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Abstract

The Monster Tower and Action Selectors

by

Wyatt Howard

This dissertation is a mixture of two different topics from two separate areas of geometry.

The first part of the thesis deals focuses on a problem from subriemannian geometry and

is motivated by work done by Professors A. Castro, R. Montgomery, M. Zhitomirskii.

The second half of this dissertation comes from a problem in symplectic geometry posed

by Professor V. Ginzburg.

The first part of the dissertation looks at the classification, up to local dif-

feomorphism, of a certain type of geometric distribution known as Goursat multi-flags.

Montgomery and Zhitomirskii approached this classification problem by working with

a structure called the Monster Tower, which is comprised of a sequence of manifolds.

Each level of this tower is constructed through a process called Cartan Prolongation.

Montgomery and Zhitomirskii pointed out that the problem of classifying the points

within each level of the tower is equivalent to the problem of classifying Goursat multi-

flags. This work is an extension of the classification work with the R3 Monster Tower

that was initiated by Castro and Montgomery. We will present two different methods

for classifying Goursat 2-flags of small critical length within the Monster Tower.

The second half of this research is concerned with symplectic geometry. This

research looks at the size of the fixed point set of a Hamiltonian diffeomorphism of

a closed symplectic manifold. We look at when the action spectrum is less than or

equal to the cuplength of a manifold that is symplectically aspherical. This question

examines a partial converse to the Arnold Conjecture. What will be shown is that for

some degree greater than zero, the cohomology of the fixed point set must be non-trivial.

This implies that there is a non-trivial cycle’s worth of fixed points.
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Part I

A Monster Tower Approach to

Goursat Multi-Flags
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Chapter 1

Introduction

The focus of this half of the thesis is the classification of a particular type of

geometric distribution known as a Goursat multi-flag. Before discussing this problem

in detail, we first focus on the origins of this problem. The motivation for studying

Goursat multi-flags arose from a problem in control theory. During the early nineties

there was a great deal of research being done on a control system known as the Car with

n Trailers. This is a control system in R2 with a car towing n trailers. This systems

has 2 controls (inputs) and n+ 2 degrees of freedom. One control is the velocity of the

car. The other is the steering.

The car with n trailers was originally formulated and studied by J.P. Laumond,

R. Murray, and S. Sastry ([Lau93] and [MS93]). Then in 1996 F. Jean started to examine

the relationship between the various trailer configurations and a rank 2 distribution

associated to the kinematic equations of the system ([Jea96]). The car with n trailers

system is parametrized by q = (x, y, θ0, · · · , θn), where (x, y) are the coordinates of the

last trailers, θn is the orientation angle of the car with respect to the positive X-Axis,

and θi, for i = 0, · · · , n− 1, is the orientation angle of the (n− i)-th trailer with respect

to the the positive X-Axis. The two inputs (or controls) are the angular velocity ωn

(the steering wheel) and the tangential velocity vn (the accelerator). In summary, the

configuration space for the n trailer system is R2 × (S1)n+1.

The kinematics of the car with two degrees of freedom pulling n trailers is
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Figure 1.1: The Car with n Trailers

given by

ẋ = cos(θ0)v0

ẏ = sin(θ0)v0

θ̇i = sin(θi+1 − θi)vi+1 with vi+1 =

n∏
j=i+1

cos(θj − θj−1)vn for i = 0, · · · , n− 1

θ̇n = ωn

The above relationships are not obvious. We have derived them in an appendix

to the thesis.

These relations tell us that the motion of the system is characterized by the

equation

q̇ = ωnX
n
1 (q) + vnX

n
2 (q)

with


Xn

1 = ∂
∂θn

Xn
2 = cos(θ0)fn0

∂
∂x + sin(θ0)fn0

∂
∂y

+sin(θ1 − θ0)fn1
∂
∂θ0

+ · · ·+ sin(θn − θn−1) ∂
∂θn−1

and fni =
∏n
j=i+1 cos(θj−θj−1), for i = 0, · · · , n−1. Jean was particularly interested in

understanding the connection between the various trailer configurations and the degree

of nonholonomy of the rank 2 distribution generated by Xn
1 and Xn

2 . One important

property of this distribution is that it is an example of a type of geometric distribution

known as a Goursat 1-flag.
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(a) The curve γ(t) = (t2, t3).

u = dy
dx

Cusp

R2

Prolonged Cusp

(b) Prolongation of the curve.

A Goursat flag is a nonholonomic distribution D with slow growth. By slow

growth we mean that the rank of the associated flag of distributions

D ⊂ D + [D,D] ⊂ D + [D,D] + [[D,D], [D,D]] . . . ,

grows by one at each bracketing step. The condition of nonholonomy guarantees that

after sufficiently many steps we will obtain the entire tangent bundle of the ambient

manifold. By an abuse of notation, D in this context also denotes the sheaf of vector

fields spanning D.

A little over ten years ago, R. Montgomery and M. Zhitomirskii took up the

task of classifying Goursat 1-flags up to local diffeomorphism equivalence. In order to

accomplish this they worked with an iterated sequence of manifolds know as the Monster

Tower. Each level of the tower is a manifold along with an associated distribution.

The first level of the tower is generally taken to be Rn with the tangent bundle as the

associated distribution. Then each consecutive level of the tower is created from the level

one below it through a process known as Cartan prolongation. In [MZ01] Montgomery

and Zhitomirskii were able to create a dictionary between the Goursat 1-flags that arise

from the various trailer configurations and points within the Monster Tower with R2 as

the base of the tower. As a result, this meant that if the points within the Monster Tower

were classified within each level of the tower up to local diffeomorphism equivalence, then

all of the equivalent configuration of these trailers would be classified as well. By 2010

Montgomery and Zhitomriskii had an essentially complete classification of the points

within the R2 Monster Tower. The main idea behind their classification of the tower

was to partition the points at any given level of the tower using an invariant that they

called the RV T coding system. In addition to this, they used analytic singular curves

and applied Cartan prolongation to these curves and looked at when these singularities

were resolved. This idea is illustrated in Figures 1.2a and 1.2b below.

Generalizations of Goursat flags have been proposed in the literature. One such
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notion is that of a Goursat multi-flag. A Goursat n-flag of length k is a distribution of

rank (n+ 1) sitting in a (n+ 1) + kn dimensional ambient manifold, where the rank of

the associated flag increases by n at each bracketing step. For clarity, we have included

the exact definition in the appendix to the thesis. A well-known example of a Goursat

multi-flag is the Cartan distribution C of the jet space Jk(R,Rn). Iterated bracketing

this time produces a flag of distributions

C ⊂ C + [C,C] ⊂ C + [C,C] + [[C,C], [C,C]] . . . ,

where the rank jumps by n at each step.

To our knowledge the general theory behind Goursat multi-flags made their

first appearance in the works of A. Kumpera and J. L. Rubin ([KR82]). P. Mormul has

also been very active in breaking new ground ([Mor04]), and developed new combinato-

rial tools to investigate the normal forms of these distributions. This work is founded on

an article ([SY09]) by Yamaguchi and Shibuya that demonstrates a universality result

which essentially states that any Goursat multi-flag arises as a type of lifting of the

tangent bundle of Rn.

Now, as mentioned above, the Monster Tower can be constructed with a base

manifold of Rn for any n ≥ 2. This leads to the following question:

Is there any dynamical system that serves as motivation for studying the Rn
Monster Tower for n ≥ 3?

The Articulated Arm of Length k in Rn for n ≥ 3 is one concrete example. The Artic-

ulated Arm of Length k, as seen in Figure 1.2, is a series of k segments [Mi,Mi+1], for

i = 0, · · · , k−1, with each arm having a constant length of 1 between Mi and Mi+1, and

each Mi is a point in Rn. There is also the kinematic restraint that the velocity of each

joint Mi is collinear with the segment [Mi,Mi+1]. As of 2011 F. Pelletier established a

direct connection between the articulated system and the Monster Tower ([Pel11] and

[PS12]). A starting point for the basic properties and control theory results concerning

this dynamical system can be found in [LR11].

In this thesis we concentrate on the problem of classifying Goursat multi-

flags of small length. Specifically, we will consider Goursat 2-flags of length up to

4. Goursat 2-flags exhibit many new geometric features that Goursat 1-flags did not

possess ([MZ10]).

5
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M0

M1
Ṁ1

Mk−1

Ṁk−1

Mk

Figure 1.2: The Articulated Arm in R3.

Our main result states that there are 34 inequivalent Goursat 2-flags of length
4 and we provide the exact number of Goursat 2-flags for each length k ≤ 3
as well.

Our approach is constructive. Due to space limitations we will write down only a few

instructive examples.

In [SY09] Shibuya and Yamaguchi they establish that every Goursat 2-flag

germ appears somewhere within the following tower of fiber bundles:

· · · → P4(2)→ P3(2)→ P2(2)→ P1(2)→ P0(2) = R3, (1.0.1)

and the fiber of the projection map from Pk(2) to Pk−1(2) is a real projective plane,

and adding the dimensions one obtains the dimension formula dim(Pk(2)) = 3 + 2k. In

Chapter 3 of the thesis we show how this tower is constructed.

Each manifold Pk(2) is equipped with a rank 3 nonholonomic distribution

∆k, and there is a simple geometric relation between the distributions pertaining to

neighboring levels. The construction of ∆k is recursive, and depends upon the geometric

data at the base level P0.

The distributions ∆k in Pk(2) are themselves Goursat 2-flags of length k.

Moreover, two Goursat 2-flags are equivalent if and only if the corresponding points of

the Monster Tower are mapped one to the other by a symmetry of the tower at level

k. The paper [SY09] also establishes that all such symmetries are prolongations of

diffeomorphisms of R3. The above observations tell us that

the classification problem for Goursat 2-flags is equivalent to the classifica-
tion of points within the Monster Tower up to symmetry.

In order to solve this latter problem we use a combination of two methods, namely the

singular curve method as in [MZ01] and a new method that we call the isotropy method.

6



A variant of the isotropy method was already used in [MZ01], and it is somewhat inspired

by É. Cartan’s moving frame method ([Fav57]).

We would like to mention that P. Mormul and Pelletier ([MP10]) have proposed

an alternative solution to the classification problem. In their classification work, they

employed Mormul’s results and tools that came from his work with Goursat n-flags. In

[Mor09], Mormul discusses two coding systems for special 2-flags and showed that the

two coding systems are the same. One system is the extended Kumpera Ruiz system,

which is a coding system used to describe 2-flags. The other is called singularity class

coding, which is an intrinsic coding system that describes the sandwich diagram ([MZ01])

associated to 2-flags. In the appendix to the thesis we have included an outline on

how these coding systems relate to the RV T coding system. Then, building upon

Mormul’s work in [Mor03], Mormul and Pelletier used the idea of strong nilpotency of

special multi-flags, along with the properties of his two coding systems, to classify these

distributions up to length 4. Our 34 orbits agrees with theirs.

In Chapter 2 we acquaint ourselves with the main definitions necessary for the

statements of our main results, the statement of the main results, and a few explanatory

remarks. Chapter 3 consists of the preliminary material. In this chapter we discuss

the basic tools and ideas that will be needed to prove our various results. Chapter

4 is devoted to the proofs of the main results. Finally, in Chapter 5, we provide an

appendix to the thesis where one can find supplementary information. In particular, we

have listed the definition of a Goursat n-flag, a derivation of the kinematic equations

for the car with n trailers, and some lengthy computations along with other useful tools

and examples to help the reader with the theory.

7



Chapter 2

Settings and Main Results

In this portion of the thesis we present the classification of the points within

the Monster Tower with critical length at most 4. A large amount of the work will be

the classification of the points within the first 4 levels of the Monster Tower. In order to

do this we use a singular curve approach and another technique that we call the isotropy

method.

2.1 The Setting and Main Results

Theorem 2.1.1 (Orbit counting per level) In the n = 2 (or spatial) Monster Tower

the number of orbits within each of the first four levels of the tower are as follows:

Level 1: Level 2: Level 3: Level 4:
1 2 7 34

The main idea behind determining the number of orbits in the first four levels

of the tower is to use a blend of the singular curve methods as introduced in [MZ10]

and a technique we call the isotropy method (adapted from [MZ01]). The curve method

alone suffices to yield Theorem 2.1.1 up to level 3. In order to get to level 4 we must

use the isotropy method in combination with a classification of special directions which

generalizes the RV T coding of [MZ10]. This classification, or coding is described in

Section 3.3.3. Our main result, in detail, is the following theorem, of which Theorem

2.1.1 is an immediate corollary.
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Table 2.1: Number of orbits within the first three levels of the Monster Tower.

Level of tower RV T code Number of orbits Normal forms
1 R 1 (t, 0, 0)
2 RR 1 (t, 0, 0)

RV 1 (t2, t3, 0)
3 RRR 1 (t, 0, 0)

RRV 1 (t2, t5, 0)
RV R 1 (t2, t3, 0)
RV V 1 (t3, t5, t7), (t3, t5, 0)
RV T 2 (t3, t4, t5), (t3, t4, 0)
RV L 1 (t4, t6, t7)

Theorem 2.1.2 (Listing of orbits within each RV T code) Table 2.1 is a break-

down of the number of orbits that appear within each RV T class within the first three

levels.

For level 4 there is a total of 23 possible RV T classes. Of the 23 possibilities 14 of them

consist of a single orbit. The classes RRV T , RV RV , RV V R, RV V V , RV V T , RV TR,

RV TV , RV TL consist of 2 orbits, and the class RV TT consists of 4 orbits.

Remark 2.1.3 There are a few words that should be said to explain the normal forms

column in Table 2.1. Let pk ∈ Pk, for k = 1, 2, 3, have RV T code ω, meaning ω is a

word from the second column of the table. Let γ ∈ Germ(pk), then γ is RL equivalent

to one of the curves listed in the normal forms column for the RV T class ω. Now, for

the class RV V we notice that there are two inequivalent curves sitting in the normal

forms column, but that there is only one orbit within that class. This is because the two

normal forms are equal to each other, at t = 0, after three prolongations. However, after

four prolongations they represent different points at the fourth level. This corresponds

to the fact that at the fourth level class RV V R breaks up into two orbits.

The following theorems are in [CM12] and helped to reduce the number cal-

culations in our orbit classification process.

Definition 2.1.1 A point pk ∈ Pk is called a Cartan point if its RV T code is Rk,

where Rk = R · · ·R︸ ︷︷ ︸
k times

.

9



Theorem 2.1.4 The RV T class Rk forms a single orbit at any level within the Monster

Tower Pk(n) for k ≥ 1 and n ≥ 1. Every point at level 1 is a Cartan point. For k > 1

the set Rk is an open dense subset of Pk(n).

Definition 2.1.2 A parametrized curve belongs to the A2k class, k ≥ 1, if it is RL

equivalent to the curve

(t2, t2k+1, 0)

Theorem 2.1.5 Let pk ∈ Pk with k = j + m + 1, with m ≥ 0, k ≥ 1 non-negative

integers, and pk ∈ RjCRm. Then Germ(pk) contains a curve germ equivalent to the

A2k singularity, which implies that the RV T class RjCRm consists of a single orbit.

Remark 2.1.6 The letter C, as well as any other letter other than the letter R, in

the above stands for a critical point. This notation will be explained in more detail in

Section 3.3.1.

Theorem 2.1.7 Let ω be an RV T class comprised of k-orbits.

Then the addition of R’s to the beginning of the code ω, meaning R · · ·Rω, will be an

RV T class with k-orbits.

Theorem 2.1.7 allows one to reduce the number of calculations needed to compute the

number of orbits within an RV T class found within higher levels of the Monster Tower.

For example, the class RRRRRRV V will have exactly the same number of orbits as

RV V . This theorem helped in the classification of points within the fourth level of

the tower by reducing the number of calculations we needed to do with the isotropy

method. It also tells us how many orbits there are within any RV T class that starts

with a sequence of R’s and has at most 3 critical adjacent letters.

Remark 2.1.8 Monster Tower is a fiber compactification of jet spaces. The

space of k-jets of functions f : R→ R2, usually denoted by Jk(R,R2) is an open dense

subset of Pk. It is in this sense that a point p ∈ Pk is roughly speaking the k-jet of a

curve in R3. Sections of the bundle

Jk(R,R2)→ R× R2

10



are k-jet extensions of functions. Explicitly, given a vector-valued function t 7→ f(t) =

(x(t), y(t)) its k-jet extension is defined as

(t, f(t)) 7→ (t, x(t), y(t), x′(t), y′(t), . . . , x(k)(t), y(k)(t)).

Superscripts here denotes the order of the derivative. It is an instructive exercise to

show that for certain choices of fiber affine coordinates in Pk, not involving critical

directions, that our local charts will look like a copy of Jk(R,R2).

Another reason to look at curves is that it gives us a better picture of the

overall behavior of an RV T class. If one knows all the possible curve normal forms for

a particular RV T class, say ω, then not only does one know how many orbits are within

the class ω, but one also knows how many orbits are within the regular prolongation of

ω. By regular prolongation of an RV T class ω we mean the addition of only R’s to the

end of the word ω, i.e. the regular prolongation of ω is ωR · · ·R. This method of using

curves to classify RV T classes was used in [MZ10].

11



Chapter 3

Preliminaries

This chapter will provide all of the necessary background for the Monster

Tower and its various properties.

3.1 Cartan Prolongation

Cartan Prolongation is Before we being, we want to say that a geometric

distribution hereafter denotes a linear subbundle of the tangent bundle with fibers of

constant dimension.

3.1.1 Prolongation

Let the pair (Z,∆) denote a manifold Z of dimension d equipped with a dis-

tribution ∆ of rank r. We denote by P(∆) the projectivization of ∆. As a manifold,

P(∆) ≡ Z1,

has dimension d+ (r − 1).

Example 3.1.1 Take Z = R3, ∆ = TR3 viewed as a rank 3 distribution. Then Z1 is

simply the trivial bundle R3 × P2, where the factor on the right denotes the projetive

plane.

Various geometric objects in Z can be canonically prolonged (lifted) to the

new manifold Z1. In what follows prolongations of curves and transformations are

quintessential.

12



Table 3.1: Some geometric objects and their Cartan prolongations.

curve c : (I, 0)→ (Z, q) curve c1 : (I, 0)→ (Z1, q),

c1(t) = (point,moving line) = (c(t), span{dcdt (t)})
diffeomorphism Φ : Z 	 diffeomorphism Φ1 : Z1 	,

Φ1(p, `) = (Φ(p), dΦp(`))

rank r linear subbundle rank r linear subbundle ∆1(p,`) = dπ−1
(p,`)(`) ⊂ TZ

1,

∆ ⊂ TZ π : Z1 → Z is the canonical projection.

Given an analytic curve c : (I, 0)→ (Z, q), where I is some open interval in R

containing the origin and c(0) = q, we can naturally define a new curve

c1 : (I, 0)→ (Z1, (q, `))

with image in Z1 and where ` = span{dcdt (0)}. This new curve, c1(t), is called the

prolongation of c(t). If t = t0 is not a regular point, then we define c1(t0) to be the

limit limt→t0 c
1(t) where the limit varies over the regular points t → t0. An important

fact to note, proved in [MZ01], is that the analyticity of Z and c implies that the limit

is well defined and that the prolonged curve c1(t) is analytic as well. Since this process

can be iterated, we will write ck(t) to denote the k-fold prolongation of the curve c(t).

The manifold Z1 also comes equipped with a distribution ∆1 called the Cartan

prolongation of ∆ ([BH93]) which is defined as follows. Let π : Z1 → Z be the projection

map (p, `) 7→ p. Then

∆1(p, `) = dπ−1
(p,`)(`),

i.e. it is the subspace of T(p,`)Z
1 consisting of all tangents to curves which are prolonga-

tions of curves in Z that pass through p with a velocity vector contained in `. It is easy

to check using linear algebra that ∆1 is also a distribution of rank r.

By a symmetry of the pair (Z,∆) we mean a local diffeomorphism Φ of Z that

preserves the subbundle ∆.

The symmetries of (Z,∆) can also be prolonged to symmetries Φ1 of (Z1,∆1)

as follows. Define

Φ1(p, `) := (Φ(p), dΦp(`)).

Since1 dΦp is invertible and dΦp is linear the second component is well defined as a

projective map. This new transformation in (Z1,∆1) is the prolongation of Φ. Objects

1We also use the notation Φ∗ for the pushforward or tangent map dΦ.
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of interest and their Cartan prolongations are summarized in Table 3.1. We note that

the word prolongation will always be synonymous with Cartan prolongation.

Example 3.1.2 (Prolongation of a cusp) Let c(t) = (t2, t3, 0) be the cusp in R3.

Then c1(t) = (x(t), y(t), z(t), [dx : dy : dz]) = (t2, t3, 0, [2t : 3t2 : 0]). After we introduce

fiber affine coordinates u = dy
dx and v = dz

dx around the point (0, 0, 0, [1 : 0 : 0]) we obtain

the immersed curve

c1(t) = (t2, t3, 0,
3

2
t, 0)

3.2 The Monster Tower

3.2.1 Constructing the Monster Tower.

We start with Rn+1 as our base manifold Z and take ∆0 = TRn+1. Prolonging

∆0 we get P1(n) = P(∆0) equipped with the distribution ∆1 of rank n. By iterating

this process we end up with the manifold Pk(n) which is endowed with the rank n

distribution ∆k = (∆k−1)1 and fibered over Pk−1(n). In this thesis we will be studying

the case n = 2.

Definition 3.2.1 The Monster Tower is a sequence of manifolds with distributions,

(Pk,∆k), together with fibrations

· · · → Pk(n)→ Pk−1(n)→ · · · → P1(n)→ P0(n) = Rn+1

and we write πk,i : Pk(n)→ P i(n) for the respective bundle projections.

This explains how the tower shown in equation (1.0.1) is obtained by iterated

Cartan prolongation of the pair (R3,∆0).

Definition 3.2.2 Diff(3) is taken to be the pseudogroup of diffeomorphism germs of R3.

Remark 3.2.1 The pseudogroup Diff(3). Saying that Diff(3) is a pseudogroup

roughly means that for any open set U ⊆ R3, the identity restricted to this set is an

element of Diff(3), and for any local diffeomorphism in Diff(3) defined on U its inverse,

defined on Φ(U) is in Diff(3) as well. Also, for any Φ1,Φ2 ∈ Diff(3) where Φ1 : U1 → V1

and Φ2 : U2 → V2, for Ui and Vi open subsets of R3 with V1 ∩ U2 6= ∅, then the compo-

sition Φ2 ◦Φ−1
1 : Φ−1

1 (V1 ∩U2)→ Φ2(V1 ∩U2) is an element of Diff(3). A more detailed

discussion about pseudogroups can be found in [KN96].
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The following result found in a paper by Shibuya and Yamaguchi will be im-

portant for our classification of points within the Monster Tower.

Theorem 3.2.2 For n > 1 and k > 0 any local diffeomorphism of Pk(n) preserving

the distribution ∆k is the restriction of the k-th prolongation of a local diffeomorphism

Φ ∈ Diff(n).

Proof: See ([SY09], pg. 795). �

Shibuya and Yamaguchi also point out that this is a result due to A. Bäcklund

[Bäc75].

Remark 3.2.3 The importance of the above result cannot be stressed enough. This

theorem is the theoretical foundation for the isotropy method, discussed in Section 5 of

the thesis. It will be crucial for classifying orbits within the Monster Tower.

Remark 3.2.4 Since we will be working almost exclusively with the n = 2 Monster

Tower in this thesis, we will just write Pk for Pk(2).

Definition 3.2.3 Two points p, q in Pk are said to be equivalent, written p ∼ q, if there

is a Φ ∈ Diff(3) such that Φk(p) = q.

Definition 3.2.4 Let p ∈ Pk then we denote O(p) to be the orbit of the point p under

the action by elements of Diff(3) to the k-th level of the Monster Tower, where a point

q is an element in O(p) if q is equivalent to the point p.

3.2.2 Orbits.

Theorem 3.2.2 tells us that any symmetry of Pk comes from prolonging a

diffeomorphism of a real affine three-space k times. Let us denote by O(p) the orbit of

the point p under the action of Diff(3).

In trying to calculate the various orbits within the Monster Tower we found it

convenient to fix the base points from which they originated from in R3. In particular,

if pk is a point in Pk and p0 = πk,0(pk) is the base point in R3, then by a change of

coordinates we can take the point p0 to be the origin in R3. This means that we can

replace the pseudogroup Diff(3), diffeomorphism germs of R3, by the group Diff0(3) of

diffeomorphism germs that map the origin back to the origin in R3.
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Prolonged Cusp
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(c) Prolongation of a curve

Figure 3.1: Prolongations

Definition 3.2.5 We say that a curve or curve germ γ : (R, 0) → (R3,0) realizes the

point pk ∈ Pk if γk(0) = pk, where p0 = πk,0(pk) ≡ 0.

It is important to note at this point that prolongation and projection com-
mute. This fact is discussed in detail in [MZ10] and in [CM12].

Definition 3.2.6 A direction ` ⊂ ∆k(pk), k ≥ 1 is called a critical direction if there

exists an immersed curve at level k that is tangent to the direction `, and whose pro-

jection to level zero, meaning the base manifold, is a constant curve. If no such curve

exists, then we call ` a regular direction. Note that while ` is technically a line we will

by an abuse of terminology refer to it as a direction.

Definition 3.2.7 Let p ∈ Pk. The set of curves

Germ(p) := {c : (R, 0)→ (R3,0)|ck(0) = p and
dck

dt
|t=0 6= 0 is a regular direction},

is called the germ associated to the point p.

Definition 3.2.8 Two curves γ, σ in R3 are RL equivalent, written γ ∼ σ if there

exists a diffeomorphism germ Φ ∈ Diff(3) and a reparametrization τ ∈ Diff0(1) such

that σ = Φ ◦ γ ◦ τ .

We can then define Germ(p) ∼ Germ(q) to mean that every curve in Germ(p) is RL

equivalent to some curve in Germ(q) and conversely, every curve in Germ(q) is RL

equivalent to some curve in Germ(p).
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3.3 RV T Coding

The RV T coding system was first used in [MZ10]. Then in [CM12] they

extended this coding system from the R2 Monster Tower to the R3 Monster Tower. As

is also pointed out by Castro and Montgomery, this coding system holds if we take the

base manifold to be C3, too. The RV T coding system partitions the points at any given

level of the tower where we attach a sequence of R’s, V ’s, T ’s, and L’s, along with

various decorations to the T ’s and L’s, One important feature of this coding is that the

various symmetries at any given level of the tower preserve the RV T code. This means

that if we take the collection of points within a fixed RV T class and apply a symmetry

to them, then those points stay within that RV T class.

We first introduce the RC coding system and from there refine our coding

system to produce the RV T coding system.

3.3.1 RC Coding of Points.

Definition 3.3.1 A point pk ∈ Pk, where pk = (pk−1, `) is called a regular or critical

point if the line ` is a regular direction or a critical direction.

Definition 3.3.2 For pk ∈ Pk, k ≥ 1 and pi = πk,i(pk), we write ωi(pk) = R if pi

is a regular point and ωi(pk) = C if pi is a critical point. Then the word ω(pk) =

ω1(pk) · · ·ωk(pk) is called the RC code for the point pk. The number of letters within

the RC code for pk equals the level of the tower that the point lives in. Note that ω1(pk)

is always equal to R by Theorem 2.1.4.

So far we have not discussed how critical directions sit inside of ∆k. The following

section will show that there is more than one kind of critical direction that can appear

within the distribution ∆k.

3.3.2 Baby Monsters.

One can apply prolongation to any analytic n-dimensional manifold F in place

of Rn. Start out with P0(F ) = F and take ∆F
0 = TF . Then the prolongation of the
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pair (F,∆F
0 ) is P1(F ) = PTF equipped with the rank m distribution ∆F

1 ≡ (∆F
0 )1.

By iterating this process k times we end up with new the pair (Pk(F ),∆F
k ), which is

analytically diffeomorphic to (Pk(n− 1),∆k) ([CM12]).

Now, apply this process to the fiber Fi(pi) = π−1
i,i−1(pi−1) ⊂ P i through the

point pi at level i. The fiber is an (n−1)-dimensional integral submanifold for ∆i. Pro-

longing, we see that P1(Fi(pi)) ⊂ P i+1, and P1(Fi(pi)) has the associated distribution

δ1
i ≡ ∆

Fi(pi)
1 ; that is,

δ1
i (q) = ∆i+1(q) ∩ Tq(P1(Fi(pi)))

which is a hyperplane within ∆i+1(q), for q ∈ P1(Fi(pi)). When this prolongation

process is iterated, we end up with the submanifolds

Pj(Fi(pi)) ⊂ P i+j

with the hyperplane subdistribution δji (q) ⊂ ∆i+j(q) for q ∈ Pj(Fi(pi)).

Definition 3.3.3 A Baby Monster born at level i is a sub-tower (Pj(Fi(pi)), δji ), for

j ≥ 0 within the ambient Monster Tower. If q ∈ Pj(Fi(pi)) then we will say that a Baby

Monster born at level i passes through q and that δji (q) is a critical hyperplane passing

through q, which was born at level i.

Definition 3.3.4 The vertical plane Vk(q) is the critical hyperplane δ0
k(q). We note

that it is always one of the critical hyperplanes passing through q.

The following statement elucidates the geometric properties of critical direc-

tions.

Theorem 3.3.1 A direction ` ⊂ ∆k is critical if and only if ` is contained in a critical

hyperplane.

3.3.3 Arrangements of critical hyperplanes for n = 2.

Over any point pk, at the k-th level of the Monster Tower, there is a total of

three different hyperplane configurations for ∆k. These three configurations are shown

in Figures 3.2a, 3.2b, and 3.2c.

Figure 3.2a is the picture for ∆k(pk) when the k-th letter in the RV T code

for pk is the letter R. This means that the vertical hyperplane, labeled with a V , is the
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(a) Above a regular point.

V

L T

(b) Above a vertical or tangency

point.

V

L2
T1

T2

L3
L1

(c) Above an L point.

Figure 3.2: Arrangement of critical hyperplanes.

only critical hyperplane sitting inside of ∆k(pk). Figure 3.2b is the picture for ∆k(pk)

when the k-th letter in the RV T code is either the letter V or the letter T . This gives a

total of two critical hyperplanes sitting inside of ∆k(pk) and one distinguished critical

direction: one is the vertical hyperplane and the other is the tangency hyperplane,

labeled by the letter T . The intersection of vertical and tangency hyperplane gives

a distinguished critical direction, which is labeled by the letter L. Now, Figure 3.2c

describes the picture for ∆k(pk) when the k-th letter in the RV T code of pk is the

letter L. Figure 3.2c depicts this situation where there is now a total of three critical

hyperplanes: one is the vertical hyperplane, and two tangency hyperplanes, labeled as

T1 and T2. Now, because of the presence of these three critical hyperplanes we need

to refine our notion of an L direction and add two more distinct L directions. These

three directions are labeled as L1, L2, and L3. More details concerning the properties

of these critical hyperplanes and their various configurations can be found in [CM12].

With the above picture in mind, we can now refine our RC coding and define

the RV T code for points within the Monster Tower. Take pk ∈ Pk and if ωi(pk) = C

then we look at the point pi = πk,i(pk), where pi = (pi−1, `i−1). Then depending on

which critical hyperplane, or distinguished direction, contains `i−1, we replace the letter

C by the letter V , T , L, Ti for i = 1, 2, or Lj for j = 1, 2, 3. One can see from the above

geometric considerations that these critical letters must follow three simple grammar

rules.

(i) The first one states that the initial letter in any RV T code string must be the
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letter R. This is a consequence of Theorem 2.1.4.

(ii) The second is that the letters T or L, along with Ti for i = 1, 2 and Lj for

j = 1, 2, 3, cannot immediately follow the letter R.

(iii) The last one is that the letters T2 and Lj for j = 1, 2, 3 can only appear immedi-

ately after the letter L = (L1).

For the case of length 4 the letters T2 and Lj for j = 2, 3 can only appear immediately

after the letter L = (L1). However, for a point of length larger than 4 we believe that

this rule still holds. This fact will be investigated in a future work by one of the authors.

Example 3.3.2 (Examples of RV T codes) The following are examples of RV T codes:

R · · ·R, RV V T , RV LT2R, and RV LL2. The code RTL is not allowed because the let-

ter T is preceded by the letter R and the code RLT3 is not allowed because the letter L

comes immediately after the letter R.

As a result, we see that each of the first four levels of the Monster Tower is

made up of the following RV T classes:

• Level 1:

R

• Level 2:

RR,RV

• Level 3:

RRR,RRV,RV R,RV V,RV T,RV L

• Level 4:

RRRR,RRRV

RRV R,RRV V,RRV T,RRV L

RV RR,RV RV,RV V R,RV V V,RV V T,RV V L

RV TR,RV TV,RV TT,RV TL

RV LR,RV LV,RV LT1, RV LT2, RV LL1, RV LL2, RV LL3
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Remark 3.3.3 As it was pointed out in [CM12] the symmetries, at any level in the

Monster Tower preserve the critical hyperplanes. In other words, if Φk is a symmetry at

level k in the Monster Tower and δji is a critical hyperplane within ∆k then Φk
∗(δ

j
i ) = δji .

As a result, the RV T classes creates a partition of the various points within any level of

the Monster Tower,i.e., the RV T classes are invariant under the Diff(3) action. More

details about the properties of the various critical hyperplanes and distinguished critical

directions can be found in [CM12].

Now, from the above configurations of critical hyperplanes section one might

ask the following question: how does one “see” the two tangency hyperplanes that

appear over an “L” point and where do they come from? This question was an important

one to ask when trying to classify the number of orbits within the fourth level of the

Monster Tower and to better understand the geometry of the tower. We will provide

an example to answer this question, but before we do so we must discuss some details

about a particular coordinate system called Kumpera-Rubin coordinates to help us do

various computations within the Monster Tower.

3.4 Kumpera-Rubin Coordinates

When doing local computations in the tower (1.0.1), one needs to work with

suitable coordinates. A good choice of coordinates was suggested by Kumpera and Ruiz

([KR82]) in the Goursat case, and later generalized by Kumpera and Rubin ([KR82])

for multi-flags. A detailed description of the inductive construction of Kumpera-Rubin

coordinates was given in [CM12] and we have included this general construction in an

appendix to the thesis (Section 5.4). For the sake of clarity, we will just highlight the

coordinates’ attributes through an example in this section.

Example 3.4.1 (Constructing fiber affine coordinates in P2)

Level One:

Consider the pair (R3, TR3) and let (x, y, z) be local coordinates on R3. The

triple of 1-forms {dx, dy, dz} form a coframe of TR3. Any line `0 in the tangent space

at p0 ∈ R3 has projective coordinates [dx|`0 : dy|`0 : dz|`0 ]. Since the affine group of
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R3, which is contained in Diff(3), acts transitively on P(TR3), we can fix p0 = (0, 0, 0)

(= 0) and `0 = span
{
∂
∂x

}
. Thus dx|`0 6= 0 and we introduce fiber affine coordinates

[1 : dy/dx : dz/dx] where,

u =
dy

dx
, v =

dz

dx
.

The Pfaffian system describing the prolonged distribution ∆1 on P1 = R3 × P2 is

{dy − udx = 0, dz − vdx = 0} = ∆1 ⊂ TP1.

At the point p1 = (p0, `0) = (x, y, z, u, v) = (0, 0, 0, 0, 0) the distribution is the

linear subspace

∆1 (0,0,0,0,0) = {dy = 0, dz = 0}.

The triple of 1-forms {dx, du, dv} form a local coframe for ∆1 near p1 = (p0, `0). The

fiber, F1(p1) = π−1
1,0(p0), is given by x = y = z = 0. The 2-plane of critical directions

(“bad-directions”) is thus spanned by ∂
∂u ,

∂
∂v .

The reader may have noticed that we could have instead chosen any regular

direction at level 1 instead, e.g. ∂
∂x + a ∂

∂u + b ∂∂v and centered our chart at it. Again,

this is because all regular directions at level one are pairwise equivalent by a symmetry

transformation.

Remark 3.4.2 Let us remind the reader that P1 is diffeomorphic to R3×P2 but Pk is

not a trivial bundle over R3 if k ≥ 2 (cf. [CM12], section 2).

Level Two (RV points):

Any line `1 ⊂ ∆1(p′1), for p′1 near p1, will have projective coordinates

[dx|`1 : du|`1 : dv|`1 ].

If we choose a critical direction, say `1 = span{ ∂∂u}, then du( ∂
∂u) = 1 and we can

center our chart at the direction `1 and the chart is given by the projective coordinates

[dxdu : 1 : dv
du ]. We will show below that any two critical directions are equivalent and

therefore such a choice does not result in any loss of generality. We introduce new fiber

affine coordinates

u2 =
dx

du
, v2 =

dy

du
,
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and the distribution ∆2 will be described in this chart as

∆2 = {dy − udx = 0, dz − vdx = 0,

dx− u2du = 0, dv − v2du = 0} ⊂ TP2.

Level Three (The Tangency Hyperplanes over an L point):

We take p3 = (p2, `2) ∈ RV L with p2 as in the level two discussion. We now look at a

local affine coordinates near the point p2. We will show that inside of this chart that

the tangency hyperplane T1 in ∆3(p3) is the critical hyperplane δ1
2(p3) = span{ ∂

∂v2
, ∂
∂v3
}

and the tangency hyperplane T2 is the critical hyperplane δ2
1(p3) = span{ ∂

∂v2
, ∂
∂u3
}.

We begin with the local coordinates near p3. Let us first recall that the distri-

bution ∆2 is coframed by {du, du2, dv2} in this case. Within ∆2 the vertical hyperplane

is given by du = 0 and the tangency hyperplane by du2 = 0. The point p3 = (p2, `)

with ` being an L direction means that both du|` = 0 and du2|` = 0. This means that

the only choice for local coordinates near p3 is given by [ dudv2 : du2dv2
: 1]. As a result, the

fiber coordinates at level 3 are

u3 =
du

dv2
, v3 =

du2

dv2

and the distribution ∆3 will be described in this chart as

∆3 = {dy − udx = 0, dz − vdx = 0,

dx− u2du = 0, dv − v2du = 0,

du− u3dv2 = 0, du2 − v3dv2 = 0} ⊂ TP3.

With this in mind, we are ready to determine how the two tangency hyper-

planes are situated within ∆3.

• Showing T1 is equal to δ1
2(p3): First we note that p3 = (x, y, z, u, v, u2, v2, u3, v3) =

(0, 0, 0, 0, 0, 0, 0, 0, 0) with u = dy
dx , v = dz

dx , u2 = dx
du , v2 = dv

du , u3 = du
dv2

, v3 = du2
dv2

.

With this in mind, we start by looking at the vertical hyperplane V2(p2) ⊂ ∆2(p2)

and prolong the fiber F2(p2) associated to V2(p2) and see that
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P1(F2(p2)) = PV2 = (p1, u2, v2, [du : du2 : dv2]) = (p1, u2, v2, [0 : a : b])

= (p1, u2, v2, [0 : ab : 1]) = (p1, u2, v2, 0, v3)

where a, b ∈ R with b 6= 0. One sees that ∆3, in a neighborhood of p3, is given by

∆3 = span

{
u3X

(2) + v3
∂

∂u2
+

∂

∂v2
,
∂

∂u3
,
∂

∂v3

}
withX(2) = u2X

(1)
1 + ∂

∂u+v2
∂
∂v andX(1) = u ∂

∂y+v ∂
∂z+ ∂

∂x and that Tp3(P1(F2(p2))) =

span{ ∂
∂u2

, ∂
∂v2

, ∂
∂v3
}. From the definition of δji we have that

δ1
2(p3) = ∆3(p3) ∩ Tp3(P1(F2(p2)))

which gives that

δ1
2(p3) = span

{
∂

∂v2
,
∂

∂v3

}
.

Now, since V3(p3) ⊂ ∆3(p3) is given by V3(p3) = span{ ∂
∂u3

, ∂
∂v3
} we see, based

upon Figure 3.2c, that T1 = δ1
2(p3).

• Showing T2 is equal to δ2
1(p3): We begin by looking at V1(p1) ⊂ ∆1(p1) and

at the fiber F1(p1) associated to V1(p1). When we prolong the fiber space we see

that

P1(F1(p1)) = PV1 = (0, 0, 0, u, v, [dx : du : dv]) = (0, 0, 0, u, v, [0 : a : b])

= (0, 0, 0, u, v, [0 : 1 : b
a ]) = (0, 0, 0, u, v, 0, v2)

where a, b ∈ R with a 6= 0. Now ∆2, in a neighborhood of p2, is given by

∆2 = span

{
u2X

(1) +
∂

∂u
+ v2

∂

∂v
,
∂

∂u2
,
∂

∂v2

}
and at the same time Tp2(P1(F1(p1))) = span{ ∂∂u ,

∂
∂v ,

∂
∂v2
}. This gives

δ1
1(p2) = ∆2(p2) ∩ Tp2(P1(F1(p1)))

and we have in a neighborhood of p2 that

δ1
1 = span

{
u2X

(1) +
∂

∂u
+ v2

∂

∂v
,
∂

∂v2

}
.
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Figure 3.3: Critical hyperplane configuration over p3 ∈ RV L.

Now, in order to figure out what δ2
1(p3) is we need to prolong the fiber F1(p1)

twice and then look at the tangent space at the point p3. We see that

P2(F1(p1)) = Pδ1
1 = (0, 0, 0, u, v, 0, v2, [du : du2 : dv2])

= (0, 0, 0, u, v, 0, v2, [a : 0 : b])

= (0, 0, 0, u, v, 0, v2, [
a
b : 0 : 1])

= (0, 0, 0, u, v, 0, v2, u3, 0)

then since

δ2
1(p3) = ∆3(p3) ∩ Tp3(P2(F1(p1)))

with ∆3(p3) = span{ ∂
∂v2

, ∂
∂u3

, ∂
∂v3
} and Tp3(P2(F1(p1))) = span{ ∂∂u ,

∂
∂v ,

∂
∂v2

, ∂
∂u3
}

then

δ2
1(p3) = span

{
∂

∂v2
,
∂

∂u3

}
and from looking at Figure 3.2c one can see that T2 = δ2

1(p3).

Remark 3.4.3 The above example, along with Figure 3.3, gives some reasoning for

why a critical hyperplane, which is not the vertical one, is called a tangency hyperplane.

Also, in Figure 3.3 we have drawn the submanifolds P1(F2(p2)) and P1(F1(p1)) to reflect
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the fact that they have some component which is tangent to the manifolds P3 and P2

respectively and that their other component is tangent to the vertical space. At the same

time, they are drawn to show the fact that P2(F1(p1)) is tangent to the ∂
∂u3

direction

while P1(F2(p2)) is tangent to the ∂
∂v3

direction. Another reason for why we use this

terminology is because it was first introduced in the context of the n = 1 Monster Tower

to distinguish those critical directions that were not vertical, and that were actually

contained in the tangent bundle of Pk(1) ([MZ10]).

3.5 Semigroup of a Curve

An important piece of information that we need to present is some terminology

relating to curves. Some of the following properties about curve germs are presented in

greater detail in [CM12].

Definition 3.5.1 The order of an analytic curve germ f(t) =
∑

i≥0 ait
i is the smallest

integer i such that ai 6= 0. We write ord(f) for this (nonegative) integer. The multi-

plicity of a curve germ γ : (R, 0) → (Rn, 0), denoted mult(γ), is the minimum of the

orders of its coordinate functions γi(t) relative to any coordinate system vanishing at p.

Definition 3.5.2 A curve germ is said to be well parameterized if γ cannot be written

in the form γ = σ ◦ τ where τ : (R, 0)→ (R, 0) with τ ′(0) = 0 ([Wal04]).

Definition 3.5.3 If γ : (R, 0) → (Rn, 0) is a well-parameterized curve germ, then its

semigroup is the collection of positive integers ord(P (γ(t))) as P varies over analytic

functions of n variables vanishing at 0.

Because ord(PQ(γ(t))) = ord(P (γ(t))) + ord(Q(γ(t))) the curve semigroup is indeed

an algebraic semigroup, i.e. a subset of N closed under addition. The semigroup of a

well-parameterized curve is a basic diffeomorphism invariant of the curve.

Definition 3.5.4 (Following Arnol’d from [Arn99], end of introduction) A curve germ

γ in R3 has symbol [m,n], [m,n, p], or [m, (n, p)] if it is equivalent to a curve germ of the

form (tm, tn, 0) +O(tn+1), (tm,t
n,tp) +O(tp+1), or (tm, tn + tp, 0) +O(tp+1) respectively,

with m < n < p being positive integers.
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We also impose some restrictions on the symbols in order to insure that the

curve is well-parameterized. One restriction is that the integers m, n or m, n, p are

relatively prime. The other is that for the length 3 symbols that the final integer p is not

in the semigroup generated by m and n.

Remark 3.5.1 Arnol’d pointed out in [Arn99] that one can use the semigroup of a

curve germ as a tool to see if it is RL equivalent to a simpler curve germ. Details

and examples about semigroup calculations can be found within [Arn99] as well as in

[Wal04]. We do though provide the following short example to help the reader.

Example 3.5.2 Let γ1(t) = (t3, t5, t7) and γ2(t) = (t3, t5+t6+t8, t7+t9) be curve germs

defined for t in an open interval about zero. Both of the curves γ1 and γ2 generate the

same semigroup. In this case the semigroup is the set S = {3, [4], 5, 6, 7, · · · } where

the binary operation is addition. The numbers 3, 5, 6, and so on are elements of this

semigroup while the bracket around the number 4 means that it is not an element of S.

When we write “· · · ” after the number 7 it means that every positive integer after 7 is

an element in our semigroup. Arnol’d points out that the terms in the semigroup tells

us which powers of t we can eliminate from the curve. This means that every term,

ti for i ≥ 7, can be eliminated, except for the t7 term in the last component function,

from the above power series expansion for the component functions x(t), y(t), and z(t)

by a change of variables given by (x, y, z) 7→ (x+ f(x, y, z), y+ g(x, y, z), z+ h(x, y, z)).

Since the numbers 6, 8, and 9 are included in the semigroup it means that we can use a

combination of RL equivalences to kill the t6 and t8 terms in the y component and the

t9 term in the z component of γ2. This means that the curve germs γ1 and γ2 are in

fact RL equivalent.

3.5.1 The points-to-curves and back philosophy

The idea is to translate the problem of classifying orbits in the tower (1.0.1)

into an equivalent classification problem for finite jets of space curves. Here we are

going to mention some highlights of this approach, we will refer the diligent reader to

[CM12] check the technical details.

For any p ∈ Pk(n) we associate the set Germ(p) and look at the operation of k-fold

prolongation applied to curve germs in Germ(p). This yields immersed curves at level

k in the Monster Tower, and tangent to some line ` having nonconstant projection onto
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the base manifold R3. Such set of good directions were christened regular in [CM12], and

within each subspace ∆k they form an open dense set. A bad direction `∗, or critical

direction in the terminology of [CM12], are those directions which will project down to a

point under the differential of the bundle projection map. The set of critical directions

within each ∆k is a finite union of planes. Symmetries of Pk do preserve the different

types of directions.

In [CM12] it was proved that that Germ(p) is always non-empty. Consider now

the set valued map p 7→ Germ(p). One can prove that p ∼ q iff Germ(p) ∼ Germ(q).

An immediate and yet useful consequence of this fact is the following:

Lemma 3.5.3 (Fundamental lemma of points-to-curves approach) Let Ω be a

subset of Pk(n) and suppose for each p ∈ Ω that Germ(p) contains only a finite number

of equivalence classes of curve germs. Then the set Ω is comprised of only a finite

number of orbits.

3.6 The Isotropy Method

The last piece of information that we need to present before we begin the

proofs section is the isotropy method. This technique is used to classify points at the

fourth level of the Monster Tower. This is because the curve approach failed to provide

us with nice and clean normal forms for the various RV T classes at the fourth level of

the tower. We provide a specific example of how the curve approach breaks down at

level 4 in the proofs section. Suppose we want to look at a particular RV T class, at

the k-th level, given by ω (a word of length k) and we want to see how many orbits

there are. Suppose as well that we understand its projection πk,k−1(ω) one level down,

which decomposes into N orbits. Choose representative points pi, i = 1, · · · , N for the

N orbits in πk,k−1(ω), and consider the group Gk−1(pi) of level k − 1 symmetries that

fix pi. This group is called the isotropy group of pi. Since elements Φk−1 of the isotropy

group fix pi, their prolongations Φk = (Φk−1,Φk−1
∗ ) act on the fiber over pi. Under the

action of the isotropy group the fiber decomposes into some number ni ≥ 1 (possibly

infinite) of orbits. Summing up, we find that ω decomposes into
∑N

i=1 ni ≥ N orbits.

This will tell us how many orbits there are for the class ω.

This is the idea behind the approach (see Figure
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Φ∗

pk−1 pk−1

`

`′

Figure 3.4: The Isotropy Method

This is the theory. Now we need to explain how one actually prolongs dif-

feomorphisms in practice. Since the manifold Pk is a type of fiber compactification of

Jk(R,R2), it is reasonable to expect that the prolongation of diffeomorphisms from the

base R3 should be similar to what one does when prolonging point symmetries from the

theory of jet spaces. See specifically [DZ04] and [Olv93].

Given a point pk ∈ Pk and a map Φ ∈ Diff(3) we would like to write explicit

formulas for Φk(pk). Coordinates of pk can be made explicit. Now take any curve

γ(t) ∈ Germ(pk), and consider the prolongation of Φ ◦ γ(t). The coordinates of Φk(pk)

are exactly the coordinates of (Φ ◦ γ)(k)(0) = Φk(γk(0)). Moreover the resulting point

is independent of the choice of γ ∈ Germ(p) and therefore we can act as if a curve has

been chosen when performing actual computations.
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Chapter 4

Proofs of Main Results

Now we are ready to prove Theorem 2.1.2. We start at level 1 of the tower

and work our way up to level 4. At each level of the tower we classify the number

of orbits within each RV T class that appears at that particular level. In this section

we show how the various methods and tools from the previous section are used in the

classification procedure. Unfortunately we do not have space to present all of the details

for the determination of all of orbits within each RV T class at both levels 3 and 4 of the

Monster Tower. We will instead present a few instructive examples which will illustrate

how the determination of the number of orbits in the remaining classes works.

4.0.1 The classification of points at level 1 and level 2.

Theorem 2.1.4 tells us that all points at the first level of the tower are equivalent, giving

that there is a single orbit. For level 2 there are only two possible RV T codes: RR and

RV . Again, any point in the class RR is a Cartan point and by Theorem 2.1.4 consists

of only one orbit. The class RV consists of a single orbit by Theorem 2.1.5.

4.0.2 The classification of points at level 3.

There is a total of six distinct RV T classes at level three in the Monster Tower. We

begin with the class RRR.

The class RRR: Any point within the class RRR is a Cartan point and The-

orem 2.1.4 gives that there is only one orbit within this class.
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The classes RV R and RRV : From Theorem 2.1.5 we know that any point

within the class RV R has a single orbit, which is represented by the point γ3(0) where

γ is the curve γ(t) = (t2, t3, 0). Similarly, the class RRV has a single orbit, which is

represented by the point γ̃3(0) where γ̃(t) = (t2, t5, 0).

Before we continue, we need to pause and provide some framework to help us with the

classification of the remaining RV T codes.

Setup for classes of the form RV C: We set up coordinates x, y, z, u, v, u2, v2

for a point in the class RV as in Section 3.4. Then for p2 ∈ RV we have ∆2(p2) =

span{ ∂∂u ,
∂
∂u2

, ∂
∂v2
} where p2 = (x, y, z, u, v, u2, v2) = (0, 0, 0, 0, 0, 0, 0), and for any point

p3 ∈ RV C ⊂ P3 that p3 = (p2, `2) = (p2, [du|`2 : du2|`2 : dv2|`2 ]). Since the point p2 is

in the class RV we see that if du = 0 along `2 then p3 ∈ RV V . If du2 = 0 with du 6= 0

along `2 then p3 will be an element of the class RV T , and if du = 0 and du2 = 0 along

`2 that p3 ∈ RV L. With this in mind, we are ready to continue with the classification.

The class RV V : Let p3 ∈ RV V and let γ ∈ Germ(p3). We prolong γ two times

and write γ2(t) = (x(t), y(t), z(t), u(t), v(t), u2(t), v2(t)). We look at the component

functions u(t), u2(t), and v2(t). Since these component functions are analytic we can

set u(t) = Σiait
i, u2(t) = Σjbjt

j , and v2(t) = Σkckt
k. We note that the reason for

looking only at these terms is because δ2(p2) is spanned by the collection of vectors{
∂
∂u ,

∂
∂u2

, ∂
∂v2

}
. Now, since γ2(t) needs to be tangent to the vertical hyperplane in ∆3

then d
dtγ

2|t=0 must be a proper vertical direction in ∆3; that is d
dtγ

2|t=0 is not an L

direction. Since ∆3 is coframed by du, du2, and dv2, we must have that du = 0 and

du2 6= 0 along d
dtγ

2|t=0. This imposes the condition for the functions u(t) and u2(t) that

a1 = 0 and b1 6= 0, but the coefficient c1 in v2(t) may or may not be zero. Also it must

be true that a2 6= 0 or else the curve γ will not be in the set Germ(p3). We first look

at the case when c1 6= 0.

• Case 1, c1 6= 0: From looking at the one-forms that determine ∆2, we see that in

order for the curve γ3 to be integral to this distribution, the component functions

for γ3 must satisfy the following relations:

ẏ(t) = u(t)ẋ(t), ż(t) = v(t)ẋ(t)

ẋ(t) = u2(t)u̇(t), v̇(t) = v2(t)u̇(t)
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We start with the expressions for ẋ(t) and v̇(t) and see, based upon what we know

about u(t), u2(t), and v2(t), that x(t) = 2a2b1
3 t3 + . . . and v(t) = 2a2c1

3 t3 + . . ..

We can then use this information to help us find y(t) and z(t). This gives us

y(t) =
2a22b1

5 t5 + . . . and z(t) =
4a22b1c1

3 t7 + . . .. Now, we know what the first

nonvanishing coefficients are for the curve γ(t) = (x(t), y(t), z(t)) and we want to

determine the simplest curve that γ must be equivalent to. In order to do this

we will first look at the semigroup for the curve γ. In this case the semigroup is

given by S = {3, [4], 5, 6, 7, · · · }.

This means that every term, ti for i ≥ 7, can be eliminated from the above power

series expansion for the component functions x(t), y(t), and z(t) by a change of

variables. With this in mind, after we rescale the leading coefficients for each of

the components of γ, we end up with

γ(t) = (x(t), y(t), z(t)) ∼ (x̃(t), ỹ(t), z̃(t)) = (t3 + αt4, t5, t7).

We now want to see if we can eliminate the α term, if it is nonzero. To do

this we will use a combination of reparametrization techniques along with semi-

group arguments. Use the reparametrization t = T (1 − α
3T ) and we get that

x̃(T ) = T 3(1 − α
3T )3 + T 4(1 − α

3T )4 + . . . = T 3 + O(T 5). This gives us that

(x̃(T ), ỹ(T ), z̃(T )) = (T 3 +O(T 5), T 5 +O(T 6), T 7 +O(T 8)). At the same time we

can use the semigroup to eliminate all of the terms of degree 5 or higher. As a

result, these arguments show that (x̃(T ), ỹ(T ), z̃(T )) ∼ (T 3, T 5, T 7). This means

that our original γ is equivalent to the curve (t3, t5, t7).

• Case 2, c1 = 0: By repeating an argument similar to the above one, we will end

up with γ(t) = (x(t), y(t), z(t)) = (2a2b1
3 t3 + . . . ,

2a22b1
5 t5 + . . . ,

a22b1c2
8 t8 + . . .). Note

that c2 may or may not be equal to zero. This gives that the semigroup for the

curve γ is S = {3, [4], 5, 6, [7], 8 · · · } and that our curve γ is such that

γ(t) = (x(t), y(t), z(t)) ∼ (x̃(t), ỹ(t), z̃(t)) = (t3 + α1t
4 + α2t

7, t5 + βt7, 0)

Again, we want to know if we can eliminate the αi and β terms. First we focus

on the αi terms in x̃(t). We use the reparametrization given by t = T (1 − α1
3 T )

to give us x̃(T ) = T 3 + α′2T
7 +O(T 8). Then to eliminate the α′2 term we use the

reparametrization given by T = S(1− α′2
3 S

4) to give x̃(S) = S3 +O(S8). We now
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turn our attention to the ỹ function. Because of our two reparametrizations we

get that ỹ is of the form ỹ(S) = S5 + β′S7. To get rid of the β′ term we simply

use the rescaling given by S 7→ 1√
|β′|
S and then use the scaling diffeomorphism

given by (x, y, z) 7→ (|β′|
3
2 x, |β′|

5
2 y, z) to give us that γ is equivalent to either

(t3, t5 + t7, 0) or (t3, t5 − t7, 0). Note that the above calculations were done under

the assumption that β 6= 0. If β = 0 then we see, using similar calculations as

above, that we get the normal form (t3, t5, 0). This means that there is a total

of 4 possible normal forms that represent the points within the class RV V . It is

tempting, at first glance, to believe that these curves are all inequivalent. However,

it can be shown that the 3 curves (t3, t5 + t7, 0), (t3, t5 − t7, 0), and (t3, t5, 0) are

actually equivalent. It is not very difficult to show this equivalence, but it does

amount to rather messy calculation. As a result, the techniques used to show this

equivalence are outlined in Section 5.3 of the appendix.

This means that the possible normal forms are: γ1(t) = (t3, t5, t7) and γ2(t) =

(t3, t5, 0). We will show that these two curves are inequivalent. One possibility is to look

at the semigroups that each of these curves generate. The curve γ1 has the semigroup

S1 = {3, [4], 5, 6, 7, · · · }, while the curve γ2 has the semigroup S2 = {3, [4], 5, 6, [7], 8, · · · }.
Since the semigroup of a curve is an invariant of the curve and the two curves generate

different semigroups the two curves must be inequivalent. In [CM12] there was another

technique used to check and see whether or not these two curves are equivalent. We will

now present this alternative of showing that the two curves γ1 and γ2 are inequivalent.

One can see that the curve (t3, t5, 0) is a planar curve and in order for the curve

γ1 to be equivalent to the curve γ2 we must be able to find a way to turn γ1 into a planar

curve. More precisely, we need to find a change of variables and/or a reparametrization

which will make the third component function of γ1 zero. If it were true that γ1 is RL

equivalent a planar curve, then γ1 must lie in an embedded surface in R3 (or embedded

surface germ), say M . This means there exists a local defining function at each point

on the manifold M . Let the local defining function near the origin be the real analytic

function f : R3 → R. Since γ1 is on M , then f(γ1(t)) = 0 for all t near zero. However,

when one looks at the individual terms in the Taylor series expansion of f composed

with γ1 there will be nonzero terms which will show up and give that f(γ1(t)) 6= 0 for

all t near zero, which creates a contradiction. This tells us that γ1 cannot be equivalent
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to any planar curve near t = 0. As a result, there is a total of two inequivalent normal

forms for the class RV V : (t3, t5, t7) and (t3, t5, 0). When we prolong γ1 and γ2 to the

third level in the tower we end up with γ3
1(0) = γ3

2(0), which means that there is only

one orbit within the class RV V .

The remaining classes RV T and RV L are proved in an almost identical manner

using the above ideas and techniques. As a result, we will omit the proofs and leave

them to the reader.

With this in mind, we are now ready to move on to the fourth level of the

tower. We initially tried to tackle the problem of classifying the orbits at the fourth

level by using the curve approach from the third level. Unfortunately, the curve approach

became a bit too unwieldy to determine what the normal forms were for the various

RV T classes. The problem was simply this: when we looked at the semigroup for a

particular curve in a number of the RV T classes at the fourth level, there were too many

gaps corresponding semigroup. The first occurring class, according to codimension, in

which this occurred was the class RV V V . This turns the equivalence problem of curve

germs computationally hard.

Example 4.0.1 (The semigroups for the class RV V V ) Let p4 ∈ RV V V , and for

γ ∈ Germ(p4) let γ3(t) = (x(t), y(t), z(t), u(t), v(t), u2(t), v2(t), u3(t), v3(t)) with u = dy
dx ,

v = dz
dx , u2 = dx

du , v2 = dv
du , u3 = du

du2
, v3 = dv2

du2
. Since γ4(0) = p4 we must have that γ3(t)

is tangent to the vertical hyperplane within ∆3, which is coframed by {du2, du3, dv3}.
One can see that du2 = 0 along d

dtγ
3|t=0. Then, looking at the relevant component func-

tions at the fourth level, we set u2(t) = Σiait
i, u3(t) = Σjbjt

j, v3(t) = Σkckt
k where we

must have a1 = 0, a2 6= 0, b1 6= 0, and c1 may or may not be equal to zero. When we

go from the fourth level back down to level zero we end up with γ(t) = (t5 +O(t11), t8 +

O(t11), O(t11)). If c1 6= 0, then we get γ1(t) = (t5 +O(t12), t8 +O(t12), t11 +O(t12)) and

the semigroup for this curve is S = {5, [6], [7], 8, [9], 10, 11, [12], 13, [14], 15, 16, [17], 18 · · · }.
If c1 6= 0, then we get γ2(t) = (t5 +O(t12), t8 +O(t12), O(t12)) and the semigroup for this

curve is S = {5, [6], [7], 8, [9], 10, [11], [12], 13, [14], 15, 16, [17], 18, [19], 20, 21, [22], 23 · · · }.
This shows there is a larger number of gaps in our semigroups and meant that we could

not eliminate the various terms as easily in the various component functions of γ1 and

γ2. As a result, it became impractical to work strictly using the curve approach. This

meant that we had to look at a different approach to the classification problem. These
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types of issues are why we needed to develop a new approach and lead us to work with

the isotropy method.

4.0.3 The classification of points at level 4.

In classifying the points within the fourth level of the Monster Tower we worked

almost exclusively with the isotropy method. While this method proved to be very

effective in determining the number of orbits, we unfortunately do not present all of

the calculations using this technique. This is because the calculations can be lengthy

and because of how many different possible RV T codes there are at level 4. So we will

present the proof for the classification of the class RV V V as an example of how the

isotropy method works.

The class RV V V . Before we get started, we will summarize the main idea

of the following calculation. Our goal is to determine the number of orbits within the

class RV V V . Let p4 ∈ RV V V ⊂ P4 and start with the projection of p4 to level

zero, π4,0(p4) = p0. Since all of the points at level zero are equivalent, then one is

free to choose any representative for p0. For simplicity, it is easiest to choose it to be

the point p0 = 0 and fix coordinates there. Next, we look at all of the points at the

first level, which project to p0. Since all of these points at level 1 are equivalent it

means that there is a single orbit in the first level and we are again able to choose any

point in P1 as our representive so long as it projects to the point p0. We will pick

p1 = (0, 0, 0, [1 : 0 : 0]) = (0, 0, 0, 0, 0) with u = dy
dx and v = dz

dx , and we will look at all

of the diffeomorphisms Φ that fix the point p0 and satisfying Φ∗([1 : 0 : 0]) = [1 : 0 : 0].

Note, by an abuse of notation, that when we write “Φ∗([1 : 0 : 0]) = [1 : 0 : 0]” we mean

the pushforward of Φ, at the point p0, which fixes the line span{ ∂∂x} in ∆0(p0). This

condition will place some restrictions on the component functions of the diffeomorphism

germs Φ in Diff0(3) when we evaluate at the the point p0 and tell us what Φ1 = (Φ,Φ∗)

will look like at the point p1. We call this group of diffeomorphisms G1. We can

then move on to the second level and look at the class RV . Any p2 ∈ RV is of the

form p2 = (p1, `1) with `1 contained in the vertical hyperplane inside of ∆1(p1). Now,

apply the pushforwards of the Φ1’s in G1 to the vertical hyperplane and see if these

symmetries will act transitively on the critical hyperplane. If they do act transitively

then there is a single orbit within the class RV . If not, then there exists more than one

orbit within the class RV . We then count the number of different equivalence classes
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there are within this hyperplane and that number tells us how many orbits there are

within that class. Again, we want to point out that there could be an infinite number

of equivalence classes. Note that because of Theorem 2.1.5, we should expect to only

see one orbit within this class. Once this is done, we can just iterate the above process

to classify the number of orbits within the class RV V at the third level and then within

the class RV V V at the fourth level.

• Level 0: Let G0 (= Diff0(3)) be the group of all diffeomorphism germs that fix

the origin.

• Level 1: We know that all the points in P1 are equivalent, thus there is only a single

orbit. So we pick a representative element from the single orbit of P1. We will

take our representative to be p1 = (0, 0, 0, 0, 0) = (0, 0, 0, [1 : 0 : 0]) = (x, y, z, [dx :

dy : dz]) and take G1 to be the set of all Φ ∈ G0 such that Φ1 will take the lines

tangent to the x-axis back to the x-axis, meaning Φ∗([1 : 0 : 0]) = [1 : 0 : 0].

Then for Φ ∈ G1 and Φ(x, y, z) = (φ1(x, y, z), φ2(x, y, z), φ3(x, y, z)) we must have

Φ∗ =


φ1
x φ1

y φ1
z

φ2
x φ2

y φ2
z

φ3
x φ3

y φ3
z

 =


φ1
x φ1

y φ1
z

0 φ2
y φ2

z

0 φ3
y φ3

z



when we evalutate at (x, y, z) = (0, 0, 0).

Here is the Taylor triangle representing the different coefficients in the Taylor

series of a diffeomorphism in Gi. The three digits represent the number of partial

derivatives with respect to either x, y, or z. For example, (1, 2, 0) = ∂3

∂x∂2y
. The

vertical column denotes the coefficient order. We start with the Taylor triangle

for φ2:

n = 0: ���
�XXXX(0,0,0)

n = 1: ���
�XXXX(1, 0, 0) (0,1,0) (0,0,1)

n = 2: (2,0,0) (1,1,0) (1,0,1) (0,2,0) (0,1,1) (0,0,2)
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We have crossed out (1, 0, 0) since ∂φ2

∂x (0) = 0. Next is the Taylor triangle for φ3:

n = 0: ���
�XXXX(0,0,0)

n = 1: ���
�XXXX(1, 0, 0) (0,1,0) (0,0,1)

n = 2: (2,0,0) (1,1,0) (1,0,1) (0,2,0) (0,1,1) (0,0,2)

This describes some properties of the elements Φ ∈ G1.

We now try to figure out what Φ1, for Φ ∈ G1, will look like in KR-coordinates.

First, we look at a line ` ⊂ ∆0 and write ` = span{a ∂
∂x+b ∂∂y +c ∂∂z} with a, b, c ∈ R

and a 6= 0.

Applying the pushforward of Φ to the line ` we get

Φ∗(`) = span

{
(aφ1

x + bφ1
y + cφ1

z)
∂

∂x
+ (aφ2

x + bφ2
y + cφ2

z)
∂

∂y
+ (aφ3

x + bφ3
y + cφ3

z)
∂

∂z

}
= span

{
(φ1
x + uφ1

y + vφ1
z)
∂

∂x
+ (φ2

x + uφ2
y + vφ2

z)
∂

∂y
+ (φ3

x + uφ3
y + vφ3

z)
∂

∂z

}
= span

{
a1

∂

∂x
+ a2

∂

∂y
+ a3

∂

∂z

}
where in the second line we divided by a and wrote u = b

a and v = c
a . Now, since

∆1 is given by

dy − udx = 0

dz − vdx = 0.

Since [dx : dy : dz] = [1 : dy
dx : dz

dx ] we have for Φ ∈ G1 we write Φ1 in local

coordinates as Φ1(x, y, z, u, v) = (φ1, φ2, φ3, ũ, ṽ) where

ũ =
a2

a1
=
φ2
x + uφ2

y + vφ2
z

φ1
x + uφ1

y + vφ1
z

ṽ =
a3

a1
=
φ3
x + uφ3

y + vφ3
z

φ1
x + uφ1

y + vφ1
z

.
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• Level 2: At level 2 we are looking at the class RV which consists of a single orbit

by Theorem 2.1.5. This means that we can pick any point in the class RV as our

representative. We will pick our point to be p2 = (p1, `1) with `1 ⊂ ∆1(p1) equal

to the vertical line `1 = [dx : du : dv] = [0 : 1 : 0]. Now, we will let G2 be the set

of symmetries from G1 that fix the vertical line `1 = [0 : 1 : 0] in ∆1(p1), those

satisfying Φ1
∗([0 : 1 : 0]) = [0 : 1 : 0] for all Φ ∈ G2. This implies Φ1

∗([dx|`1 : du|`1 :

dv|`1 ]) = Φ1
∗([0 : 1 : 0]) = [0 : 1 : 0] = [dφ1|`1 : dũ||`1 : dṽ||`1 ]. When we fix this

direction it might yield some new information about the component functions of

the elements of G2. In particular, we need to set dφ1|`1 = 0 and dṽ|`1 = 0.

• Looking at the restriction dφ1|`1 = 0.

One has dφ1 = φ1
xdx + φ1

ydy + φ1
zdz and when we set dφ1|`1 = 0 we can see that

we will not gain any new information about the component functions for Φ ∈ G2.

This is because the covectors dx, dy, and dz will be zero along the line `1.

• Looking at the restriction dṽ|`1 = 0

Can see that dṽ = d(a3a1 ) = da3
a1
− (da1)a3

a21
and notice when we evaluate at (x, y, z, u, v) =

(0, 0, 0, 0, 0), we have a3 = 0, and since we are setting dṽ|`1 = 0 then da3|`1 must

be equal to zero. We calculate that

da3 = φ3
xxdx+ φ3

xydy + φ3
xzdz + φ3

ydu+ u(dφ3
y) + φ3

zdv + v(dφ3
z)

and when we evaluate we get

da3|`1 = φ3
y(0)du|`1 = 0.

But du|`1 6= 0, so φ3
y(0) = 0.

This gives us the updated Taylor triangle for φ3:

n = 0: ���
�XXXX(0,0,0)

n = 1: ���
�XXXX(1, 0, 0) ��

��XXXX(0,1,0) (0,0,1)

n = 2: (2,0,0) (1,1,0) (1,0,1) (0,2,0) (0,1,1) (0,0,2)
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We have determined some of the properties of elements in G2 and now we will

see what these elements look like locally. We look at a point p′1 near the point

p1 and at Φ1
∗(`) for ` ⊂ ∆1(p′1), near the vertical hyperplane in ∆1(p′1), which

is of the form ` = span{aX(1) + b ∂∂u + c ∂∂v} with a, b, c ∈ R and b 6= 0 with

X(1) = u ∂
∂y + v ∂

∂z + ∂
∂x . Let w = aX(1) + b ∂∂u + c ∂∂v and we apply Φ1

∗ to w to get

Φ1
∗(w) =



φ1
x φ1

y φ1
z 0 0

φ2
x φ2

y φ2
z 0 0

φ3
x φ3

y φ3
z 0 0

∂ũ
∂x

∂ũ
∂y

∂ũ
∂z

∂ũ
∂u

∂ũ
∂v

∂ṽ
∂x

∂ṽ
∂y

∂ṽ
∂z

∂ṽ
∂u

∂ṽ
∂v





a

au

av

b

c



= (aφ1
x + auφ1

y + avφ1
z)
∂

∂x

+ (a
∂ũ

∂x
+ au

∂ũ

∂y
+ av

∂ũ

∂z
+ b

∂ũ

∂u
+ c

∂ũ

∂v
)
∂

∂u

+ (a
∂ṽ

∂x
+ au

∂ṽ

∂y
+ av

∂ṽ

∂z
+ b

∂ṽ

∂u
+ c

∂ṽ

∂v
)
∂

∂v

This means that when we look at Φ1
∗ applied to the line ` we get

Φ1
∗(`) = span{(aφ1

x + auφ1
y + avφ1

z)
∂

∂x

+ (a
∂ũ

∂x
+ au

∂ũ

∂y
+ av

∂ũ

∂z
+ b

∂ũ

∂u
+ c

∂ũ

∂v
)
∂

∂u

+ (a
∂ṽ

∂x
+ au

∂ṽ

∂y
+ av

∂ṽ

∂z
+ b

∂ṽ

∂u
+ c

∂ṽ

∂v
)
∂

∂v
}

= span{(u2φ
1
x + uu2φ

1
y + vu2φ

1
z)
∂

∂x

+ (u2
∂ũ

∂x
+ uu2

∂ũ

∂y
+ vu2

∂ũ

∂z
+
∂ũ

∂u
+ v2

∂ũ

∂v
)
∂

∂u

+ (u2
∂ṽ

∂x
+ uu2

∂ṽ

∂y
+ vu2

∂ṽ

∂z
+
∂ṽ

∂u
+ v2

∂ṽ

v
)
∂

∂v
}
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= span{b1 ∂
∂x + b2

∂
∂u + b3

∂
∂v}. Notice that we have only paid attention to the x,

u, and v coordinates since ∆1 is framed by dx, du, and dv. Since u2 = dx
du and

v2 = dv
du we get

ũ2 =
b1
b2

=
u2φ

1
x + uu2φ

1
y + vu2φ

1
z

u2
∂ũ
∂x + uu2

∂ũ
∂y + vu2

∂ũ
∂z + ∂ũ

∂u + v2
∂ũ
∂v

ṽ2 =
b3
b2

=
u2

∂ṽ
∂x + uu2

∂ṽ
∂y + vu2

∂ṽ
∂z + ∂ṽ

∂u + v2
∂ṽ
∂v

u2
∂ũ
∂x + uu2

∂ũ
∂y + vu2

∂ũ
∂z + ∂ũ

∂u + v2
∂ũ
∂v

The above equations now tell us what the new component functions ũ2 and ṽ2 are

for Φ2 in a neighborhood of p2.

• Level 3: At level 3 we are looking at the class RV V . We know from our work on

the third level that there will be only one orbit within this class. This means that

we can pick any point in the class RV V as our representative. We will pick the

point p3 = (p2, `2) with `2 ⊂ ∆2 equal to the vertical line `2 = [du : du2 : dv2] =

[0 : 1 : 0]. Now, we will let G3 be the set of symmetries from G2 that fix the

vertical line `2 = [0 : 1 : 0] in ∆2, meaning we want Φ2
∗([0 : 1 : 0]) = [0 : 1 : 0] =

[dũ|`3 : dũ2|`3 : dṽ2|`3 ] for all Φ ∈ G3. Since we are taking du|`30 and dv2|`3 = 0,

with du2|`3 6= 0 we need to look at dũ|`3 = 0 and dṽ2|`3 = 0 to see if these relations

will give us more information about the component functions of Φ.

• Looking at the restriction dũ|`3 = 0

Looking at dũ = d(a2a1 ) = da2
a1
− a2da1

a21
and since a2(p2) = 0, we must have da2|`3 = 0.

When we evaluate this expression one finds

da2|`3 = φ2
xxdx|`3 + φ2

xydy|`3 + φ2
xzdz|`3 + φ2

ydu|`3 + φ2
zdv|`3 = 0. Since all of the

differentials are going to be equal to zero when we evaluate them along the line

`3 then we do not gain any new information about the φi’s.

• Looking at the restriction dṽ2|`3 = 0

dṽ2 = d( b3b2 ) = db3
b2
− b3db2

b22
. Evaluating we find b3(p2) = 0 since ∂ṽ

∂u(p2) = φ3
y(0) = 0,
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which implies that we only need to look at db3
b2

. We compute

db3 = d(u2
∂ṽ

∂x
+ u2u

∂ṽ

∂z
+
∂ṽ

∂u
+ v2

∂ṽ

∂v
)

=
∂ṽ

∂x
du2 + u2(d

∂ṽ

∂x
) + u

∂ṽ

∂y
du2

+ u2
∂ṽ

∂y
du+ u2u(d

∂ṽ

∂y
) + v

∂ṽ

∂z
du2

+ u2
∂ṽ

∂z
dv + u2v(d

∂ṽ

∂z
) +

∂ṽ

∂u∂x
dx

+
∂ṽ

∂u∂y
dy +

∂ũ

∂u∂z
dz +

∂ṽ

∂v
dv2 + v2(d

∂ṽ

∂v
).

Evaluating we get db3|`3 = ∂ṽ
∂x(p3)du2|`3 = 0, and since du2|`3 6= 0 this forces

∂ṽ
∂x(p3) = 0. We have ∂ṽ

∂x(p3) = φ3xx(0)
φ1x(0)

− φ1xx(0)φ3x(0)
φ1x(0)

and φ3
x(0) = 0, which give

∂ṽ
∂x(p3) = φ3xx(0)

φ1x(0)
= 0 which forces φ3

xx(0) = 0. This gives us information about Φ3

along with the updated Taylor triangle for φ3:

n = 0: ��
��XXXX(0,0,0)

n = 1: ���
�XXXX(1, 0, 0) ��

��XXXX(0,1,0) (0,0,1)

n = 2: ���
�XXXX(2,0,0) (1,1,0) (1,0,1) (0,2,0) (0,1,1) (0,0,2)

Now, our goal is to look at how the Φ3
∗’s act on the distribution ∆3(p3) in order

to determine the number of orbits within the class RV V V . In order to do so we

will need to figure out what the local component functions, call them ũ3 and ṽ3,

are for Φ3, with Φ ∈ G3. To do this we will again look at Φ2
∗ applied to a line `

that is near the vertical hyperplane in ∆2.

Set ` = span{aX(2) + b ∂
∂u2

+ c ∂
∂v2
} for a, b, c ∈ R and b 6= 0 where X(2) =

u2(u ∂
∂y + v ∂

∂z + ∂
∂x) + ∂

∂u + v2
∂
∂v . Let w = aX(2) + b ∂

∂u2
+ c ∂

∂v2
and we compute
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Φ2
∗(w) =



φ1
x φ1

y φ1
z 0 0 0 0

φ2
x φ2

y φ2
z 0 0 0 0

φ3
x φ3

y φ3
z 0 0 0 0

∂ũ
∂x

∂ũ
∂y

∂ũ
∂z

∂ũ
∂u

∂ũ
∂v 0 0

∂ṽ
∂x

∂ṽ
∂y

∂ṽ
∂z

∂ṽ
∂u

∂ṽ
∂v 0 0

∂ũ2
∂x

∂ũ2
∂y

∂ũ2
∂z

∂ũ2
∂u

∂ũ2
∂v

∂ũ2
∂u2

∂ũ2
∂v2

∂ṽ2
∂x

∂ṽ2
∂y

∂ṽ2
∂z

∂ṽ2
∂u

∂ṽ2
∂v

∂ṽ2
∂u2

∂ṽ2
∂v2





au2

auu2

avu2

a

av2

b

c


Then for Φ2

∗ applied to the line ` we end up with it being equal to

span{(au2
∂ũ

∂x
+ auu2

∂ũ

∂y
+ avu2

∂ũ

∂z
+ a

∂ũ

∂u
+ av2

∂ũ

∂v
)
∂

∂u

+ (au2
∂ũ2

∂x
+ auu2

∂ũ2

∂y
+ avu2

∂ũ2

∂z
+ a

∂ũ2

∂u
+ av2

∂ũ2

∂v
+ b

∂ũ2

∂u2
+ c

∂ũ2

∂v2
)
∂

∂u2

+ (au2
∂ṽ2

∂x
+ auu2

∂ṽ2

∂y
+ avu2

∂ṽ2

∂z
+ a

∂ṽ2

∂u
+ av2

∂ṽ2

∂v
+ b

∂ṽ2

∂u2
+ c

∂ṽ2

∂v2
)
∂

∂v2
}

= span{(u3u2
∂ũ

∂x
+ u3uu2

∂ũ

∂y
+ u3vu2

∂ũ

∂z
+ u3

∂ũ

∂u
+ u3v2

∂ũ

∂v
)
∂

∂u

+ (u3u2
∂ũ2

∂x
+ u3uu2

∂ũ2

∂y
+ u3vu2

∂ũ2

∂z
+ u3

∂ũ2

∂u
+ u3v2

∂ũ2

∂v
+
∂ũ2

∂u2
+ v3

∂ũ2

∂v2
)
∂

∂u2

+ u3u2
∂ṽ2

∂x
+ u3uu2

∂ṽ2

∂y
+ u3vu2

∂ṽ2

∂z
+ u3

∂ṽ2

∂u
+ u3v2

∂ṽ2

∂v
+
∂ṽ2

∂u2
+ v3

∂ṽ2

∂v2
)
∂

∂v2
}

= span{c1
∂

∂u
+ c2

∂

∂u2
+ c3

∂

∂v2
},

because our local coordinates are given by [du : du2 : dv2] = [ dudu2 : 1 : dv2
du2

] = [u3 :

1 : v3] we end up with

ũ3 =
c1

c2
=

u3u2
∂ũ
∂x + u3uu2

∂ũ
∂y + u3vu2

∂ũ
∂z + u3

∂ũ
∂u + u3v2

∂ũ
∂v

u3u2
∂ũ2
∂x + u3uu2

∂ũ2
∂y + u3vu2

∂ũ2
∂z + u3

∂ũ2
∂u + u3v2

∂ũ2
∂v + ∂ũ2

∂u2
+ v3

∂ũ2
∂v2

ṽ3 =
c3

c2
=
u3u2

∂ṽ2
∂x + u3uu2

∂ṽ2
∂y + u3vu2

∂ṽ2
∂z + u3

∂ṽ2
∂u + u3v2

∂ṽ2
∂v + ∂ṽ2

∂u2
+ v3

∂ṽ2
∂v2

u3u2
∂ũ2
∂x + u3uu2

∂ũ2
∂y + u3vu2

∂ũ2
∂z + u3

∂ũ2
∂u + u3v2

∂ũ2
∂v + ∂ũ2

∂u2
+ v3

∂ũ2
∂v2

.

• Level 4: Now that we know what the component functions are for Φ3, with Φ ∈ G3,

we are ready to apply its pushforward to the distribution ∆3 at p3 and figure out

how many orbits there are for the class RV V V . We let ` = span{b ∂
∂u3

+ c ∂
∂v3
},
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V

∂
∂u3

∂
∂u3

+ ∂
∂v3

L
T

Figure 4.1: Orbits within the class RV V V .

with b, c ∈ R and b 6= 0, be a vector in the vertical hyperplane of ∆3(p3) and we

see that

Φ3
∗(`) = span

{
(b
∂ũ3

∂u3
(p3) + c

∂ũ3

∂v3
(p3))

∂

∂u3
+ (b

∂ṽ3

∂u3
(p3) + c

∂ṽ3

∂v3
(p3))

∂

∂v3

}
.

This means that we need to compute ∂ũ3
∂u3

(p3), ∂ũ3∂v3
(p3), ∂ṽ3

∂u3
(p3), and ∂ṽ3

∂v3
(p3) where

p3 = (x, y, z, u, v, u2, v2, u3, v3) = (0, 0, 0, 0, 0, 0, 0, 0, 0). This will amount to a

somewhat long process, so we will just state what the above terms are equal to

and leave the computations for the appendix. After evaluating we will see that

Φ3
∗(`) = span

{
(b

(φ2y(0))2

(φ1x(0))3
) ∂
∂u3

+ (c φ3z(0)
(φ1x(0))2

) ∂
∂v3

}
. This means that for ` = span{ ∂

∂u3
}

(c = 0) we get Φ3
∗(`) = span

{
(φ2y(0))2

(φ1x(0))3
∂
∂u3

}
to give one orbit. This orbit is charac-

terized by all vectors of the form b′ ∂∂u3 with b′ 6= 0. Then, for ` = span{ ∂
∂u3

+ ∂
∂v3
}

we see that Φ3
∗(`) = span

{
(

(φ2y(0))2

(φ1x(0))3
) ∂
∂u3

+ ( φ3z(0)
(φ1x(0))2

) ∂
∂v3

}
, and notice that φ1

x(0) 6=
0, φ2

y(0) 6= 0, and φ3
z(0) 6= 0. However, we can choose φ1

x(0), φ2
y(0), and φ3

z(0) to

be equal to anything else other than zero. Then since our distribution ∆3(p3) is

coframed by du2, du3, dv3 and with `′ ≡ Φ3
∗(`) we get

[du2|`′ , du3|`′ , dv3|`′ ] = [0,
(φ2
y(0))2

(φ1
x(0))3

,
φ3
z(0)

(φ1
x(0))2

] = [0, 1,
φ1
x(0)φ3

z(0)

(φ2
y(0))2

]

to give another, separate orbit. In the present case, for ` to be a vertical direction,

it must be of the form ` = span{b ∂
∂u3

+ c ∂
∂v3
} with b 6= 0. This means that there

is a total of 2 orbits for the class RV V V , as depicted in Figure 4.1.

The classification of the other RV T classes at level 4 are done in a very similar

manner.
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4.0.4 The Proof of Theorem 2.1.7

Proof Let R · · ·Rω the RV T class that has s more R’s added to the beginning of the

class ω. We begin by constructing a bijection between the equivalence classes of curves

that represent points in ω and R · · ·Rω. Let γ be a curve germ that realizes a point in ω.

Then we can apply a RL- transformation to γ to find its symbol, say [n,m, p], where p

could be zero. Now, notice that if alter the symbol of γ to be [n,m+sn, p+sn] (or [n,m+

sn, 0] if p = 0), then the resulting curve will represent a point in the RV T class R · · ·Rω.

This is because when we look at the Cartan prolongation in KR-coordinates of the curve

(tn, tm+sn, tp+sn)+O(tp+sn) the x-coordinate will divide the y and z coordinates, as well

as the ui and vi fiber coordinates for i = 1, · · · , s, an extra s times. We can define a

mapping which sends curves with symbol [n,m, p] 7→ [n,m+ns, p+ns] and hence sends

equivalence classes of curves with RV T code ω to equivalence classes of curves with RV T

code R · · ·Rω. Now, take γ̃ to be any curve germ that has RV T code R · · ·Rω and the

symbol of γ̃ is [n′,m′, p′], where, again, p′ could be zero. Since γ̃ is RL-equivalent to a

curve germ of the form σ(t) = (tn
′
, tm

′
, tp
′
) + O(tp

′
) we notice when we prolong σ that

the X-coordinate must divide both the y and z coordinates and the fiber coordinates ui

and vi for i ≤ k. This means we can rewrite the symbol of γ̃ as [n′,m+ sn′, p+ sn′] (or

as [n′,m+ sn′, 0] when p = 0) and that any curve germ with symbol [n′,m, p] will have

RV T code ω and as a result establishes a bijection between equivalence classes of curve

germs with RV T codes ω and R · · ·Rω. Now, take pi ∈ ω for i = 1, · · · , k be points

that are representatives for each of the k orbits in ω and γi to be curve germs from

Germ(pi) for i = 1, · · · , k. Then the image of these curves by the above bijection are

inequivalent curve germs, say γ̃i, which realize inequivalent points p̃i for i = 1, · · · , k in

R · · ·Rω. As a result, these points p̃i for i = 1, · · · k represent each of the distinct orbits

within R · · ·Rω.

4.1 The Moduli Question

When trying to classify points within the Monster Tower one can run into a

situation when there exists an continuums worth of inequivalent orbits within a given

RV T class. Montgomery and Zhitomirksii pointed this out in [MZ10] with the R2

Monster Tower. In particular, they were able to characterize which RV T classes had
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moduli by using their singular curves approach and showed that in certain RV T class

that there exists a family of inequivalent curves which are parametrized by at least one

real variable.

Incidents of when moduli occur within the R2 Monster Tower can be found

in [MZ10], specifically in Chapter 5.7. One interesting phenomenon is that moduli can

occur somewhat unexpectedly within various RV T classes. For example, the RV T class

RRV TRq for q = 0, · · · , 4 will contain a single orbit represented by the normal form

(t5, t12 +t13). However, for q = 5, 6 this RV T class jumps from there being a single orbit

to an infinite number of orbits given by the curve normal forms (t5, t12 + t13 + at16),

and for q ≥ 7 the normal forms are given by (t5, t12 + t13 + at16 + bt18). The letters

a and b are parameters that can take any real number and the curves are inequivalent

for different values of a and b. Hence, once q is larger than 4 the RV T class goes from

containing a single orbit to not just a countably infinite number of orbits, but a whole

continuums worth of inequivalent points.

When classifying the R3 Monster Tower we were interested in trying to see

when moduli first appeared within the tower. While this thesis only contains the com-

plete classification up to level 4 of the tower, a great deal of the classification of the fifth

level of the tower has been done using the isotropy method. Unfortunately, even with

the aid of Theorem 2.1.7 the task of trying to classify the orbits by hand became too

unwieldy. One of the main reasons is because there are over 60 distinct RV T classes

(recall that there are only 23 RV T classes at level 4). A majority of the RV T classes

have been classified at level 5 and it appears that moduli will not appear within the fifth

level of the tower. Based on our calculations, there are two RV T class of interest within

the fifth level where moduli could possibly occur: the class RV TTT or RV TTR. The

reasoning for this is because the class RV TT has 4 distinct orbits within the fourth level,

ended up having a number of restrictions on the values that the component functions

of the symmetries that fixed the various orbits in level 3 of the tower, and hence the

most time consuming to calculate. For this reason, this class has yet to be calculated

by the author during the time this was written. Based upon these calculations there is

strong evidence to suggest that the sixth level of the tower will contain moduli. Some

RV T classes of interest are: RV TTTT , RV TTTR, and RV TRV R.

The first instance of moduli within the Monster Tower has been discovered by

Mormul and Pelletier in [MP10]. By using their knowledge of the existence of moduli
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for 1-flags they were able to produce an example of where moduli exist for 2-flags. In

Mormul’s singularity class coding system, moduli occur within the class 1.2.1.2.1.2.1,

which is a collection of points within the seventh level of the Monster Tower. In Section

5.7.2 we show which RV T classes make up the singularity class 1.2.1.2.1.2.1.

Based on the above we believe that there is the following number of orbits

within the first 7 levels of the R3 Monster Tower

Level 1: Level 2: Level 3: Level 4: Level 5: Level 6: Level 7
1 2 7 34 77 ≥ ∞ ? ∞

One interesting question to ask is whether it is possible to find some geometric

reasoning, or even better, find some sort of invariant that tells us when moduli occur

within the R3 Monster Tower?
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Chapter 5

Appendix

5.1 Definition of a Goursat n-flag.

In this section we present the definition of a Goursat n-flag of length k, or what

is also referred to as a Special n-flag of length k. We follow the definition presented in

[SY09].

Let n ≥ 2, k a non-negative integer and D a distribution of rank n+1. Assume

further that the ambient manifold Z has dimension (n+ 1) + kn.

Our distribution D will be defined locally by the vanishing of the one forms ωi

for i = 1, · · · , s, which are pointwise linearly independent as covectors.

The Cauchy characteristic system of D is the linear subbundle defined by the

linear constraints

Ch(D)(p) = {X ∈ D(p)|Xydωi = 0 mod ωi, ∀i ∈ {1, · · · , s}}.

We say that a nonholonomic distribution D admits a special n-flag of length

k if it has integrable subbundle F of ∂k−1D of corank 1 and that satisfies the following

sandwich diagram:

D ⊂ ∂D · · · ⊂ ∂k−2D ⊂ ∂k−1D ⊂ ∂kD = TZ

∪ ∪ ∪ ∪
Ch(D) ⊂ Ch(∂D) ⊂ Ch(∂2D) · · · ⊂ Ch(∂k−1D) ⊂ F
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where ∂D is called the derived system of D, and geometrically ∂D = D + [D,D]. Pro-

ceeding recursively, ∂iD = ∂(∂i−1D) and we can verify that rank(∂iD) = rank(∂i−1D)+

n for i = 1, · · · , k. In our language, F = ker(dπk,0) for πk,0 : Pk → R3 ([SY09]).

Example 5.1.1 Take R3 with distribution given by the contact form dy− zdx = 0 is a

Goursat 1-flag of length 1.

One can also find a variety of examples in [MZ01], where they explicitly cal-

culate the sandwich diagram for various Goursat 1-flags.

5.2 Derivation of the Kinematic Equations for the Car

with n Trailers

In this portion of the appendix we present a derivation for the kinematic equa-

tion for the car with n trailers. Our follows the one given by F. Pelletier and M. Slayman

in [PS12].

We begin the construction in R2 where we have one car towing n trailers. Let

M0 denote the car and M1, · · · ,Mn denote the n trailers that are being towed by the

car. Also assume that there is a fixed constant length between each of the trailers. In

this system we impose the nonholonomic constraint that the wheels are rolling without

sliding. The configuration space is R2 × (S1)n+1, where the (x, y) coordinate in R2 is

the position of the car and (n+ 1) angle coordinates. This is a system with two degrees

of freedom. The two inputs are the tangential velocity vn and the angular velocity ωn of

the car. This represents the driver of the car having control over the accelerator and the

steering wheel. Pick a reference point of a Mn−r to the midpoint mr between the wheels

and denote its coordinates by (xr, yr). The angle coordinate θr is the angle between

the hitch of Mn−r that connects it to the trailer in front of it Mn+1−r and the positive

X-Axis. The following equations describe the connections between pair of trailers and

car.
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xr − xr−1 = cos(θr−1)

yr − yr−1 = sin(θr−1)

Any point in the configuration space can be written as q = (x0, y0, θ0, θ1, · · · , θn)

where:

• (x0, y0) are the coordinates of the last trailer Mn in the system.

• θn is the orientation of the car with respect to the positive X-Axis.

• θr, for r = 0, · · · , n − 1, is the orientation of the (n − r)-th trailer with respect to

the positive X-Axis. Since we are assuming that the wheels are rolling without sliding,

then this imposes the following nonholonomic constraint:

ẋrsin(θr)− ẏrcos(θr) = 0.

Let us now represent each of the points mr, for r = 0, · · · , n, as points within

the complex plane C. We now write mr = xr + iyr and the constraint that connects

two consecutive trailers is given by:

mr = mr−1 + eiθr−1 for r 6= 0. (5.2.1)

and results in the equation

mr = m0 +
r−1∑
l=0

eθl . (5.2.2)

The kinematic constraint for Mn−r is

ṁr = λre
iθr (5.2.3)

and can be rewritten as Im(e−iθrṁr) = 0. Using equations 5.2.1, 5.2.2, 5.2.3 yields the

kinematic contraints

− ẋ0sin(θr) + ẏrcos(θr) +

r−1∑
j=0

cos(θj − θr) = 0 for r = 0, · · · , n (5.2.4)

Then combine equation 5.2.2 with the derivative of the equation

|mr+1 −mr|2 = 1

to get the equation

λr = λr+1(cos(θr+1)− cos(θr))
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and we get the relation

λr = λncos(θn − θn−1) · · · cos(θr+1 − θr)

and combining the above equations along with the fact that λn = vn, the tangential

velocity of the car M0, we get

ṁr = vn(
n∏

j=r+1

cos(θj)− cos(θj−1))eiθr

Then, by using the above formulas we end up with the kinematic relations

ẋ0 = v0cos(θ0)

ẏ0 = v0sin(θ0)

θ̇0 = v1sin(θ1 − θ0)

...

θ̇r = vr+1sin(θr+1 − θr)
...

θ̇n−1 = vnsin(θn − θn−1)

θ̇n = ωn

in the above each tangential velocity vr is related to the input velocity vn, which is given

by the formula vr =
∏n
j=r+1 cos(θj − θj−1)vn. The motion of this dynamical system is

characterized by the equation:

q̇ = ωnX
n
1 (q) + vnX

n
2 (q)

with


Xn

1 = ∂
∂θn

Xn
2 = cos(θ0)fn0

∂
∂x + sin(θ0)fn0

∂
∂y

+sin(θ1 − θ0)fn1
∂
∂θ0

+ · · ·+ sin(θn − θn−1) ∂
∂θn−1

and fni =
∏n
j=i+1 cos(θj − θj−1).

We want to point out that the rank-2 distribution generated by {Xn
1 , X

n
2 }

is a Goursat 1-flag and is one of the motivating reasons for the interest in studying

Goursat Multi-Flags. F. Jean in [Jea96] was particularly interested in understanding

the connection between the various trailer configurations and the degree of nonholonomy

of this rank-2 distribution generated by Xn
1 and Xn

2 .
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Definition 5.2.1 (Degree of Nonholonomy) Let D be a distribution associated with

a control system. Define D1 = D and Di = Di−1 + [D1, Di−1], where [D1, Di−1] =

span{[X,Y ] |X ∈ D1, Y ∈ Di−1}. Then the degree of nonholonomy is the smallest

integer n such that the rank of Dn is equal to the rank of Dn+1.

5.3 A technique to eliminate terms in the short parame-

terization of a curve germ.

The following technique that we will discuss is outlined in [Zar06] on pg. 23.

Let C be a planar curve germ. A short parametrization of C is a parametrization of the

form

C =

x̃ = tn

ỹ = tm + Σq
i=1a

′
νit

νi

where the ν1 < ν2 < · · · < νq are integers that belong to the set {m + 1, · · · , c} which

do not belong to the semigroup of the curve C. In [Zar06] there is a result, Proposition

2.1, which says that if C is any planar analytic curve germ, then there exists a branch

C̃ with the above short parametrization and C̃ is RL-equivalent to C.

We look at a particular case of the short parametrization where we define ρ to be an

integer, less than or equal to q + 1, and aνi = 0 for i < ρ, and aνp = b. This gives a

short parametrization of the following form

C =

x = tn

y = tm + btνρ + Σq
i=ρ+1aνit

νi b 6= 0 if ρ 6= q + 1

Suppose that νρ + n ∈ nZ+ +mZ+. Now, notice that νρ + n ∈ mZ+ because νρ is not

in the semigroup of C. Let j ∈ Z+ be such that νρ + n = (j + 1)m; notice that j ≥ 1

since νρ > m. Then set a = bn
m and

x′ = tn + atjm+( terms of degree > jm). Let τn = tn + atjm+ (terms of degree

> jm). From this expression one can show that t = τ − a
nτ

jm−n+1+ (terms of degree

> jm − n + 1), and when we substitute this into the original expression above for C

that
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C =

x
′ = τn

y = τm + (terms of degree > νρ)

We can now apply Proposition 2.1 to the above expression for C and see that

C admits the parametrization

C =

x
′ = τn

y′ = τm + Σq
i=ρ+1a

′
νiτ

νi

We can now apply the above technique to the two curves (t3, t5 +t7, 0) and (t3, t5−t7, 0)

in order to eliminate the t7 in both of these curve germs. This means that these two

curves will end up being equivalent to the curve (t3, t5, 0).

5.4 Kumpera-Ruiz Coordinates

While we presented the Kumpera-Ruiz coordinates through an example in Sec-

tion 3.4, we have also included the general method for determining the KR coordinates

at any given level of the Rn Monster Tower for completeness. The following material

that will be presented first appeared in [CM12]. We want to note that KR coordinates

for the planar R2 Monster were described in detail in [MZ10]. They can also be found

in [LJ06]. Generalizations from n = 2 to n > 2 were presented in [Mor04] and called

EKR coordinates. We will proceed level by level.

Level 0: Take any coordinates (x1, . . . , xn) on n-space. They need not be

linear.

Level 1: A point in P1(n − 1) is a point p at level 0 and a tangent line ` to

that point. Then [dx1 : . . . : dxn] are homogeneous coordinates for ∆0, the tangent

space to the n-space at p, with the corresponding homogeneous coordinates of ` being

[dx1(v) : . . . : dxn(v)] where v is any nonzero vector spanning `. For at least one index i

we have dxi(v) 6= 0. Select such an index, i0, and divide by dxi0 we get n−1 fiber affine

coordinates which we write u1
j = dxj(v)/dxi0(v), j 6= i. In this way a point of P1(n−1)

is covered by n− 1 charts. ∆1 is locally defined in one of these charts by solving for dxj

in terms of the u1
j and the selected dxi. That is, to say ∆1 is defined by the n1 Pfaffian

equations dxj − u1
jdxi0 = 0.
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In order to induct in an organized manner, it is better to insist that the indices

j of u1
j run through a fixed subset of {1, · · · , n} of cardinality n− 1, rather than letting

this set vary with the selected i0. We will take this fixed subset to be {2, · · · , n}. We

do this by relabeling indices using the unique monotone bijection

σ(j; i0) : {1, · · · , n} \ {i0} → {2, · · · , n}.

Thus, if i0 = 1 which is to say, if dx1 6= 0, then we continue with our same labelling:

u1
j = dxj/dx1, j = 1, · · · , n, if dx1 6= 0.

In this way,

uij+1 = dxj/dxi0 , j < i0

while

uij = dxj/dxi0 , j > i0.

Inductive step. level k to level k + 1: Suppose that p is at level k + 1 with

p = (pk, `k). Suppose we have covered Pk(n− 1) with KR coordinates charts and that

the coordinates of a chart containing pk consists of n+ k(n− 1) functions:

(x1, · · · , xn, u1
2, · · · , u1

n, · · · , uk2, · · · , ukn).

Suppose that these coordinates are such that (1) the last set of n−1, namely uk2, · · · , ukn
are fiber-affine coordinates for the fiber Pk(n− 1)→ Pk−1(n− 1), and that (2) a basis

for the dual space ∆∗k(p) is given by dfk, duk2, · · · , dukn (restricted to ∆k(p)), where fk is

a distinguished coordinate, taken from amongst the previous level k−1 KR coordinates

fk ∈ {x1, · · · , xn, u1
2, · · · , u1

n, · · · , uk−1
2 , · · · , uk−1

n }.

The coordinate fk will be called the uniformizing coordinate at level k and plays the

role of an independent variable in jet terms.

We can use our dual basis to represent lines in ∆k(p) via homogeneous coor-

dinates and so represent ` as [dfk(v) : duk2 : . . . : dukn(v)] where v spans `. Constructing

level k+ 1 coordinates is a matter of deciding which linear coordinate to divide by, dfk,

or one of the duki . The labeling of the resulting coordinates proceeds quite like in the

base of the induction, k = 1, with fk now playing the role of x1 from the k = 1 step.

We proceed on a case-by-case basis, depending on whether or not the line ` is vertical.

Since the uki are fiber coordinates, we see that ` is vertical if and only if dfk(v) = 0.
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Case 1: ` is not vertical. Then dfk(v) 6= 0. Dividing we get new fiber affine

coordinates

uk+1
j = dukj (v)/dfk(v), j = 2, · · · , n

and we set

fk+1 = fk,

which means we continue to use the previous uniformizing coordinate as the new one.

Case 2: ` is vertical. Then dfk(v) = 0. Choose the 1st i such that duki (v) 6= 0

and call this i0. Set

fk+1 = uki0

thus defining a new uniformizing coordinate. The new fiber affine coordinates are

uk+1
2 = dfk(v)/dfk+1(v) = dfk/duki0

while for the subscripts r > 2 of uk+1
r we have

uk+1
σ(j;i0) = dukj (v)/dfk+1(v), j > 1

where, as in the k = 1 case, j 7→ σ(j; i0) is the unique order preserving map {1, 2, · · · , n−
1} \ {i0} → {2, · · · , n− 1}. Specifically

uk+1
j+1 = dukj (v)/dfk+1 = dukj (v)/duki0 , 2 ≤ j < i0.

while

uk+1
j = dukj (v)/dfk+1 = dukj (v)/duki0 , j > i0.

In the new coordinates the distribution ∆k+1 is described by intersecting the

pull-back π∗k+1,k∆k of the level k distribution with the hyperplane distributions defined

by the vanishing of the one-forms obtained by rewriting the defining equations for the

uk+1
j as Pfaffian systems. Thus, for example, in the case of ` not vertical, these are

dukj − uk+1
j dfk = 0.

In all cases, a basis for ∆∗k+1(p) is dfk+1 together with the duk+1
i , i = 2, · · · , n. The new

coordinates at level k+1 satisfy (i) and (ii) of the beginning of this inductive step, with

the index shifted now from k to k+ 1, so induction holds and we can continue up to the

next level.
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Meaning of the ‘uniformizing’ coordinate

Theorem 5.4.1 Let p ∈ Pk(n− 1) at level k. Fix KR coordinates about p with fk the

uniformizing coordinate at that level k. Then any γ ∈ Germ(p) can be parameterized so

that along γk we have fk(t) = t.

Proof. Since γk is regular, its one step projection γk−1 is an immersed curve

by Proposition 5.4.2 below. So write v = dγk−1/dt|t=0 6= 0. Because γk = (γk−1)1

we have that γk−1 is tangent to the line ` which comprises p; thus p = (pk−1, `) with

` = span(v). Now the uniformizing coordinate fk for level k is chosen according to

the condition that dfk|` 6= 0. Thus, dfk/dt|t=0 = dfk(v) 6= 0 relative to any good

parameterization t 7→ γk(t) of γk. We can now reparameterize so that dfk/dt = 1 and

so fk = t along γk (and along γk−1).

Proposition 5.4.2 Let σ be a regular integral curve germ at level k. Let σ1 denote its

one step prolongation and σ1 = πk,k−1 ◦ σ its one step projection at level k − 1.

Then

(a) σ1(t) is a regular integral curve germ at level k+1 passing through a regular

point.

(b) σ1 is an embedded integral curve, not necessarily regular.

(c) If σ(0) is a regular point, then σ1 is a regular integral curve germ.

5.5 Cartan Prolongation applied to curve germs.

In this section we want to present some of the basics of prolonging curve

germs. We will not give a presentation on how to do this in the general case, but

instead provide a few useful examples. The main motivation for this section is to help

show the interested reader how to write the curve locally in KR coordinates. The other

purpose of this section is to show how one can read off the RV T code that is associated

to the given curve germ.

Example 5.5.1 (The (t2, t3, 0) case) Recall that a parametrized curve γ(t) = (t2, t3, 0)

belongs to the class A2k, for k = 1. From Table 2.1 we know that it represents a curve

in the RV T class RV . We want to prolong γ in a neighborhood of the its singularity at

the origin. We take [dx : dy : dz] to be our coframing for the tangent bundle ∆0 = TR3.
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The first prolongation is given by

γ(1)(t) = (t2, t3, 0, [dx : dy : dz])

= (t2, t3, 0, [2t : 3t2 : 0])

= (t2, t3, 0, [1 :
3

2
t : 0])

= (t2, t3, 0
3

2
t, 0)

Again, since we want to look at when t = 0, that the only thing we can do is to divide

by the dx term and then take the limit as t→ 0. This gives us fiber coordinates u = dy
dx

and v = dz
dx and that our distribution ∆1 on P1 is locally defined to be

dy − udx = 0

dz − vdx = 0

Since every direction at the first level is equivalent, the RV T code for the curve γ begins

with the letter R.

We now want to prolong γ(1)(t) to the second level of the tower. However, this

time it is not entirely obvious what the coframing should be for ∆1 near γ(1)(0). From

looking at the equation for ∆1 above, one can see that the distribution is locally spanned

by the vector fields X(1) = ∂
∂x +u ∂

∂y + v ∂
∂z , ∂

∂u , and ∂
∂v . As a result, we need to take our

coframing to be [dx : du : dv], where we use dx to capture information about the vector

field X(1) coming from one level below. The 1-form dx is used because it is possible to

have u = 0 and/or v = 0. We also need to include the two fiber coordinates, which is

why du and dv are used. This gives

γ(2)(t) = (t2, t3, 0
3

2
t, 0, [dx : du : dv])

= (t2, t3, 0
3

2
t, 0, [2t :

3

2
: 0])

= (t2, t3, 0
3

2
t, 0, [

4

3
t : 1 : 0])

= (t2, t3, 0
3

2
t, 0,

4

3
t, 0)

Here we picked our fiber coordinates to be u2 = dx
du and v2 = dv

du since we are interested

in when t → 0 and we want to end up with a tangible finite number in the expression

for γ(2)(0). Notice as well that the du term is 3
2 , but the dx one is 2t. This tells us that

dγ(1)

dt |t=0 will be tangent to the fiber space and hence be a vector in the vertical space.
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As a result, we add the letter V to the RV T code for γ and that the RV T code for γ is

just RV . If we prolong γ(2) to any higher level of the Monster Tower ten we will just

end up placing the letters R onto the RV T code.

Example 5.5.2 (The case (t2, t4, t5)) The curve γ(t) = (t2, t4, t5) will have RV T

code RV T . Just as in the above, the first prolongation is given by

γ(1)(t) = (t3, t4, t5, [dx : dy : dz])

= (t3, t4, t5, [3t2 : 4t3 : 5t4])

= (t3, t4, t5,
4

3
t,

5

3
t2)

to give u = dy
dx , v = dz

dx , the first letter in the RV T code is R, and ∆1 is locally given by

dy − udx = 0

dz − vdz = 0

Then for the second prolongation we have

γ(2)(t) = (t3, t4, t5,
4

3
t,

5

3
t2, [dx : du : dv])

= (t3, t4, t5,
4

3
t,

5

3
t2, [3t2 :

4

3
:

10

3
t])

= (t3, t4, t5,
4

3
t,

5

3
t2,

9

4
t2,

5

2
t)

to give u2 = dx
du , v2 = dv

du and since dγ(2)

dt |t=0 is tangent to the fiber space we add the

letter V to the code.

The distribution ∆2 is given by

dx− u2du = 0

dv − v2dv = 0

With this in mind, the third prolongation is given by

γ(3)(t) = (t3, t4, t5,
4

3
t,

5

3
t2,

9

4
t2,

5

2
t, [du : du2 : dv2])

= (t3, t4, t5,
4

3
t,

5

3
t2,

9

4
t2,

5

2
t, [

4

3
:

9

2
t :

10

4
])

= (t3, t4, t5,
4

3
t,

5

3
t2,

9

4
t2,

5

2
t,

27

8
t,

15

8
)

This gives u3 = du2
du , v3 = dv2

du and we notice that the du2 term will be zero when t = 0

and imply that dγ(2)

dt |t=0 is tangent to the tangency hyperplane. Hence, we add the letter

T to the RV T code of γ.
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5.6 Computations for the class RV V V .

In this section we work out the computations for the functions ∂ũ3
∂u3

, ∂ũ3
∂v3

, ∂ṽ3
∂u3

,

∂ṽ3
∂v3

evaluated at p3 = (x, y, z, u, v, u2, v2, u3, v3) = (0, 0, 0, 0, 0, 0, 0, 0, 0), which we omit-

ted in Section 5.

(i) Computation of ∂ũ3
∂u3

.

Starting with ũ3 = c1
c2

, one computes

∂ũ3

∂u3
=
u2

∂ũ
∂x + uu2

∂ũ
∂y + ∂ũ

∂u + v2
∂ũ
∂v

c2
−

∂c2
∂u3

c1

c2
2

and
∂ũ3

∂u3
(p3) =

∂ũ
∂u(p3)
∂ũ2
∂u2

(p3)
,

since c1(p3) = 0. We recall that ∂ũ
∂u(p3) =

φ2y(0)

φ1x(0)
, ∂ũ2
∂u2

(p3) = φ1x(0)
∂ũ
∂u

(p3)
to give

∂ũ3

∂u3
(p3) =

(φ2
y(0))2

(φ1
x(0))3

.

(ii) Computation of ∂ũ3
∂v3

.

Since ũ3 = c1
c2

, then

∂ũ3

∂v3
(p3) =

∂c1
∂v3

(p3)

c2(p3)
−

∂c2
∂v3

(p3)c1(p3)

c2
2(p3)

= 0,

because c1 is not a function of v3 and c1(p3) = 0.

(iii) Computation of ∂ṽ3
∂u3

.

Have that ṽ3 = c3
c2

, then

∂ṽ3

∂u3
=
u2

∂ṽ2
∂x + ...+ ∂ṽ2

∂u + v2
∂ṽ2
∂v

c2
−

(u2
∂ũ2
∂x + ...+ ∂ũ2

∂u + ...+ v2
∂ũ2
∂v )c1

c2
2

∂ṽ3

∂u3
(p3) =

∂ṽ2
∂u (p3)
∂ũ2
∂u2

(p3)
−

∂ũ2
∂u (p3) ∂ṽ2∂u2

(p3)

(∂ũ2∂u2
(p3))2

We will need to figure out what ∂ũ2
∂u2

, ∂ṽ2
∂u2

, and ∂ṽ2
∂u are when we evaluate at p3.
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(a) ∂ṽ2
∂u2

Recall from work at level 3 that

∂ṽ2

∂u2
(p3) =

∂ṽ
∂x(p3)
∂ũ
∂u(p3)

= 0

since ∂ṽ
∂x(p3) = φ3xx(0)

φ1x(0)
and have φ1

xx(0) = 0 to give us ∂ṽ2
∂u2

(p3) = 0.

This gives the reduced expression

∂ṽ3

∂u3
(p3) =

∂ṽ2
∂u (p3)
∂ũ2
∂u2

(p3)
.

(b) ∂ṽ2
∂u

Recall that ṽ2 = b3
b2

, then we find

∂ṽ2

∂u
=
u2

∂2ṽ
∂x∂u + u2

∂ṽ
∂y + ...+ ∂ṽ

∂2u
+ v2

∂2ṽ
∂v∂u

b2
−

(u2
∂2ũ
∂x∂u + ...+ ∂2ũ

∂2u
+ v2

∂2ũ
∂v∂u)b3

b22

∂2ṽ2

∂u
(p3) =

∂2ṽ
∂2u

(p3)
∂ũ
∂u(p3)

−
∂2ũ
∂2u

(p3) ∂ṽ∂u(p3)

(∂ũ∂u(p3))2

since b2(p3) = ∂ũ
∂u(p3) and b3(p3) = ∂ṽ

∂u(p3). In order to find ∂ṽ2
∂u (p3) we will

need to determine ∂ṽ
∂u(p3), ∂2ṽ

∂2u
(p3), and ∂2ũ

∂2u
(p3).

(c) ∂ṽ
∂u

Recall that ṽ = a3
a1

and that ∂ṽ
∂u =

φ3y
a1
− φ1ya3

a21
, then

∂ṽ

∂u
(p3) =

φ3
y(0)

φ1
x(0)

−
φ1
y(0)φ3

x(0)

(φ1
x(0))2

= 0

since φ3
y(0) = 0 and φ3

x(0) = 0.

(d) ∂2ṽ
∂2u

From the above we have ∂ṽ
∂u =

φ3y
a1
− φ1ya3

a21
, then

∂2ṽ

∂2u
(p3) =

0

a1(p3)
−
φ3
y(0)φ1

y(0)

a2
1(p3)

−
φ1
y(0)φ3

y(0)

a2
1(p3)

+
(φ1
y(0))2φ3

x(0)

a3
1(p3)

= 0

since φ3
y(0) = 0 and φ3

x(0) = 0.

We do not need to determine what ∂2ũ
∂2u

(p4) is, since ∂ṽ
∂u and ∂2ṽ

∂2u
will be zero

at p3 and give ∂ṽ3
∂u3

(p3) = 0.
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(iv) Computation of ∂ṽ3
∂v3

.

Recall that ṽ3 = c3
c2

, then

∂ṽ3

∂v3
=

∂ṽ2
∂v2

c2
−

∂ũ2
∂v2

c3

c2
2

∂ṽ3

∂v3
(p3) =

∂ṽ2
∂v2

(p3)
∂ũ2
∂u2

(p3)
−

∂ũ2
∂v2

(p3) ∂ṽ2∂u2
(p3)

(∂ũ2∂u2
(p3))2

.

This means we need to look at ∂ṽ2
∂v2

, ∂ũ2
∂v2

, ∂ṽ2
∂u2

, and ∂ũ2
∂u2

evaluated at p3.

(a) ∂ṽ2
∂v2

.

We recall from an earlier calculation that

∂ṽ2

∂v2
(p3) =

∂ṽ
∂v (p3)
∂ũ
∂u(p3)

=
φ3
z(0)

φ2
y(0)

.

(b) ∂ũ2
∂v2

.

It is not hard to see that ∂ũ2
∂v2

(p3) = 0.

(c) ∂ũ2
∂u2

.

Recall ũ2 = b1
b2

and that

∂ũ2

∂u2
=
φ1
x + uφ1

y + vφ1
z

b2
−

(∂ũ∂x + u∂ũ∂y + v ∂ũ∂z )b1

b22
,

then
∂ũ2

∂u2
(p3) =

φ1
x(0)

∂ũ
∂u(p3)

=
(φ1
x(0))2

φ2
y(0)

.

With the above in mind we have ∂ṽ3
∂v3

(p3) = φ3z(0)
(φ1x(0))2

.

Then the above calculations give

Φ3
∗(`) = span

{
(b
∂ũ3

∂u3
(p3) + c

∂ũ3

∂v3
(p3))

∂

∂u3
+ (b

∂ṽ3

∂u3
(p3) + c

∂ṽ3

∂v3
(p3))

∂

∂v3

}
= span

{
(b

(φ2
y(0))2

(φ1
x(0))3

)
∂

∂u3
+ c

φ3
z(0)

(φ1
x(0))2

∂

∂v3

}
for ` = span{b ∂

∂u3
+ c ∂

∂v3
} with b, c ∈ R and b 6= 0.
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5.7 Relationship between Mormul’s Coding and the RV T

Coding System

In [Mor09] Mormul constructed a system for coding system for labeling sin-

gularity classes of points in the R3 Monster Tower. Mormul’s codes are words in the

letters 1,2,3. We have presented a coding system in this thesis whose codes are words

in the letters R,C, and a refined code with whose codes are words in letters R, V, T, L

with various decorations. A natural question to ask is the following:

How is Mormul’s coding system related to the one constructed by A. Castro
and R. Montgomery?

We have found no simple precise correspondence, however we will establish here a tight

relation between the two codings which will hold on classes of low codimension, which

means that the corresponding codes consist primarily of 1’s or of R’s. It is also worth

pointing out that at the time this thesis was written that F. Pelletier and M. Slayman

had been able to establish a dictionary between Mormul’s coding system and RV T code

for words of length at most 4 ([PS12]).

Extended Kumpera-Ruiz System.

We begin by explaining Mormul’s Extended Kumpera-Ruiz coding system.

Consider data consisting of a rank-3 distribution germ framed by local vector fields

(Z1, Z2, Z3) and endowed with local coordinates u1, ..., us. Mormul defined three op-

erations on this data, which he labels 1,2,3, whose output is new data of the same

type, on a space of two dimensions more. The three operations correspond to the three

standard affine charts of P2. The new coordinates are written u1, · · · , us, xl, yl. This

new framing is written (Z
(1)
1 , Z

(1)
2 , Z

(1)
3 ). In all three cases Z

(1)
2 = ∂

∂xl
and Z

(1)
3 = ∂

∂yl
.

Z
(1)
1 alone depends on which operation is used, and is defined by

Z
(1)
1 =


Z1 + (bl + xl)Z2 + (cl + yl)Z3 when k = 1

xlZ1 + Z2 + (cl + yl)Z3 when k = 2

xlZ1 + ylZ2 + Z3 when k = 3

The bl’s and cl’s are constants that may or may not be equal to zero, the details of

which we leave to Mormul’s paper.
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Mormul initiates his procedure as we do, with the base data of R3. He uses

coordinates (t, x, y), distribution the whole tangent bundle, and framing the coordinate

framing ( ∂∂t ,
∂
∂x , ∂

∂y ). He repeatedly applies one of his 3 operations k to produce a

sequence of new rank 3 distributions, labeling the distributions (or data) according to

the order of application of the operations.

Mormul calls the resulting words j1j2 · · · jk or their associated singularity

classes of distributions “EKRs” (for “Extended Kumper-Ruiz”). These words obey

two spelling rules. The first asserts that the first letter is 1. The second rule Mormul

calls the “least upwards jump” rule and it asserts that if jl+1 > max(j1, · · · , jl), then

j1+l = 1 + max(j1, · · · , jl) for l = 1, 2, ..., r − 1. For example, the word 1.3 is not

allowed, but the word 1.2.1.3 is allowed since the number 2 has been introduced.

Singularity Class Coding.

Mormul shows that his coding is intrinsic by constructing another coding,

called Singularity Class coding, which is manifestly invariant, being based on the sand-

wich lemma of ([MZ01]) and establishing the equality of this codings with the EKR

coding.

1.1 . . .1 = RR . . . R.

The class of Cartan points correspond to Mormul’s code 1.1 . . .1 and to our

code RR . . . R.

1 . . .1.2 = R . . . RC.

We begin with 1.2 = RC. Start with 1 and its associated framing Z
(1)
1 =

∂
∂x + u1

1
∂
∂y + u1

2
∂
∂z , Z

(1)
2 = ∂

∂u11
, Z

(1)
3 = ∂

∂u12
. The Pfaffian equations annihilating this

framing are:

dy − u1
1dx = 0

dz − u1
2dx = 0

which are identical to the equations defining ∆1 locally. Now apply operation 2 to get

the framing Z
(2)
1 = u2

1Z
(1)
1 + ∂

∂u11
+ u2

2
∂
∂u12

, Z
(2)
2 = ∂

∂u21
, Z

(2)
3 = ∂

∂u22
which represents

those germs with code 1.2.
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We compare with our code RC. Let p2 ∈ P2 be written p2 = (p1, `) with

` ⊂ ∆1(p1). Then ∆2(p2) = dπ−1
(p1,`)

(`). A basis for ∆∗1(p1) is dx, du1
1, du

1
2. The line `

has homogeneous coordinates [dx, du1
1, du

1
2]. Let us assume that p2 ∈ RC which is to

say that the line ` is vertical. Then dx = 0 along `. We may assume, without loss of

generality, that du1
1 6= 0 along `. Then we divide by du1

1 to get affine coordinates in a

neighborhood of `: [dx : du1
1 : du1

2] = [ dx
du11

: 1 :
du12
du11

]. The affine coordinates are u2
1 = dx

du11

and u2
2 =

du12
du11

.

Now, we return to our old frame Z
(1)
1 , Z

(1)
2 , Z

(1)
3 for ∆1 derived above. We can

also write ` = span{aZ(1)
1 + bZ

(1)
2 + CZ

(1)
3 } in which case [a : b : c] = [dx : du1

1 : du1
2].

Thus ` = span{aZ1 + b ∂
∂u11

+ c ∂
∂u12
} = span{abZ

(1)
1 + ∂

∂u11
+ c

b
∂
∂u12
} = span{u2

1Z
(1)
1 + ∂

∂u11
+

u2
2
∂
∂u12
}. A moment’s thought now shows that we can indeed let the fiber coordinates

vary, thus varying ` and that ∆2 in a neighborhood of p2 is spanned by three vector

fields having exactly the expression given by Z
(2)
1 , Z

(2)
2 , Z

(2)
3 as given above. This shows

that 1.2 = RC. A nearly identical argument shows that 1 . . .1.2 = R . . .RC.

For future use, the Pfaffian equations defining ∆2 near p2 are :

dy − u1
1dx = 0

dz − u1
2dx = 0

dx− u2
1du

1
1 = 0

du1
2 − u2

2du
1
1 = 0

5.7.1 1.2.1 = RV R ∪RV T

Apply the operation 1 to the previous frame to obtain the frame

Z
(3)
1 = Z

(2)
1 + u3

1
∂
∂u21

+ u3
2
∂
∂u22

, Z
(3)
2 = ∂

∂u31
, Z

(3)
3 = ∂

∂u32

representing germs in the class 1.2.1.

We compare this framing with one for ∆3 in a neighborhood of points whose

code is either RV R or RV T . Let p3 = (p2, `) ∈ P3 be in the class RV R or RV T . From

above, we see that ∆∗2(p2) has basis du1
1, du

2
1, du

2
2 and so homogenous fiber coordinates

for ` are [du1
1 : du2

1 : du2
2]. Since the RV T code of p3 does not end with a V or an L

we must have that du1
1 6= 0 along ` so we divide by du1

1 to get the affine coordinates
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u3
1 =

du21
du11

, u3
2 =

du22
du11

. In either case, we get that ∆3, in a neighborhood of p3, is given by

dy − u1
1dx = 0

dz − u1
2dx = 0

dx− u2
1du

1
1 = 0

du1
2 − u2

2du
1
1 = 0

du2
1 − u3

1du
1
1 = 0

du2
2 − u3

2du
1
1 = 0

Using the previous expression for Z
(2)
1 we see that in a neighborhood of our

p3 the distribution is framed by Z
(2)
1 +u3

1
∂
∂u21

+u3
2
∂
∂u22

, ∂
∂u31

, ∂
∂u32

corresponding exactly to

the expression for the framing Z
(3)
1 , Z

(3)
2 , Z

(3)
3 above. This shows us that the class 1.2.1

is the union of the two classes RV R and RV T .

5.7.2 1.2.1.2.1.2.1

The singularity class 1.2.1.2.1.2.1 will be of importance in the next section

when discussing moduli within the R3 Monster Tower. Recall from the above that

1.2 = RV and 1.2.1 = RV R ∪ RV T . If we use the same reasoning as in the case of

1.2 we can show that

1.2.1.2 = RV RV ∪ RV TV

and we can then apply the same reasoning as we used in the case of 1.2.1 to show that

1.2.1.2.1 = RV RV R ∪ RV RV T ∪ RV TV R ∪ RV TV T.

When we iterate these arguments one more time we end up with the following:

1.2.1.2.1.2 = RV RV RV ∪ RV RV TV ∪ RV TV RV ∪ RV TV TV and

1.2.1.2.1.2.1 =RV RV RV R ∪ RV RV RV T ∪ RV RV TV R ∪ RV RV TV T ∪ RV TV RV R

∪ RV TV RV T ∪ RV TV TV R ∪ RV TV TV T

5.7.3 1.2.3 = RV L

Recall the above expressions for the frame corresponding to 1.2. Apply oper-

ation 3 to this frame to get the frame

Z
(3)
1 = u3

1Z
(2)
1 + u3

2

∂

∂u2
1

+
∂

∂u2
2

, Z
(3)
2 =

∂

∂u3
1

, Z
(3)
3 =

∂

∂u3
2
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realizing the normal form for the germs in Mormul’s class 1.2.3.

We compare this frame with a frame constructed for ∆2 near a point p3 =

(p2, `) with RV T code RV L. The linear coordinates on ∆2 near a point of type RV are

du1
1, du

2
1, du

2
2 so homogeneous coordinates are [du1

1, du
2
1, du

2
2]. Since ` is an L direction

we must have du1
1 = 0 and du2

1 = 0 along `. (Recall that du1
1 = 0 corresponds to vertical

lines and du2
1 = 0 corresponds to tangency lines.). This means that we must divide by

du2
2 to get the fiber affine coordinates in a neighborhood of p3: u3

1 =
du11
du22

, u3
2 =

du21
du22

.

Expressing points ˜̀near ` as span{aZ(2)
1 +b ∂

∂u21
+c ∂

∂u22
} we see that span{aZ(2)

1 +b ∂
∂u21

+

c ∂
∂u22
} = span{acZ

(2)
1 + b

c
∂
∂u21

+ ∂
∂u22
} = span{u3

1Z
(2)
1 +u3

2
∂
∂u21

+ ∂
∂u22
}. The expression inside

the span is precisely the vector field Z3
1 of Mormul’s 1.2.3 frame above, with the two

vertical vector fields corresponding to Mormul’s Z3
2 and Z3

3 . The coordinate expressions

of the two frames agree, showing that 1.2.3 = RV L. A nearly identical computation

shows that R . . . RV L = 1. . . . .1.2.3.
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Part II

Action Selectors and the Fixed

Point Set of a Hamiltonian

Diffeomorphism
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Chapter 6

Introduction

In this part of the thesis we switch topics and focus on symplectic geometry.

We will be working primarily within the area of Floer homology and cohomology, which

was formulated by Andreas Floer in [Flo89(2)] and [Flo89(3)]. Floer theory is a version

of infinite dimensional Morse Theory. We will begin by briefly describing the basics of

Morse theory in order to establish this connection to Floer theory.

Morse theory is a homology theory that allows one to calculate the homology

of a manifold M by using Morse functions, meaning functions that have nondegenerate

critical points. Take f : M → R to be a Morse function and we take each of the critical

points p of f and assign to them an integer known as the index. The index of a critical

point p is the number of negative eigenvalues in the Hessian of f at p. Using the index

allows us to create the Morse chain complex C∗(f) = ⊕nk=0Ck(f), where each Ck(f) is

the free abelian group generated by the critical points of index k. Next define a boundary

operator ∂k : Ck(f) → Ck−1(f) that comes from counting the negative gradient flow

lines of f , along with their orientation, that originate from p and terminate at each of

the critical points of index k − 1. This allows us to define the Morse homology groups

to be HMk(f ;Z) = ker(∂k)/im(∂k+1), which is isomorphic to the singular homology

groups Hk(M ;Z).

During the early 1980’s symplectic geometers were interested in trying to ex-

tend the concepts of Morse theory to symplectic manifolds. Using Morse theory as

motivation, they wanted to try and formulate a similar relationship between the one-

periodic orbits of a Hamiltonian vector field and the homology of a symplectic manifold

(M,ω). Conley and Zehnder were some of the first who tried to tackle this problem in
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the M = R2n setting ([CZ84]). They looked at a functional defined on the loop space

of M given by

f(x(t)) =

∫ 1

0
(
1

2
< ẋ, Jx > −Ht(x(t)))dt,

where J is the standard symplectic structure on R2n and Ht is a Hamiltonian that is

one-periodic in time. Taking the first variation of this functional yields

δf(x) · ξ =

∫ 1

0
< −Jẋ−∇Ht(x), ξ > dt for ξ ∈ Tx(t)M

This means that the critical points of f will be one-periodic solutions to the Hamiltonian

vector field XH . However, while the second variation of f at an isolated one-periodic

solution x(t) gives rise to a bilinear form it can be shown that it will have an infinite

number of both positive and negative eigenvalues. As a result of this, one can’t really

study the stable and unstable manifolds and give the same topological decomposition

on M like in Morse theory. Conley and Zehnder though tried to work around this issue.

They developed a version of the Morse index for the functional f at the one-periodic

solutions of the Hamiltonian vector field generated by Ht. They also used a result due

to Amann and Zehnder ([AZ80]) which allowed them to relate the critical loops of f

to critical points of another functional that is defined on a finite dimensional space of

trigonometric polynomials of fixed order. More specifically, the critical points of the

functional defined on the finite dimensional space are in one to one correspondence with

the critical points of f . By making this link to finite dimensional manifolds they wanted

to try and look at a the gradient flow lines of the functional on this finite dimensional

space. In order to do this, Conley and Zehnder established a connection between their

Morse-type of index and then applied it to what they called the Morse decomposition

of a topological space. This allowed them to develop a theory that connected their

Morse-type of index to gradient-like flows on topological spaces and, hence, enabled

them to take the first steps towards the generalization of Morse theory on symplectic

manifolds.

By the late 1980’s Floer was able to concretely establish the connection be-

tween the one-periodic solutions of Hamiltonian diffeomorphisms and the topology of a

symplectic manifold. Floer homology is defined in a somewhat similar fashion, but this

time we will assume that we are working with a symplectic manifold (M,ω). In the

Floer setting, we begin with a time dependent Hamiltonian Ht : M → R, which is also

one-period in time, and take P̄(H) to be the set of contractible one-periodic capped
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solutions to XH , the Hamiltonian vector field generated by H. We replace the function

f from the Morse case with the action functional given by

AH(x̄) = −
∫
u
ω +

∫ 1

0
Ht(x(t))dt

for capped loops x̄ = (x, u), where x is the loop and u is the disc that is attached along

the boundary of x. The critical points of AH are the equivalence classes of capped

loops x̄ which are one-periodic solutions to the equation ẋ(t) = XH(t, x(t)). Let g be a

metric which is compatible with the symplectic form ω, meaning ω(X, JY ) = g(X,Y )

for all X,Y ∈ TM and J is the almost complex structure on M . Then we can define

a metric on the set of contractible one-periodic solutions to XH given by g̃(ξ, ζ) =∫ 1
0 gx(t)(ξx(t), ζx(t))dt, for any vector fields ξ, ζ along the one-periodic solution x(t). By

taking the gradient of AH with respect to the metric g̃ we have

grad(AH(x(t))) = J(x(t))ẋ(t)−∇Ht(x(t))

Just like in Morse theory, one is interested in trying to find a solution to the equation

dx
ds = −grad(AH(x̄). However, as is pointed out in [HZ11], it isn’t possible to find a

Banach manifold on which the vector field grad(AH(x̄)) is defined. This leads us to

looking instead at functions u : R× S1 →M which are solutions to the Floer equation

∂u

∂s
+ J(u)

∂u

∂t
+∇Ht(u) = 0.

Then one uses the function µCZ : P̄(H)→ Z, called the Conley-Zehnder index ([SZ92]),

to create the Floer chain complex. Take CFk(H) to be free abelian group generated

by the one-periodic contractible loops of XH that have Conley-Zehnder index equal to

k. The boundary map ∂k : CFk(H) → CFk−1(H), at least in the F = Z2 case, counts

the number of flow lines from one-periodic loops x̄ with µCZ(x̄) = k to one-periodic

loops ȳ with µCZ(ȳ) = k − 1. For a more general field F, the boundary map is a little

bit more involved to describe, see [FH93]. We then end up with the Floer homology

groups HFk(H) = ker(∂k)/im(∂k+1). From looking at the way the Floer homology is

defined one can see the similarities between the Morse and Floer homology and how

Floer theory is an extension of the Morse setting.

In the following sections for this part of the thesis we use Floer theory in

order to study the relationship between action selectors and the fixed point set for

a Hamiltonian diffeomorphism defined on a closed monotone symplectic manifold. In
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particular, we are interested in understanding the size of the fixed point set for a time

dependent Hamiltonian whose action selectors satisfy a specific condition. We use the

Arnold Conjecture as a starting point for the statement of the main results. The Arnold

Conjecture states that every Hamiltonian diffeomorphism φH of a compact symplectic

manifold (M,ω) possesses at least as many fixed points as a function f : M → R

possesses critical points. The weaker form of this conjecture asserts that the number

of fixed points for φH is bounded below by the cuplength of the manifold plus one, i.e.

#Fix(φH) ≥ CL(M)+1. The F-cuplength of M , denoted CL(M), of a topological space

M is the maximal integer k such that there exists classes α1, · · · , αk in the cohomology

ring H∗>0(M ;F) satisfying

α1 ∪ · · · ∪ αk 6= 0.

While the Arnold Conjecture is still an open problem in the case when M is

a general rational, weakly monotone manifold, it has been proven in the symplectically

aspherical case ([Flo89(1)], [Hof88]). Suppose for the moment that M is symplectically

aspherical. As is well known, one can use the basic properties and results concerning

action selectors to prove the Arnold Conjecture when the Hamiltonian diffeomorphism

has isolated fixed point, see e.g. [GG09]. This is accomplished by using the spectrality

properties of action selectors, meaning cα(H) ∈ S(H) where α ∈ H∗(M), H is a Hamil-

tonian, cα(H) denoting our action selector, and S(H) the action spectrum. Using this

fact, one is able to establish the following bound on the size of S(H):

#S(H) ≥ CL(M) + 1,

which in turn implies #Fix(φH) ≥ CL(M) + 1. Now, when H instead satisfies the

condition #S(H) < CL(M) + 1, it necessarily implies that the fixed point set for φH

can’t be isolated. As a result, this presents us with the following question: “How large”

is the set Fix(φH) when #S(H) < CL(M) + 1 ?

This leads us to one of the main results.

Theorem 6.0.1 Suppose that (M,ω) is a symplectic manifold, which is closed and

symplectically aspherical and H is a time dependent Hamiltonian with the property

#S(H) < CL(M) + 1. Let F denote the set of fixed points for the Hamiltonian diffeo-

morphism φH . Then Hj(F ) 6= 0 for some 1 ≤ j ≤ 2n.
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Remark 6.0.2 Because we are assuming that M is symplectically aspherical, this al-

lows us to keep track of the various orbits. Hence, when M is not symplectially aspherical

then since the cappings are nontrivial this presents the problem of determining what the

geometrically distinct orbits are for H.

Theorem 6.0.1 will actually become an almost immediate corollary once the

following result has been shown.

Theorem 6.0.3 Let (M,ω) be a closed, monotone symplectic manifold, H be a time

dependent Hamiltonian that is one-periodic in time and define F to be the fixed point

set for the Hamiltonian diffeomorphism φH . Also assume that there exists cohomology

elements α ∈ HQ∗(M), with α 6= 0 and HQ∗(M) the quantum cohomology of M ,

β ∈ Hk(M) with k > 0, and satisfying the condition cα∗β(H) = cα(H). Then Hk(F ) 6= 0

for k = deg(β).

Remark 6.0.4 It is worth noting that Theorem 6.0.3 also holds in the negative mono-

tone case as well.

We would like to point out the similarity of Theorem 6.0.3 to a result due to

Viterbo. In [Vit97] he deals with the Morse theoretic analogue of action selectors known

as critical value selectors defined by the equation

cαLS(f) = inf{a ∈ R|α 6= 0 inH∗(Ma)},

where Ma = {x ∈ M |f(x) ≤ a} and f : M → R is at least C1. Viterbo looks at

the connection between the critical points of the function f and the the critical value

selectors. He establishes that when M is a Hilbert manifold, f a C1-function on M

satisfying the Palais-Smale condition, and for any α, β ∈ H∗(M) with cup-product

α ∪ β 6= 0 in H∗(Ma), then cα∪βLS (f) ≤ cαLS(f). When cα∪βLS (f) = cαLS(f), Fa the set

of critical points of f at level a = cαLS(f); then β is nonzero on H∗(Fa). As a result,

dim(Fa) ≥ deg(β) and hence Fa is uncountable when deg(β) 6= 0.

Based on this result by Viterbo it is suspected that Theorem 6.0.3 should hold

for a more general element β in the cohomology ring HQ∗−(M) = H∗<2n(M) ⊗ Λ. In

future work we hope to extend Theorem 6.0.3 for β ∈ HQ∗−(M) and possibly when the

manifold is weakly monotone as well.
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Chapter 7

Preliminaries

This chapter will outline the necessary background from symplectic geometry

needed to understand the above results.

7.1 Symplectic Manifolds

Throughout this part of the thesis we will assume that (M,ω) is a closed

symplectic manifold, i.e. M is compact and ∂M = ∅. The manifold M is monotone

if [ω]|π2(M) = λc1(M)|π2(M) for some non-negative constant λ. A negative monotone

manifold satisfies the same condition, but with λ ≤ 0. The manifold M is rational if

< [ω], π2(M) >= λ0Z, where λ0 ≥ 0. When < c1(M), π2(M) > is a discrete subgroup

of R, then we call the positive generator N of this subgroup the minimal Chern number.

When M has the property [ω]|π2(M) = 0 = c1(M)|π2(M), then M is called symplectically

aspherical.

In this thesis we will be working with time dependent Hamiltonians H. More

specifically, we are going to be dealing with Hamiltonians which are one-periodic in time,

meaning H : S1×M → R with S1 = R/Z and Ht(·) = H(t, ·) for t ∈ S1. Let XH denote

the time dependent vector field that H generates, where XH satisfies iXHω = −dH. Let

φtH denote the time dependent flow for the vector field XH .

In this thesis we are interested in studying the time-one map of φtH . We call

the map φH := φ1
H a Hamiltonian diffeomorphism.

Let K and H be time dependent Hamiltonians, then we define (K#H)t :=
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Kt + Ht ◦ (φtK)−1. The flow for the time dependent vector field generated by the

Hamiltonian K#H is the composition φtK ◦φtH . As an aside, the composition K#H may

not necessarily be one-periodic in time. If, however, H0 = 0 = H1, then the composition

is one-periodic. One is able to impose this condition on H by reparametrizing H as a

function of time without changing its time-one map. This allows us to treat K#H as a

one-periodic Hamiltonian.

7.2 Filtered Floer Homology and Filtered Floer Cohomol-

ogy

7.2.1 Capped periodic orbits and filtered Floer homology

In this section we begin by introducing the basics of Floer homology. We plan

on only presenting the basic elements of Floer homology. For a more in depth discussion

and for more on the specific details we refer the reader to [MS04], [HZ11], [BH05].

We start by looking at the contractible loops x : S1 → M . Since x is con-

tractible we can attach a disk along the the boundary of the loop, which produces a

new mapping u : D2 →M with u|S1(t) = x(t). We call the map u a capping of the loop

x and use the notation x̄ to represent the pair (x, u). Let u1 and u2 be two cappings

for the loop x. The two cappings are equivalent if the integrals of ω and c1(M) over the

sphere formed by the connected sum u1#(−u2) is equal to zero. In the symplectically

aspherical case all cappings of a fixed loop x are equivalent. Let P(H) be the set of

contractible one-periodic solutions to XH and P̄(H) be the set of contractible capped

one-periodic solutions to XH .

The cappings of these loops allows us to define the action functional AH for a

time dependent Hamiltonian H. For a capped loop x̄ = (x, u) we define

AH(x̄) = −
∫
u
ω +

∫ 1

0
Ht(x(t))dt.

The critical points for the action functional are the equivalence classes of capped loops

x̄ which are one-periodic solutions to the equation ẋ(t) = XH(t, x(t)). The set of critical

values for the action functional is called the action spectrum of H and is denoted by

S(H). The action spectrum is a set of measure zero. In addition, when the manifold

M is rational, S(H) is a closed set and implies it is a nowhere dense set ([HZ11]).
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Following the terminology used in [SZ92], we will call a capped one-periodic

orbit x̄ of H non-degenerate if the pushforward dφH : Tx(0)M → Tx(0)M has no eigen-

values equal to one. When all of the one-periodic orbits of H are non-degenerate, then

we say H is non-degenerate. Note that the condition of degeneracy does not depend on

the capping of the loop x(t).

Whenever we are working with a non-degenerate Hamiltonian H we will end

up with a finite number of elements in the set P̄(H). By fixing a field F (i.e. Z2,Q,C)

we can use the Conley-Zehnder index, denoted µCZ , to impose a grading on the vector

space that is generated by the elements in the set P̄(H) over F. Define CF
(−∞,b)
k (H),

for b ∈ (−∞,∞] and b not an element in the set S(H), to be the vector space of sums

given by ∑
x̄∈P̄(H)

ax̄x̄,

with ax̄ ∈ F, µCZ(x̄) = k, AH(x̄) < b, and the number of terms in the sum with ax̄ 6= 0

is semi-finite, meaning for every c ∈ R the number of terms with ax̄ 6= 0 and AH(x̄) > c

is finite. There is a linear boundary operator ∂ : CF
(−∞,b)
k (H)→ CF

(−∞,b)
k−1 (H), where

for x̄ ∈ P̄(H) with µCZ(x̄) = k is defined to be

∂x̄ =
∑

µCZ(ȳ)=k−1

n(x̄, ȳ)ȳ

and ∂2 = 0. When F = Z2 the number n(x̄, ȳ) counts the number of components in the

1-dimensional moduli space M(x̄, ȳ) mod 2. For a more general field F, the number

n(x̄, ȳ) is a bit more involved to describe and we refer the reader to [FH93]. One can

further define CF
(a,b)
k (H) := CF

(−∞,b)
k (H)/CF

(−∞,a)
k (H), for −∞ ≤ a < b ≤ ∞ not in

S(H). The above construction results in what is known as the filtered Floer homology

of H and is denoted by HF
(a,b)
∗ (H). Note when (a, b) = (−∞,∞) we end up with the

standard Floer homology HF∗(H).

Since the results of this part of the thesis deal with Hamiltonians that are

degenerate, it is worth pointing out that filtered Floer homology can be defined in the

degenerate case. Take H to be a Hamiltonian on M with a, b 6∈ S(H) and M to be

a rational manifold. By virtue of the fact that we can always find a non-degenerate

Hamiltonian H̃ from an arbitrarily small perturbation of H it allows us to define

HF
(a,b)
∗ (H) = HF

(a,b)
∗ (H̃).
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7.2.2 Filtered Floer cohomology

Now that the basics of Floer homology have been presented it then becomes a

fairly straightforward process to explain the setup for the Floer cohomology.

We again take H to be a non-degenerate Hamiltonian and R to be a fixed

commutative ring. Define the cochain complex CF ∗(H) to be the set of functions

α : P̄(H) → R that satisfy the finiteness condition #{x̄ ∈ P̄(H) |α(x̄) 6= 0,AH(x̄) ≤
c} <∞ for every real number c. Define the filtered Floer chain complex by CF k(−∞,b)(H)

for b ∈ (−∞,∞] and b not in S(H) to be the vector space of formal sums∑
x̄∈P̄(H)

αx̄α,

where µCZ(x̄) = k and α(x̄) 6= 0. Also, using the same numbers n(x̄, ȳ) from the

Floer chain complex determines a linear coboundary operator δ : CF k(−∞,b)(H) →
CF k+1

(−∞,b)(H), given by

δα(x̄) =
∑

µCZ(ȳ)=k+1

n(x̄, ȳ)α(ȳ),

where x̄ ∈ P̄(H), µCZ(x̄) = k, and satisfies δ2 = 0. We define

CF k(a,b)(H) := CF k(−∞,b)(H)/CF k(−∞,a)(H), for−∞ ≤ a < b ≤ ∞ which are not elements

of S(H). This results in giving us the filtered Floer cohomology of H and is denoted by

HF ∗(a,b)(H).

Just like the case of Floer homology, we can also define the filtered Floer

cohomology for a degenerate Hamiltonian H by choosing a non-degenerate Hamiltonian

H̃ that is close to H and setting

H∗(a,b)(H) = H∗(a,b)(H̃).

7.3 Quantum Cohomology

The quantum cohomology is obtained by tensoring the cohomology ring H∗(M)

with the Novikov ring Λ over a field F, i.e.

HQ∗(M) = H∗(M)⊗F Λ.

Let α ∈ H∗(M) and A ∈ Λ, then the degree of the generator α⊗ eA is given by deg(α⊗
eA) = deg(α) + Ic1(A). This leads to a grading on HQ∗(M) where the cohomology
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classes of degree k are elements in the direct sum

QHk(M) = ⊕ki=0H
i(M)⊗F Λk−i.

One can also take Λ = Z[q, q−1], which is the ring of Laurent polynomials.1 This is done

by sending the element eA 7→ qc1(A)/N , where N is the minimal Chern number, and q is

a variable of degree 2N . This results in the isomorphism QHk(M) ∼= QHk+2N (M) for

all k when we multiply the quantum cohomology elements by q.

There is also a product structure defined on the quantum cohomology: let

α ∈ HQk(M), β ∈ HQl(M), then the quantum cup product of α with β is given by

α ∗ β =
∑
A

(α ∗ β)Aq
c1(A)/N ,

where deg(α ∗ β) = deg(α) + deg(β) and each of the cohomology classes (α ∗ β)A ∈
Hk+l−2c1(A)(M) are defined by the Gromov-Witten invariants GWM

A, 3. The invariants

GWM
A, 3 satisfy ∫

c
(α ∗ β)A =

∫
M

(α ∗ β)A ∪ η = GWM
A, 3(a, b, c),

where c ∈ Hk+l−2c1(A)(M), a = PD(α), b = PD(β), c = PD(η) and deg(a) + deg(b) +

deg(c) = 4n− 2c1(A).2 When this degree condition is not met, then GWM
A, 3(a, b, c) = 0.

Also, when c1(A) = 0 then (α ∗ β)A reduces to the cup product α ∪ β. One can also

find a detailed presentation of Gromov-Witten invariants in [MS04].

7.4 The Classical Ljusternik-Schirelman Theory: Critical

Value Selectors and Action Selectors

In order to prove Theorems 6.0.1 and 6.0.3 we will use tools from the Ljusternik-

Schnirelmann theory known as critical value selectors and action selectors. The action

selectors, also known as spectral invariants in the literature, are the Floer theoretic

version of critical value selectors.

7.4.1 Critical Value Selectors

Definition 7.4.1 (Critical Value Selectors)

1Note that instead of Z one can replace it with any commutative ring R with unit.
2Here, and in throughout, the notation “PD” stands for the Poincaré dual.
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f

cLSu (f)u′′

u′

u

R

Figure 7.1: Critical value selector.

Let M be a n-dimensional manifold and f ∈ C∞(M). For any u ∈ H∗(M) we

define the critical value selector by the formula

cLSu (f) = inf{a ∈ R|u ∈ im(ia)}

= inf{a ∈ R|ja(u) = 0},

where ia : H∗({x ∈ M |f(x) ≤ a})→ H∗(M) and ja : H∗(M)→ H∗(M, {x ∈ M |f(x) ≤
a}) are the natural “inclusion” and “quotient” maps respectively.

One can think of the critical value selectors geometrically in terms of minimax

principles. Take a nonzero homology class u ∈ H∗(M), then one can think of cLSu (f) to

be the maximum value f takes on the any representative cycle u′ ∈ [u] that has been

“pushed down” as far as possible within the manifold M , see Figure 1. So, when f is a

Morse function then we can write

cLSu (f) = min max[u]=u′{f(x) |x ∈ u′}.

The following is a listing of some useful properties concerning critical value

selectors.

• By definition, cLS0 (f) = −∞. When f ≡ const then cLSu (f) ≡ const as well, and

for any nonzero λ ∈ F, cLSλu (f) = cLSu (f). For any function f we have

cLS1 (f) = min(f) ≤ cLSu (f) ≤ max(f) = cLS[M ](f).

• Continuity: cLSu (f) is Lipschitz with respect to the C0-topology.
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• Triangle Inequality: cLSu∩w(f + g) ≤ cLSu (g) + cLSw (g).

• Criticality or minimax principle: cLSu (f) is a critical value of f .

• cLSu∩w(f) ≤ cLSu (f), also, if w 6= [M ] and the critical points of f are isolated, we

have strict inequality cLSu∪w(f) < cLSu (f).

7.4.2 The Hamiltonian Ljusternik–Schnirelman theory: action selec-

tors

In this section we present the definition and outline the fundamental properties

pertaining to action selectors on cohomology. The action selectors are defined in a

somewhat similar manner, where one big difference is the function f : M → R is

replaced by the action functional AH for some Hamiltonian H. There are numerous

sources on the subject of spectral invariants. Some of the first instances concerning the

theory can be found in [HZ11], [Vit92]. A thorough treatment of the symplecticially

aspherical case can be found in [Sch00]. Other known sources can be found in [EP03],

[EP09], [Gin05], [GG09], [MS04]. We will be primarily following the definitions and

results found in [Oh05].

Definition 7.4.2 (Action Selectors on Cohomology) For any nonzero element α ∈
HQ∗(M) ∼= HF ∗(H) we define the action selector on cohomology by the formula

cα(H) = inf{a ∈ R− S(H)|PD(α) ∈ im(ia∗)}

= inf{a ∈ R− S(H)|ja∗ (PD(α)) = 0},

where ia∗ : HF
(−∞,a)
∗ (H) → HF∗(H) and ja∗ : HF∗(H) → HF

(a,∞)
∗ (H) are the “inclu-

sion” and “quotient” maps respectively.

When H is a non-degenerate Hamiltonian we can write

cα(H) = inf
[σ]=a

AH(σ),

where a = PD(α) and AH(σ) = max{AH(x̄)|σx̄ 6= 0} for σ =
∑
σx̄x̄ ∈ CF∗(H).

Just like critical value selectors, one can formulate a geometrical interpretation of the

actions selectors, where they take the various capped one-periodic orbits representing a

particular cohomology class and push the “energy” down as far as possible.
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From the above definitions we point out some of their useful properties.

• Projective invariance: cλα(H) = cα(H) for any λ ∈ Q, λ 6= 0.

• Symplectic invariance: cα(φ∗H) = cα(H) for any symplectic diffeomorphism φ.

• Lipschitz continuous: cα is Lispschitz continuous in the C0-topology on the space

of Hamiltonians H. In particular, |cα(H)− cα(K)| ≤ ‖H −K‖, where ‖ · ‖ is the

Hofer norm.

• Triangle inequality: cα∗β(H#K) ≤ cα(H) + cβ(K).

• Hamiltonian shift: cα(H + a(t)) = cα(H) +
∫ 1

0 a(t)dt, where a : S1 → R.

• Homotopy invariance: Let H and K be two Hamiltonians which are homotopic to

each other, then we have cα(H) = cα(K), for all α ∈ QH∗(H).

• Spectrality: When M is a rational manifold and H is a one-periodic Hamiltonian

on M , then cα(H) ∈ S(H).

Let H̃am(M,ω) be the universal covering space for the group of Hamiltonian

diffeomorphisms Ham(M,ω). It is worth mentioning that one can also look at the

action selectors cα as functions from H̃am(M,ω) to the reals ([Oh05]).

Remark 7.4.1 We also point out that one can define the action selectors on the ho-

mology of M for any Hamiltonian H. In the non-degenerate case one can define

the action selector on the elements u ∈ HQ∗(M) by cu(H) = inf [σ]=uAH(σ) for

σ =
∑
ax̄x̄ ∈ CF∗(M). The action selectors on homology also satisfy similar prop-

erties for to the ones on cohomology. The details of which are outlined in [GG09]

and [Oh05]. There is one property in particular which interests us: cu(H) = cLSu (H)

for u ∈ H∗(M) and for H an autonomous and C2-small Hamiltonian. Also, based

on the definitions for action selectors on cohomology and homology we see they share

the relationship cα(H) = cPD(α)(H). Putting these two facts together we end up with

cα(H) = cLSPD(α)(H) when H is autonomous and C2-small.

7.5 Alexander-Spanier Cohomology
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Our last preliminary that needs to be introduced is a version of cohomology

due to J.M. Alexander and E.H. Spanier. We will be primarily following the exposition

given in [HZ11], [Mas91], [Spa81].

Begin by fixing a subspace A ⊂ M and define OA to be the set of all open

neighborhoods of the subset A. One is then able to define an ordered structure on this

set in the following manner: for U, V ∈ OA we say U ≤ V if and only if V ⊆ U . We call

(OA,≤) the directed system of neighborhoods for the set A.

Now let C to be the category of all subspaces of the manifold M and the

category A to be an algebraic category, which, for our purposes, will either be the cat-

egory of abelian groups, the category of commutative rings, or the category of modules

over a fixed ring. Define a continuous functor H : C → A that takes continuous maps

f : V → U , for U, V ∈ C and maps it to a homomorphism H(f) : H(U) → H(V ). If

U ≤ V we can define the inclusion map iV U : H(U)→ H(V ). From any directed system

OA we define DA :=
⊕

U∈OA H(U) and the homomorphism jU : H(U) → DA as the

inclusion map into the U -th component of DA. Next take KA to be the subring that is

generated by elements of the form jU (αU ) − jV iV U (αU ) for U ≤ V , αU ∈ H(U). We

denote the quotient of DA by KA by dir limU∈OA H(U) := DA/KA, which we call the

direct limit of A.

We define H̄∗(A;Z) := dir limU∈OA H
∗(U ;Z) to be the Alexander-Spanier

cohomology for the subspace A ⊆ M . H∗(U ;Z) is the usual singular cohomology. The

restriction maps from Hk(U ;Z) to Hk(A;Z) end up defining a natural homomorphism

from H̄k(A;Z) to Hk(A;Z). When this homomorphism is an isomorphism that holds for

all k and any coefficient group, then we say the subspace A is taut in M . The following

result gives us a useful list of criteria for when A will be taut in the manifold M .

Theorem 7.5.1 In each of the following four cases the subspace A is taut in M :

• A is compact and M is Hausdorff.

• A is closed and M is paracompact Hausdorff.

• A is arbitrary and every open subset of M is paracompact Hausdorff.

• A is a retract of some open subset of M .

80



7.6 Proofs of Theorems 6.0.1 and 6.0.3

We are now in a position to present the proofs for Theorems 6.0.1 and 6.0.3.

We will begin by showing the monotone case result and then present the aspherical one.

Proof [Proof of Theorem 6.0.3]

We start by looking at the fixed points of φH which have associated action

equal to cα(H) = a and call this set Fa. Let δ > 0 be small and define F(a−δ,a+δ) to

be the set of all fixed points of φH that have their associated action in the interval

(a− δ, a+ δ). We then take Uδ to be a neighborhood of the set F(a−δ,a+δ). We want to

show Hk(Uδ) 6= 0 for some 1 ≤ k ≤ 2n and for δ close to 0.

Suppose not and that Hk(Uδ) = 0 for all 0 < k ≤ 2n in order to arrive at

a contradiction. Let h : M → R be a C2-small function on M where h is identically

equal to zero on the neighborhood Uδ and outside of this set it is strictly negative. Let

η ∈ Hk(M), where deg(η) > 0. We can approximate the function h by a sequence of

Morse functions that are at least C2-small, call them hn, such that hn → h as n → ∞
in the C0-topology and for a fixed x ∈ Fa we have hn(x) = 0 only at this single point

and strictly negative everywhere else. By making use of the fact that cLSPD(η)(hn) < 0

for all η ∈ Hk(M), with k > 0, and since cη is Lipschitz in the C0-topology we have

cη(h) < −δh < 0 for all η ∈ Hk(M) with k > 0 and δh is a positive constant depending

on the function h. It is worth noting that we cannot say the same thing about PD(α)

because it is possible that PD(α) = [M ], which implies cα(h) = cLS[M ](h) = max(h) = 0.

Define r : S1 → R to be a nonnegative, C2-small function, equal to zero outside

of a small neighborhood of zero in S1. Set ft = r(t)h. This means that the Hamiltonian

flow of f will be a reparametrization of the flow of h through time ε =
∫ 1

0 r(t)dt.

Next we look at the family of Hamiltonians H#(sf) for s ∈ [0, 1]. By the

construction of f we have H#(sf) = H on the set Uδ, but outside of the set Uδ it is

possible, for values of s close to 1, that H#(sf) has a 1-periodic orbit, say x̄, such that

cα(H#(sf)) = AH#(sf)(x) 6= a. However, we claim that for small values of s that we

can prevent this situation from occurring. In particular, we claim that one can find a

nonzero s′ in [0, 1] such that for all 0 ≤ s ≤ s′ the Hamiltonians H#(sf) may have new

1-periodic orbits such that their action is not in S(H) and that their values may drift

into the interval (a− δ, a+ δ), but by picking s′ small enough these new critical values
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for H#(s′f) cannot drift into the neighborhood (a − δ
2 , a + δ

2). We will show this fact

below in Lemma 7.6.1 and suppose for the time being that such an s′ exists. Then for

all 0 ≤ s ≤ s′ we have S(H#(sf)) ∩ (a− δ
2 , a+ δ

2) = S(H) ∩ (a− δ
2 , a+ δ

2).

Now, when h and a are sufficiently C2- small, εh and f have the same periodic

orbits, which are the critical point of h, and they have the same action spectrum. This

is also true for the functions εs′h and s′f . The same will be true for every function in

the linear family f̃l = (1− l)εs′h + ls′f , with l ∈ [0, 1], connecting εs′h and s′f . Using

the continuity property of cu, the fact that each S(f̃l) is a set of measure zero, and that

S(f̃) = S(f̃l) for all l, we conclude that cPD(β)(s
′f) = cPD(β)(εs

′h) < 0.

We again use the continuity property of cα and that the sets S(H#(sf)) have

measure zero for all s to give us cα(H#(s′f)) = cα(H) = a. Since cα∗β(H) = cα(H) we

have cα∗β(H#(s′f)) = cα∗β(H) as well. We then use the following triangle inequality

for action selectors to give

cα∗β(H) = cα∗β(H#(s′f)) ≤ cα(H) + cβ(s′f) = cα(H) + cPD(β)(s
′f) < cα(H)

and creates a contradiction to the fact that cα∗β(H) = cα(H). This means we must

have Hk(Uδ) 6= 0 for k = deg(β).

Now let OFa be a directed system of neighborhoods for the set Fa. Then

Theorem 7.5.1 along with the basic properties outlined in Section 7.5 almost immediately

implies Hk(F ) 6= 0 for k = deg(β), which proves Theorem 6.0.3.

With the above in mind, we are able to prove Theorem 6.0.1.

Proof [Proof of Theorem 6.0.1]

First recall the assumption that M is symplectically aspherical, let CL(M) =

m and let α1, · · · , αm be cuplength representative in H∗>0(M). Using a result from

[GG09] which in the symplectically aspherical case says that for α, β ∈ H∗(M) with

deg(β) > 0 we have cα∪β(H) ≤ cα(H). This gives us the following monotonically

decreasing sequence

cα̃m(H) ≤ · · · ≤ cα̃1(H) ≤ cα̃(H)

with α̃ = PD([M ]), α̃1 = α1, α̃2 = α2 ∪ α̃1, · · · , α̃m = αm ∪ α̃m−1. Since each cβ(H) ∈
S(H) and #S(H) ≤ m it implies there must be equality somewhere in the above chain

of inequalities. So, cα̃i+1(H) = cα̃i(H) for some 1 ≤ i ≤ m, or α̃i = PD([M ]). Since

α̃i+1 = αi+1 ∪ α̃i we just rename αi+1 = β and α̃i = α for notational convenience. This

82



means cα∪β(H) = cα(H) and as we have pointed out in Section 7.3 the quantum product

in the symplectically aspherical case reduces to the cup product, i.e. α ∗ β = α ∪ β, so

we can apply Theorem 6.0.3, which immediately gives us our result.

Lemma 7.6.1 There exists some nonzero s′ in [0, 1] such that S(H#(sf)) does not

gain any new critical values within the interval (a− δ
2 , a+ δ

2) for all 0 ≤ s ≤ s′.

Proof Suppose not and we cannot find such a number s′. This means we can find a

sequence of sn in [0, 1] where sn → 0 as n → ∞ and that there exists a one-periodic

orbit xn of XH#(snf) such that AH#(sn)f (xn) = an with limn→∞an = a. Now, since

H#(snf) = H on the set Uδ, it means the fixed points for φH#(snf), with associated

action an ∈ S(H#(snf)), can’t be elements of the set Uδ.

Our next step is to show we can find a one-periodic orbit x∗ for XH with

A(x∗) = a that comes from some subsequence of the xn’s. In order to show this we will

use the generalized Arzela Ascoli theorem for metric spaces which says the following: If

X1 is compact Hausdorff space, X2 is a metric space, C(X1, X2) be the set of continuous

functions from X1 to X2, and let {fn} be a sequence of functions in C(X1, X2) that

is uniformly bounded and equicontinuous, then there exists a subsequence {fnj} that

converges uniformly. We apply this to our capped loops x̄n, taking X1 = [0, 1] and

X2 = M . Let d be the distance function that comes from the Riemannian metric g

on M . We want to first show that there exists some real number L > 0 such that

d(xn(t), xn(s)) ≤ L|t − s| for all n. Note that since the manifold M is compact that

there is a uniform bound on the XH#(snf) where ‖XH#(snf)‖ ≤ L for some L > 0 and for

all n. Since the distance between two points p, q ∈M is given by d(p, q) = infγ(L(γ)) for

L(γ) =
∫ b
a ‖γ̇(t)‖dt we have d(xn(t), xn(s)) ≤

∫ t
s ‖ẋn(u)‖du =

∫ t
s ‖XH#(snf)(xn)‖du ≤

L|t−s|. This shows that the family of curves {xn} is uniformly Lipschitz, which implies

that this family of curves is uniformly bounded and equicontinuous. This means there is

a subsequence {xnj} that converges to the curve x∗. The curve x∗ is only a continuous

loop from [0, 1] to M , but we can use the following result which tells us that x∗ is

actually a smooth solution to XH .

Proposition 7.6.2 Assume that the sequence of Hamiltonian vector fields XHn → XH

as n → ∞ in the C0-topology and xn is a solution to XHn and xn → x∗ in the C0-

topology. Then x∗ is a solution to XH .
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This means x∗ is a one-periodic solution to XH . Our next step is to show

that A(H)(x∗) = a. Let ε > 0. Since AH#(snf)(xn) = an we can find some N1

such that for all n > N1 we get |an − a| < ε
3 . At the same time, the Hamiltonians

H#(snf) → H in the C1-topology and we can find some N2 such that for all n > N2

we have |AH(x) − AH#(snf)(x)| < ε
3 . Lastly, since the xnj converge uniformly to the

one-periodic solution x∗ of XH we can find some N3 such that for all nj > N3 we get

that |AH(x∗)−AH(xnj )| < ε
3 . Then for N = max{N1, N2, N3} we have for n > N that

|AH(x)−a| ≤ |AH(x∗)−AH(xnj )|+|AH(xnj )−AH#(snj f)(xnj )|+|AH#(snj f)(xnj )−a| <
ε. Since this is true for every ε > 0 it gives AH(x∗) = a.

Our next step is to show that the fixed point x∗(0) = x∗(1) for φH that has

associated action AH(x∗) = a is a point that is outside of the Uδ. In order to do this we

will look at the other fixed points pnj for φH#(snj f) that come from the loops xnj . In

order to simplify the notation we will just relabel the points pnj to be pn. Now, since M

is a compact metric space we know that it is sequentially compact, meaning any sequence

{yn} has a convergent subsequence {ynj}, and that the collection of points {pn} has a

convergent subsequence {pnj} that converges to the point p. In fact, the limit point p

is a fixed point for φH , which we will show. Let ε > 0 and we show that d(φH(p), p) <

ε. Since snf → 0 pointwise as n → ∞ and since φH is continuous it implies that

φH#(snj f) = φH ◦φsnj f → φH pointwise as j →∞. Then there exists some N1 such that

for all nj > N1 we have d(φH(p), φH#(snj f)(p)) <
ε
3 . We can also find some N2 such that

for all nj > N2 that d(φH#(snj f)(p), φH#(snj f)(pnj )) <
ε
3 and we can find anN3 such that

for all nj > N3 we get d(pnj , p) <
ε
3 . For nj > N = max{N1, N2, N3} we end up with

d(φH(p), p) ≤ d(φH(p), φH#(snj f)(p)) + d(φH#(snj f)(p), φH#(snj f)(pnj )) + d(pnj , p) < ε.

So, p is a fixed point for φH .

Let x be the loop formed by the curve φtH(p) for 0 ≤ t ≤ 1. Since both x∗ and

x are one-periodic solutions for XH and they both have the point p on them, then by

uniqueness of solutions of O.D.E.’s it forces x∗ = x. Then, we end up with p being a

fixed point of φH , which is on the curve x, and has the associated action AH(x) = a.

However, we have that p is the limit point of the points pnj and we know that pnj 6∈ Uδ
for all n and means that p 6∈ Uδ, which creates a contradiction.
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