va are horizontal

and Euclidean orthonormal vectors), we have

|[V1,V2]
Vp |2 = ds2

JM([V1,V2],
Ep

|p|
»

UL(p)
)2 +ds2

JM([V1,V2],
iEp

|p|
»

UL(p)
)2 =

=
U2

L

|p|2UL
(([V1,V2] ·E)2 +([V1,V2] · iE)2 =

4UL(p)(V1 · iV2)
2

|p|2
=

4
UL(p)|p|2

(v1 · iv2)
2.

Or

4
UL(p)|p|2

(v1 · iv2)
2 (3.10)

is O’Neill’s bracket term, which we add to the curvature of ds2 through the horizontal plane σ

with Euclidean orthonormal basis v1,v2.

Complex manifolds

In this section we will establish Lemma 2.6 (see [44, 19] for some more on complex

manifolds). First let us set our conventions for dealing with complex manifolds.
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Given a Riemannian manifold, (M2n,g), with metric compatible almost complex

structure J, we split the complexified tangent space into the i,−i eigenspaces of J(v⊗ λ) :=

J(v)⊗λ:

T M⊗C= T M′⊕T M′′.

In some local coordinates (x j,y j) on M s.t. J(∂x j) = ∂y j we then have the bases for T M′ and

T M′′ respectively as ∂ j := 1
2(∂x j ⊗1−∂y j ⊗ i) and ∂ j := 1

2(∂x j ⊗1+∂y j ⊗ i).

Now we extend the metric C-linearly to a C-valued symmetric bilinear form on T M⊗

C, by g(v⊗λ, ·) := λg(v, ·). Using the metric compatibility of J, we find gi j = g(∂i,∂ j) = 0= gi j

and

gi j =
1
2
(g(∂xi ,∂x j)+ ig(∂xi ,∂y j)) = gi j,

and so

g = gi j(dzi⊗dz j +dz j⊗dzi) = 2gi jdzidz j,

where dzi = dxi + idyi,dzi = dxi− idyi are dual to ∂i,∂i.

Let D⊂C be a disk containing 0 and f : D→M a holomorphic map. Let K f ∗g be the

Gaussian curvature of f ∗g on D. Define

Hq(X) := sup{K f ∗g(0) : f : D→M holomorphic and f (0) = q,C f ′(0) = CX} (3.11)

to be Kobayashi’s holomorphic sectional curvature. Kobayashi’s definition is motivated by in-

terpreting the Schwartz Lemma as an inequality on curvatures of regions related by holomorphic

maps. In ([44], ch. 2) Kobayashi shows that

Hq(X) = Ri jklX
iX jXkX l

, (3.12)
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for a unit vector X = X j∂ j (i.e. g(X ,X) = 1 by extending g C-linearly) and where

Ri jkl :=−∂k∂lgi j +gpq
∂kgiq∂lgp j. (3.13)

Now we are ready to prove Lemma 2.6.

Proof. Take an orthonormal Euclidean basis with e1 =(1,0, ...,0)= λv1 and e2 =(0,1,0, ...,0)=

iλv1, ... so that we may write the JM-metric as (h+U)
∑

µ jdz jdz j, where µ j > 0 are some pos-

itive constants depending on the masses.

In the real coordinates (x j,y j) where z j = x j + iy j we then have

K(v, iv) =
Rx1y1x1y1

µ2
1(h+U)2 ,

where Ri jkl is the Riemannian curvature tensor associated to the real metric (h+U)
∑

µ j(dx2
j +

dy2
j). Then eq. 3.8 gives

Rx1y1x1y1 =
µ1

2
(−∆1U +

(∂x1U)2 +(∂y1U)2

h+U
−
∑N

j=2
µ1
µ j
((∂x jU)2 +(∂y jU)2)

2(h+U)
),

and takes the form in complex coordinates (∂ j =
∂

∂z j
= 1

2(∂x j − i∂y j))

Rx1y1x1y1 =
µ1

2
(−4∂1∂1U +

4∂1U∂1U
h+U

−
2
∑N

j=2
µ1
µ j

∂ jU∂ jU

h+U
).

Now using eqs. (3.12) and (3.13) with v = ∂1 and corresponding unit vector X =√
2

µ1(h+U)∂1 =
∂1√g11

, we compute

R1111 =
µ1

2
(−∂1∂1U +

∂1U∂1U
h+U

),

and then

Hq(v) =
4R1111

µ2
1(h+U)2 = Kq(v,Jv)+

∑N
j=2

1
µ j

∂ jU∂ jU

(h+U)3 .
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The formula in the Lemma then follows by rescaling ∂ j by 1√µ j
.

Geodesic flows on manifolds of non-positive curvature

In this section we will explain some motivation for finding negatively curved cir-

cumstances: mainly where the symbolic dynamics comes from. We follow the lectures of A.

Manning and C. Series from [8], which contain more of the details.

Consider the hyperbolic plane, H, a complete surface of curvature -1, which can be

modeled by the upper half plane {(x,y) : y > 0} with metric dx2+dy2

y2 or the unit disk {z ∈ C :

|z|< 1} with metric 2 dzdz
1−|z|2 . These two are related through the Möbius transformation z 7→ z−i

z+i .

The geodesic flow of a Riemannian manifold (M,g) is the flow on its unit tangent

bundle, UM, given by gtv = γ̇v(t), where γv is the geodesic with initial condition γv(0) =

π(v), γ̇v(0) = v.

Let us first see how the geodesic flow of H is an Anosov flow (see figure 3.17).

The isometry group of H is PSL2(R) = SL2(R)/± I, which acts on the upper half

plane model by

a b

c d

z = az+b
cz+d . This action extends to a free and transitive action on the unit

tangent bundle. One can thus identify UH with the orbit of a point under this group action.

Identify UH with the orbit of (i, i) ∈UH. The geodesic through this point is given by
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Figure 3.17 An Anosov flow, ϕt on M is one for which T M admits a splitting as X ⊕Y ⊕Z with the

following properties. The splitting should be invariant under ϕt : Xϕt = dϕtX , etc. It should be contracting

along X : ‖dϕt |X‖=Ce−λt and expanding along Y : ‖dϕt |Y‖=Ceλt for some C,λ > 0. And the direction

Z is the direction of the flow: Z = d
dt ϕt . Such flows have sensitive dependence on initial conditions. The

X and Y spaces are called the stable and unstable directions.

γ(t) = iet =

et/2 0

0 e−t/2

 i, or under our identification,

gt(I) =

et/2 0

0 e−t/2

 .
To see the Anosov splitting of UH under gt , we use the horocycle flow (see figure

3.18).

The geodesics forward asymptotic to γ have initial condition (t + i, i) =

1 t

0 1

 =

ht
+(I). While those backwards asymptotic to γ are identified through ht

−(v) = −h−t
+ (−v) and

since v 7→ −v at i is achieved through

0 −1

1 0

, we have ht
−(I) =

1 0

t 1

.

Now we define our Anosov splitting at (i, i) to be made up of the curves tangent to
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Figure 3.18 Geodesics tangent to the normal vectors of the ‘circle with a point at infinity’ limr→∞{z ∈

H : d(z,γv(r)) = r} are forward asymptotic to γv. Likewise the geodesics tangent to the normals of

limr→∞{z ∈ H : d(z,γv(r)) = r} are backwards asymptotic to γv. The horocycle flows, ht
+,h

t
−, slide the

vector v along these inner normals. We have −ht
−(−v) = h−t

+ (v).

gt(I),ht
+(I),h

t
−(I). Since we are in a Lie group, we push these around by left multiplication

to define a splitting over UH. We give UH the Euclidean metric at (i, i) by ‖

a b

c −a

‖ =
a2 +b2 + c2 and push this around by left multiplication to define a metric on UH.

Then it suffices to show this splitting is contracting and expanding along the horocycle

flows. We compute that ‖dgt( d
ds hs

+(v))‖= ‖g−t

0 e−t/2

0 0

‖= e−t , and likewise ‖dgt( d
ds hs
−(v)‖=

et . Hence the geodesic flow of H is indeed an Anosov flow.

Consequently any surface of constant negative curvature is, by the Cartan-Hadamard

theorem, a quotient of H and so also has an Anosov geodesic flow. It has been shown that even

when the sectional curvatures of an n-dimensional Manfold are negative (and not necessarily

constant) [3] that the geodesic flow is also Anosov.

In particular, a theorem of Bowen [12] states that any Anosov flow admits a Markov

partition, allowing one to describe the dynamics by symbolic dynamics. For quotients of H, this

symbolic dynamics comes from a ‘tiling sequence’, which describes the free homotopy class
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realized by the geodesic (see figure 3.19)

Figure 3.19 Upon quotienting by a discrete subgroup the Hyperbolic plane is tiled into fundamental

regions (analogous to considering the torus R2/Z2 as a tiling of R2). Here we have a punctured torus as

a quotient of H, each geodesic is uniquely determined by the ‘sides’ or ‘tiles’ it cuts through (we labeled

the tiles here as ...a−1,a0,a1, ...). See the famous pictures of Escher for more tilings:)

One gets the feeling that our hopes for negatively curved circumstances need not be

dashed by the mixed curvature found for the N > 3 body problems above. Rather the question

should be whether or not these geodesic flows are Anosov. We mention the results of Klingen-

berg [43], who has shown that many of the properties of negatively curved manifolds persist for

those with an Anosov geodesic flow. In particular, if the geodesic flow is Anosov there can be

at most one geodesic in each free homotopy class (the uniqueness property we sought above).

The following examples give some extremes of the relation between mixed curvatures

and Anosov geodesic flows.

EXAMPLE (Due to Daniel Visscher, see figure 3.20) To obtain an example of an

81



Anosov geodesic flow on a compact surface having mixed curvature (embedded in R3!), con-

sider first two planes and connect them with many negatively curved tubes. The resulting

geodesic flow is Anosov. One may then slowly curve these sheets around to form two gi-

gantic tori in R3 connected by tubes. The resulting surface still has an Anosov geodesic flow

(by structural stability of Anosov flows). Being embedded in R3 compactly, such a surface must

have mixed curvature.

Figure 3.20 A compact surface in R3 with mixed curvature and an Anosov geodesic flow.

EXAMPLE Give R3\{x = y = 0} the following metric: dx2+dy2+dz2

x2+y2 . Along the ∂θ,∂z

directions one can compute that the curvature is positive. In the other directions, we have a

‘book’ of hyperbolic planes on each vertical slice θ = tany/x = cst.. While on each horizontal

slice, z = cst. is metrically a ‘cylinder’. These slices are totally geodesic, so we have negative

and zero curvature along them. In this mixed curvature metric many geodesics realize the same

homotopy class (waists of the cylinders), so the flow is not Anosov (see figure 3.21).

Last we will mention Preissman’s theorem (see [31] for a nice geometric proof). This

theorem states that when (M,g) is a complete negatively curved manifold, then if γ1 and γ2 are

two geodesics and [γi], their representatives in the fundamental group one must have

[γ1] · [γ2] 6= [γ2] · [γ1].
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Figure 3.21 This book of H’s in R3\{z-axis} has mixed curvature and is not an Anosov flow since in the

xy-plane circles centered at the origin are geodesics.

In other words there is no Z2 in the fundamental group realized by geodesics.

This is relevant to the above work since it makes the mixed curvature of Theorem 1

plausible, only when N > 3 are there commuting homotopy classes available (see figure 3.22)

giving a chance to preclude non-positive curvature by realizing such classes.

Figure 3.22 Commuting free homotopy classes in the 4-body problem. Are they realized by solutions?

Due to the positive curvature in the orthogonal directions to the collinear 4-body

problem, one can imagine that realizing such commuting classes is possible by a geodesic with

a small velocity component in this orthogonal direction, which shadows a collinear geodesic.

As two bodies come close to a collision they make a quick revolution around each other to
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switch their ordering and jump into another triangle (figure 2.2). If one can continue shadowing

the collinear orbits in such a way as to make a closed loop, the classes of figure 3.22 may be

realizable.
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