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Abstract

Metric lines in metabelian Carnot groups

by

Alejandro Bravo-Doddoli

This work is devoted to metric lines (an isometric embedding of the real line) in

metabelian Carnot group G: we say that a group G is metabelian if [G,G] is Abelian.

Theorems A and B provide a partial result about the classification of the metric lines in

the jet-space of functions from R to R, denoted by Jk(R,R). Theorem C is a complete

classification of the metric lines in the Engel type Carnot group, denoted by Eng(n).

Both groups, Jk(R,R) and Eng(n) are examples of metabelian Carnot groups. The main

tools to classify subRiemannian geodesic on G is a correspondence between the regular

subRiemannian geodesics in a metabelian Carnot group G and the space of solutions to a

family of classical electromechanical systems on Euclidean space. The method to prove

Theorems A, B and C is to use an intermediate (n + 2)-dimensional subRiemannian

space Rn+2
F lying between the G and the Euclidean space Rd1 ≃ G/[G,G].



To Heather for be the love of my life,

To my parents for be the support of my life,

To my siblings for be my fellowships of life,

To all my professors for be my compass in life,

viii



Acknowledgments

I want to express my gratitude to my advisor Richard Montgomery for sup-

porting my application to UCSC, for his invaluable help and patience, for sharing his

love for math, and for being a good human being and friend. However, the most im-

portant lesson that he taught me is that the impossible can be possible since he always

believed that complete classification of the metric lines in the jet space was possible and

more general in Carnot groups, Theorems A, B and C are the evidence he was correct.

I want to thank Enrico Le Donne for my time at the University of Friuborg,

where he introduced the definition of the metabelian Carnot group and the exponential

coordinates of the second kind, and also for showing me the proof of Proposition 95. I

want to thank Felipe Monroy for being part of my oral exam, his support during my

postdoc applications, and his work, which inspired me.

I want to express my gratitude to Anthony Bloch for being part of my thesis

committee and supporting my application to the University of Michigan. In addition,

I thank Jie Qing and Francois Monard for being part of my oral exam and thesis

committee and for their support during my time at UCSC.

I want to thank my bachelor’s degree advisor Oscar Palmas-Velazco and mas-

ter’s degree advisor Luis Garcia-Naranjo for sharing their love for math, invaluable help

and patience, and for being good human beings and good friends.

I want to thank Nicola Paddeu, Andrei Ardentov, Yuri Sachkov, Felipe Monroy-

Perez, Angel Carrillo-Hoyo, and Hector Sanchez-Morgado, for e-mail conversations and

ix



talks regarding the course of this work.

I want to thank Oscar Palmas-Velazco, Luis Garcia-Naranjo, Renato Callejas,

Gabriel, and Hector Sanchez-Morgado for their letter of recommendation to support my

UCSC application.

This research was developed with the support of the scholarship (CVU 619610)

from “Consejo de Ciencia y Tecnologia” (CONACYT).

x



Chapter 1

Introduction

This work is a report of the research done, from July 2019 to April 2023, under

the advice of Richard Montgomery. My main goal was to characterize the metric lines

on the jet space Jk(R,R), an example of metabelian Carnot group.

1.1 Metric lines in Carnot groups

A Carnot group G is a simple connected Lie group whose Lie algebra g is

graded, nilpotent, and its first layer g1 generates the Lie algebra g. Every Carnot group

G has a canonical protection π : G → Rd1 , see (2.1), where G/[G,G] ≃ g1 ≃ Rd1 and

d1 is the dimension of the layer g1. To give a subRiemannian structure to G, we define

the non-integrable distribution Dg := (Lg)∗g1, and we consider the inner product on D

as the one who makes π a subRiemannian submersion where Rd1 is equipped with the

Euclidean product. Let us formalize the subRiemannian submersion.

Definition 1. Let (M,DM , gM ) and (N,DN , gN ) be two subRiemannian manifold and
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let ϕ : M → N a submersion, we consider the case dim(M) ≥ dim(N). We say that ϕ

is a subRiemannian submersion if ϕ∗DM = DN and ϕ∗gN = gM .

Here we will introduce the definition of a metric line in the context of subRie-

mannian geometry.

Definition 2. Let M be a subRiemannian manifold, we denote by distM (·, ·) the sub-

Riemannian distance on M . Let | · | : R → [0,∞) be the absolute value, we say that a

geodesic γ : R → M is a metric line if |a − b| = distM (γ(a), γ(b)) for all compact set

[a, b] ⊂ R.

A classic result on metric lines is the following.

Proposition 3. Let ϕ : M → N be a subRiemannian submersion and let c(t) be a

metric line in N , then the horizontal lift of c(t) is a metric line in M .

The proof of Proposition 3 is given in [12, p. 154.].

Definition 4. Let G be a Carnot group. We say that a geodesic γ(t) is a line if the

projected curve π(γ(t)) in Rd1 is a line.

As an immediate corollary to the Proposition 3, we get:

Corollary 5. The geodesic lines are metric lines in every Carnot group.

1.1.0.1 Metric lines in Jk(R,R)

In [12], we showed a bijection between the set of pairs (Fµ, I) and the set of

geodesics in Jk(R,R), where Fµ is a polynomial defined by (3.1) and I is a hill interval
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given by Definition 24. In addition, we classified the non-geodesic lines in Jk(R,R)

according to their reduced dynamics, that is, the non-geodesic lines in Jk(R,R) are

x-periodic, homoclinic, direct-type or turn back, see sub-Section 3.1.1 or Figure 1.1 and

1.2. The Conjecture concerning metric lines in Jk(R,R) is the following.

Conjecture 6. Besides geodesic lines, the metric lines for Jk(R,R) are homoclinic and

direct-type geodesics.

Theorem A is the first main result and proves Conjecture 6 for the case of

direct-type geodesics.

Theorem A. The direct-type geodesics are metric lines in Jk(R,R).

The question remains open for homoclinic geodesics. Theorem B is the second

principle result and provides a family of homoclinic geodesics that are metric lines.

Theorem B. The homoclinic-geodesic defined by the polynomial F (x) = ±(1 − bx2n)

and hill interval [0, 2n

√
2
b ] is a metric line in Jk(R,R) for all k ≥ 2n and b > 0.

Conjecture 6 was proved by A. Andertov and Y. Sachkov in the case k = 1 and

k = 2, see [7, 6, 5]. The case k = 1 corresponds to G being the Heisenberg group where

all the geodesics are x-periodic. The case k = 2 corresponds to G being Engel’s group,

denoted by Eng; up to a Carnot translation and dilation Eng has a unique metric line

such that its projection to the plane R2 ≃ Eng /[Eng,Eng] is the Euler-soliton. The

family of metric lines defined by Theorem B is the generalization of A. Andertov and Y.

Sachkov’s result from [7, 6, 5]. In [12], we showed that a family of direct-type geodesics

with an open condition are metric lines.
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Figure 1.1: Both images show the projection to R2 ≃ Jk(R,R)/[Jk(R,R), Jk(R,R)],
with coordinates (x, θ0), of geodesics in Jk(R,R). The left panel presents a generic
x-periodic geodesic, the right panel displays the Euler-soliton solution to the Euler-
Elastica problem and whose corresponding geodesic is a metric line, see Theorem B.

1.1.0.2 Metric lines in Eng(n)

Theorem 96 tells that the subRiemannian geodesic flow on Eng(n) is integrable.

We classify the normal geodesics in Eng(n) according to their reduced dynamics, see 55.

Theorem C is the third principle result of this work and makes a complete classification

of metric lines in Eng(n).

Theorem C. Up to a Carnot translation Eng(n) has one family of metric lines, besides

geodesic lines. This family is generated by Fµ(r) = ±(1− br2) with 0 < b.

We remark that given a metric line γ(t) in the family described by Theorem

C, there exists a two-plane in Rn+1 ≃ Eng(n)/[Eng(n),Eng(n)] such that the projection

of γ(t) to this plane is the Euler-Elastica given by case n = 1 from Theorem B.

4



Figure 1.2: Both images show the projection to R2 ≃ Jk(R,R)/[Jk(R,R), Jk(R,R)],
with coordinates (x, θ0), of geodesics in Jk(R,R). The left panel presents the projection
of a turn-back geodesic, the right panel displays the projection of a direct-type geodesic
and whose corresponding geodesic is a metric line, see Theorem A.
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Figure 1.3: The images show the projection to R3 ≃ Eng(2)/[Eng(2),Eng(2)], with
coordinates (x, y, θ0), of one metric line in Eng(2) defined by Theorem C
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Chapter 2

General theory

2.1 G as subRiemannian manifold

A Lie algebra g is graded stratified if g = g1 ⊕ · · · ⊕ gs and [gi, gj ] ⊂ gi+j and

call gr the layers of g. A graded stratified Lie algebra g is nilpotent if gs+1 = 0. We say

a G is a Carnot group if G is a simply connected Lie group whose Lie algebra g is graded

stratified, nilpotent and bracket generated by g1. We call s the step of G and denote

by [G,G] the commutator group of G. Every Carnot group has a canonical projection

π : G → Rd1 where Rd1 ≃ g1 ≃ G/[G,G]. If g is in G, then the formal definition is:

π(g) := g mod [G,G]. (2.1)

The canonical injection of [G,G] into G and the projection π define a short exact

sequence: 0 → [G,G] ↪→ G π−→ Rd1 → 0, which tells that G ≃ Rd1+dim ([G,G]).

A subRiemannian structure on a smooth manifold M is given by the pair

(D, (·, ·)), where D is a non-integrable distribution and (·, ·) is an inner product on
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D. Every Carnot group is a subRiemannian manifold with the Carnot-Carathéodory

distance. Let us define the subRiemannian structure on a Carnot group.

Definition 7. The subRiemannian structure G is given by D(g) := (Lg)∗g1 and in-

ner product on D(g) is such that π is a subRiemannian submersion. The Carnot-

Carathéodory distance on G is given by

distG(g1, g2) := inf

{∫ b

a
||γ̇(t)||G : γ(t) : [a, b] → G absolutely contiouons

γ(a) = g1 γ(b) = g2 and γ̇(t) ∈ Dγ(t) for a.e. t ∈ [a, b]

}
The property of g1 being bracket generating implies the distribution D is con-

trollable, see [21].

2.1.1 Metabelian Carnot groups

Let us introduce the formal definition of metabelian group.

Definition 8. We say G is a metabelian group if [G,G] is abelian. Every metabelian

group has a normal abelian subgroup A containing [G,G].

See [23] for more algebraic details of the definition.

We consider the left action of A on G, which is proper and free, so the quotient

G/A is well-defined. Let us denote by H the quotient G/A, and let πA : G → H be the

canonical projection. Let g be in G, then the canonical projection πA : G → H is given

by

πA(g) := g mod A. (2.2)

8



Group Dimension

G n+m

A ≃ V × [G,G] m = n1 + dim([G,G])

[G,G] m− n1

Rd1 = H⊕ V ≃ g1 ≃ G/[G,G] d1 = n+ n1

H := G/A n

V := H⊥ ⊂ Rd1 n1

Table 2.1: Dimension of the groups.

The canonical injection of A into G and the projection πA define a short sequence;

0 → A ↪→ G πA−→ H → 0, which tells G ≃ A × H, topologically. Thanks to the

subRiemannian inner product, given the Lie algebra a we can decompose g1 as the

direct sum of two sub-spaces.

Definition 9. Let G be a metabelian Carnot group, and let a be the Lie algebra of a

maximal abelian subgroup A containing [G,G]. Then g1 = h⊕ v, where v := a ∩ g1 and

h is the orthogonal complement of v in g1. In addition, D(g) = Dh(g) ⊕ Dv(g) where

Dv(g) := (Lg)∗v and Dh(g) := (Lg)∗h are left-invariant subspace.

We want to think in H inside Rd1 . Then Rd1 = H × V, where V is the

orthogonal complement of H with respect of the Euclidean product in Rd1 . The map π

is compatible with the splitting of D(g) and Rd1 , that is,

dπg(Dh(g)) = TπA(g)H and dπg(Dv(g)) = TπA(g)V.

9



2.1.2 Geodesic flow and symplectic reduction

Like any subRiemannian structure, the cotangent bundle T ∗G is endowed with

a Hamiltonian system whose underlying Hamiltonian HsR has solution curves whose

projection to G are the subRiemannian geodesics. We call this Hamiltonian system

the geodesic flow on G. Let T ∗H be the cotangent bundle of H, the Hamiltonian

structure for the classical electromechanical system is given by a magnetic potential

A and effective potential ϕ, see [15] or [1] for more details. The mathematical object

relating the Hamiltonian structures is a a∗ valued one-formAG = AM
G +AE

G in Ω1(Rd1 , a),

where AM
G is in Ω1(H, a∗) and AE

G is in Ω1(V, a∗). Let µ be in a∗, we define Aµ as the

paring of AG with µ, that is,

Aµ(x) :=< µ,AG >= AM
µ +AE

µ , < µ,AM
G >:= AM

µ and < µ,AE
G >:= AE

µ . (2.3)

Then Aµ is a one-form on Rd1 . The map exp : g → G endows G with the exponential

coordinates (x, θ) of the second kind, see sub-section B.2. If we write Aµ in terms of

these coordinates, then Aµ depends only on x in a polynomial way. Moreover, if (px, x)

are the traditional coordinates for T ∗H ⊂ T ∗Rd1 , then Aµ defines a Hamiltonian Hµ

function in T ∗H, given by

Hµ(px, x) :=
1

2
||px +Aµ(x)||2(Rd1 )∗ =

1

2
||px +AM

µ (x)||2H∗ +
1

2
ϕµ(x). (2.4)

Where the effective potential 1
2ϕµ(x) is defined by the function ϕµ(x) = ||AE

µ (x)||2V∗ ,

here || ||(Rd1 )∗ , || ||H∗ , and || ||V∗ are the Euclidean norm in (Rd1)∗, H∗ and V∗,

respectively. Equation (2.4) shows that we can interpret AM
µ (x) and AE

µ (x) as the

magnetic potential and effective potential of the reduced Hamiltonian Hµ.

10



Definition 10. We call (T ∗G, HsR = 1
2) the subRiemannian geodesic flow in G. Let

J : T ∗G → a∗ be the momentum map associated with the action of A and let µ in a∗.

We say γ(t) is a geodesic parameterized by arc length and with momentum µ, if γ(t) is

the projection of subRiemannian geodesic flow and J(p(t), γ(t)) = µ.

Definition 11. The reduced Hamiltonian flow is given by (T ∗H, Hµ = 1
2). We say η(t)

is an AG-curve for µ in H, if η(t) is the projection of the reduced Hamiltonian flow.

The following result is a consequence of the symplectic reduction made with

Nicola Paddeu, see [10].

Background Theorem 1. Let G be a metabelian Carnot group and a a choice of

maximal abelian ideal ([g, g] ⊂ a). Then there exists an a∗ valued polynomial one-form

AG(x) on Rd1 = G/[G,G] given by AM
G (x) +AE

G(x), x ∈ H := G/A with the following

significance. If γ(t) is a normal subRiemannian geodesic in G with momentum µ, then

the curve η(t) = πA(γ(t)) is an AG-curve for µ. Conversely, if η(t) is an AG-curve for

µ, then its horizontal-lift is a normal subRiemannian geodesic in G with momentum µ.

The first statement of the Background Theorem was proved by showing that

the symplectic reduction of the subRiemannian flow on T ∗G yields the reduced Hamil-

tonian Hµ. In contrast, the converse statement was shown using the symplectic re-

construction. We reduce the study of subRiemannian geodesics in metabelian Carnot

groups to the study of the AG-curves. The Background Theorem justifies why it is

enough to classify the reduced dynamics to classify the subRiemannian geodesic flow.

In [3, 4, 20], A. Anzaldo-Meneses, and F. Monroy-Perez showed the bijection

11



between normal geodesic and the pair (Fµ, I) in the context of the Jk(R,R). In [12],

we used their approach to give our partial result of the conjecture 6. Later, thanks to

E. Le Donne, we generalize the idea from A. Anzaldo-Meneses, and F. Monroy-Perez to

make the syplectic reduction in the metabelian Carnot case.

2.2 Case [h, h] = 0

We remark that the condition [h, h] = 0 implies that the term AM
G = 0, then

the reduced Hamiltonian is an n-degree of freedom system with polynomial potential

given by

Hµ(px, x) =
1

2

n∑
i=1

p2i +
1

2
ϕµ(x).

Geodesic lines are the geodesics associated with the constant polynomial ϕµ(x). Let us

assume ϕµ(x) is not constant: there exists a closed set hill ⊂ H, called the hill region,

where the dynamics take place. That is, if x is in int (hill), then 0 ≤ ϕ(x) < 1 and

px ̸= 0, while, if x is in ∂ (hill), then ϕµ(x) = 1 and px = 0. We say that η(t) bounces

at the boundary of hill, the dynamics of the harmonic oscillator is the simplest example

of this phenomenon for the Heisenberg group.

2.2.1 Case dim v = 1

The case [h, h] = 0 and dim v = 1 will be relevant since, in this general context,

we will introduce the subRiemannian submersion πF to prove that a geodesic in G is a

metric line. We will see that Jk(R,R) and Eng(n) hold these conditions, see Sections

12



3.1 and 4.1.

Let AG be the a∗ valued one-form associated to the metabelian Carnot group

G. If θ0 is the exponential coordinate associated to the left invariant vector field Y in Dv

and µ is in a. Then, we define the polynomial Fµ(x) by equation < µ,AG >:= Fµ(x)dθ0,

so the reduced Hamiltonian is given by

Hµ(px, x) =
1

2

n∑
i=1

p2i +
1

2
F 2
µ(x).

In this case, hill := F−1
µ [−1, 1] and the left-invariant vector fields tangent to D are given

by

Xi =
∂

∂xi
1 ≤ i ≤ n, and Y =

∂

∂θ0
+

m−1∑
ℓ=1

AE
ℓ (x)

∂

∂θℓ
. (2.5)

Here, AE
ℓ (x) are polynomial functions on H, given by Proposition 95. Then the poly-

nomial Fµ(x) = a0 +
∑m−1

ℓ=1 aℓAE
ℓ (x), if µ = (a0, . . . , am−1).

2.3 The space Rn+2
F

Following the notation from sub-Section 2.2.1. Let G be a Carnot group such

that [h, h] = 0, dim H = n, and dim v = 1, then D is an (n + 1)-rank distribution.

Let us fix momentum µ in a∗ and consider the polynomial Fµ(x) defined in sub-Section

2.2.1. We will introduce an intermediate (n+ 2)-dimensional subRiemannian manifold

denoted by Rn+2
F whose geometry depends on F (x) := Fµ(x).
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2.3.1 Factoring a subRiemannian submersion

We denote by Rn+2
F , the subRiemannian manifold with the following structure,

let (x1, · · · , xn, y, z) be global coordinates, in short way (x, y, z). We define the (n+1)-

rank non-integrable distribution DF by the equation dz−F (x)dy = 0. To make Rn+2
F a

subRiemannian manifold we define the subRiemannian metric on the distribution DF

given by ds2Rn+2
F

= (
∑n

i=1 dx
2
i + dy2)|DF

. We provide a subRiemannian submersion πF

factoring the subRiemannian submersion π : G → Rn+1, that is, π = pr ◦ πF , where

the target of πF is Rn+2
F and the target of pr is Rn+1. If µ = (a0, . . . , am−1), then the

projections are given in coordinates by

πF (x, θ) = (x, θ0,

m−1∑
ℓ=0

aℓθℓ) = (x, y, z), and pr(x, y, z) := (x, y). (2.6)

It follows that πF maps the frame {X1, . . . , Xn, Y } defined in 2.5 into the frame

{X̃1, · · · , X̃n, Ỹ }, that is,

X̃i := (πF )∗X
i =

∂

∂xi
; 1 ≤ i ≤ n, and Ỹ := (πF )∗Y =

∂

∂y
+ F (x)

∂

∂z
,

and DF is globally framed by the orthonormal vector fields {X̃1, · · · , X̃n, Ỹ }.

2.3.2 Rn+2
F -geodesics

The Hamiltonian function governing the subRiemannian geodesic flow in Rn+2
F

is

HF (px, py, pz, x, y, z) =
1

2

n∑
i=1

p2xi
+

1

2
(py + F (x)pz)

2. (2.7)

Since HF does not depend on the coordinates y and z, they are cycle coordinates, so

the momentum py and pz are constant of motion, see [16] or [8] for the definition of

14



cycle coordinate. This tells us that the translation φ(y0,z0)(x, y, z) = (x, y + y0, z + z0)

is an isometry.

Definition 12. We denote by distRn+2
F

( , ) and Iso(Rn+2
F ), the subRiemannian distance

and the isometry group in Rn+2
F . In general, we denote by Iso(M) the isometry group

os the subRiemannian manifold M

For more details about these definitions see [21] or [2]. Then the translation

φ(y0,z0) is in Iso(Rn+2
F ).

Definition 13. We say a curve c(t) = (x(t), y(t), z(t)) is a Rn+2
F -geodesic parametrized

by arc length in Rn+2
F , if it is the projection of the subRiemannian geodesic flow with

the condition HF = 1
2

Setting py = a and pz = b inspired the following definition:

Definition 14. We say that the two-dimensional linear space PenF is the pencil of

F (x), if PenF := {G(x) = a+ bF (x) : (a, b) ∈ R2}.

We define the lift of a curve in Rn+2
F to a curve in G

Definition 15. Let c(t) be a curve in Rn+2
F . We say that a curve γ(t) in G is the lift

of c(t) = (x(t), y(t), z(t)) if γ(t) solves

γ̇(t) =

n∑
i=1

ẋi(t)X
i(γ(t)) +G(x(t))Y (γ(t)).

Now we describe the Rn+2
F -geodesics, their lifts, and their relation with the

geodesics in G.

15



Proposition 16. Let c(t) be a Rn+2
F -geodesic for G(x) in PenF , then its projection

x(t) := pr(c(t)) satisfies the n-degree of freedom Hamiltonian equation

H(a,b)(px, x) :=
1

2

n∑
i=1

p2xi
+

1

2
(a+ bF (x))2 =

1

2

n∑
i=1

p2xi
+

1

2
G2(x).

Having found a solution (px1(t), . . . , pxn(t), x1(t), . . . , xn(t)), the coordinates y(t) and

z(t) satisfy

ẏ = G(x(t)) and ż = G(x(t))F (x(t)). (2.8)

Moreover, every Rn+2
F -geodesic is the πF -projection of a geodesic in G corresponding to

G(x) in PenF . Conversely, the lifts of a Rn+2
F -geodesic are precisely those geodesics

corresponding to polynomials in PenF .

The proof is similar to the one exposed in [12, p. 161]

The subRiemannian geometry has two type of geodesics normal geodesics and

abnormal geodesics. The following Lemma characterizes the abnormal geodesics in

Rn+2
F .

Lemma 17. A curve c(t) in Rn+2
F is an abnormal geodesic if and only if c(t) is tangent

to the vector field Ỹ and pr(c(t)) = x∗ is a constant point in H such that dF |x∗ = 0.

For more details about abnormal geodesics, see [21], [2] or [13].

Corollary 18. Let γ(t) be a normal geodesic in G corresponding to the polynomial

Fµ(x) = F (x) and let c(t) be the curve given by πF (γ(t)), then c(t) is a Rn+2
F -geodesic

corresponding to the pencil (a, b) = (0, 1).

Proof. By construction, the pencil (a, b) = (0, 1) correspond to the polynomial F (x).
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2.3.3 Cost map in Rn+2
F

Here we will define the Cost map, an auxiliary to prove Theorems A, B and

C.

Definition 19. Let c(t) be a Rn+2
F -geodesic defined on the interval [t0, t1]. We define

the function ∆ : (c, [t0, t1]) → [0,∞]× R2 is given by

∆(c, [t0, t1]) := (∆t(c, [t0, t1]),∆y(c, [t0, t1]),∆z(c, [t0, t1]))

:= (t1 − t0, y(t1)− y(t0), z(t1)− z(t0)).

(2.9)

And the function Cost : (c, [t0, t1]) → [0,∞]× R is given by

Cost(c, [t0, t1]) := (Costt(c, [t0, t1]), Costy(c, [t0, t1])

:= (∆t(c, [t0, t1])−∆y(c, [t0, t1]),∆y(c, [t0, t1])−∆z(c, [t0, t1]))

(2.10)

We call Cost(c, [t0, t1]) the cost function of c(t).

Let us prove that Cost(c, [t0, t1]) is well-defined:

Proof. By construction, |∆y(c, [t0, t1])| ≤ ∆t(c, [t0, t1]), so 0 ≤ Costt(c, [t0, t1]).

The function Costt(c, [t0, t1]) was defined in [12], We interpret Costt(c, [t0, t1])

as the time that takes to the geodesic c(t) travel through the y-component. To give

more meaning to this interpretation, we present the following Lemma:

Lemma 20. Let c(t) and c̃(t) be two Rn+2
F -geodesics. Let us assume that they travel

from a point A to a point B in a time interval [t0, t1] and [t̃0, t̃1], respectively. If

Costt(c1, [t0, t1]) < tCostt(c2, [t̃0, t̃1]), then the arc length of c(t) is shorter that the

arc length of c̃(t).
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Proof. We need to show that ∆t(c1, [t0, t1]) < ∆t(c2, [t̃0, t̃1]). Since A = c(t0) = c̃(t̃0)

and B = c(t1) = c̃(t̃1), it follows that ∆y(c1, [t0, t1]) = ∆y(c2, [t̃0, t̃1]) which implies

∆t(c1, [t0, t1])− Costt(c1, [t0, t1]) = ∆t(c2, [t̃0, t̃1])− Costt(c2, [t̃0, t̃1]),

so 0 < Costt(c2, [t̃0, t̃1])− Costt(c1, [t0, t1]) = ∆t(c2, [t̃0, t̃1])−∆t(c1, [t0, t1]).

2.3.4 Sequence of Rn+2
F -geodesic

Let us present two classical results on metric spaces.

Lemma 21. Let cn(t) be a sequence of minimizing geodesics on the compact interval T

converging uniformly to a geodesic c(t), then c(t) is minimizing in the interval T .

Proof. Let [t0, t1] ⊂ T , then distRn+2
F

(cn(t0), cn(t1)) = |t1 − t0| since cn(t) is sequence of

minimizing geodesic. If n → ∞ then distRn+2
F

(c(t0), c(t1)) = |t1 − t0|, by the uniformly

convergence.

Proposition 22. Let K be a compact subset of Rn+2
F and let T be a compact time

interval. Let us define the following space of Rn+2
F -geodesics

Min(K, T ) :=
{
Rn+2
F -geodesics c(t) : c(T ) ⊂ K and c(t) is minimizing in T

}
.

Then Min(K, T ) is a sequentially compact space with respect to the uniform topology.

Proof. We need to prove that every sequence of Rn+2
F -geodesics cn(t) in Min(K, T )

has a uniformly convergent subsequence converging to a minimizing Rn+2
F -geodesic c(t)

in Min(K, T ). The space of geodesics Min(K, T ) is uniformly bounded and smooth
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in compact interval T , then Min(K, T ) is a equi-continuous family of geodesics. By

Arzela-Ascoli theorem, every sequence cn(t) inMin(K, T ) has a convergent subsequence

cns(t) converging uniformly to a smooth curve c(t). By Lemma 21 c(t) is minimizing in

T .

A useful tool for the proof of Theorem A, B and C is the following

Corollary 23. Let c1(t) be a Rn+2
F -geodesic in Min(K, T ) and let c2(t) be a Rn+2

F -

geodesic. If φ(x, y, z) is an isometry such that c2(T ′) ⊂ φ(c(T )), then c2(t) is imini-

mizing in T ′.
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Chapter 3

Metric lines in jet space Jk(R,R)

This Chapter is devoted to proving Theorems A and B.

3.1 Jk(R,R) as subRiemannian manifold

Let f(x) and g(x) be real-value functions: we say they are related up to order

k at x0 if f(x) − g(x) = O(|x − x0|k+1) holds on a neighborhood of x0, this relation is

an equivalence relation on the space of germs of smooth functions at x0 and it is called

a k-jet at x0. We identify the k-jet of a function f at x0 with its k-th order Taylor

polynomial of f at x0, that is, k-jet is determined by the list of its k first derivatives at

x0:

u0 = f(x0) and uj =
dℓf

dxℓ
(x0), ℓ = 1, · · · , k.

When we vary the point and the function, we sweep out the k-jet space Jk(R,R), a

(k + 2)-dimensional manifold with global coordinates x and uℓ with 0 ≤ ℓ ≤ k. When

fix the function f and let the independent variable x vary, we get a curve jkf : R →
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Jk(R,R) called the k-jet of f , sending x ∈ R to the k-jet of f at x. In coordinates is

given by

(jkf)(x) = {(x, uk(x), uk−1(x), · · · , u1(x), u0(x)) :
dℓf

dxℓ
(x) = uℓ}.

The k-jet curve itself is tangent to a rank two distribution D ⊂ TJk(R,R) at every

point, and the following two left-invariant vector fields globally frame the distribution

D:

X =
∂

∂x
+

k∑
ℓ=1

uℓ
∂

∂uℓ−1
and Y =

∂

∂uk
.

An alternative way to define the subRiemannian structure on Jk(R,R) is to declare

these two vector fields orthonormal with the metric in coordinates ds2 = dx2 + du2k|D.

The vector fields X and Y generate the following Lie algebra:

Y 1 := [X,Y ], Y 2 := [X,Y 1], . . . , Y k := [X,Y k−1].

Otherwise, zero. The Lie algebra a is given by the trivialization of Y , Y 1 . . . , Y k−1 and

Y k. In this case H = R, V = R and [h, h] = 0, as we required is sub-Section 2.2.1.

Consider the cotangent bundle T ∗Jk(R,R) and its traditional coordinates px

and puℓ
. The momentum function associated to the vector fields X and Y are the

following: PX := px+
∑k

ℓ=1 uℓpuℓ−1
and PY := puk

. The Hamiltonian function governing

the geodesic flow is given by

HsR =
1

2
P 2
X +

1

2
P 2
Y =

1

2
(px +

k∑
ℓ=1

uℓpuℓ
)2 +

1

2
p2uk

.

The jet space Jk(R,R) has a natural definition using the coordinates x and uℓ with

0 ≤ ℓ ≤ k. However, these coordinates do not easily show the symmetries of the system,
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while the exponential coordinates of the second kind do. The left-invariant vector fields

X and Y in the exponential coordinates of the second kind (x, θ0, . . . , θn) have the

following form:

X =
∂

∂x
and Y =

k∑
ℓ=0

xℓ

ℓ!

∂

∂θℓ
,

We rewrite the Hamiltonian function HsR as:

HsR(p, g) =
1

2
p2x +

1

2
(

k∑
ℓ=0

pθℓ
xℓ

ℓ!
)2.

Since HsR does not depend on the variables θℓ, they are cycle coordinates, and pθℓ are

constant of motion. Then the a∗ valued one-form AJk(R,R) is given by

AJk(R,R) = dθ0 ⊗ (
k∑

ℓ=0

eℓ
xℓ

ℓ!
).

If µ = (a0, . . . , ak) is in a∗, then the reduced Hamiltonian is given by

Hµ(px, x) =
1

2
p2x +

1

2
F 2
µ(x) where Fµ(x) =

m∑
ℓ=1

aℓ
xℓ

ℓ!
. (3.1)

When a0 = a2 = · · · = am = 0, the reduced system Hµ is the harmonic oscillator, and

the corresponding geodesic γ(t) in Jk(R,R) is the lift of a geodesic in the Heisenberg

group, see [12]. Let η(t) = x(t) be a AJk(R,R)-curve, then the lift equation is the

following:

γ̇ = ẋ(t)X(γ(t)) + F (x(t))Y (γ(t)). (3.2)

As we proved in [12], a geodesic in Jk(R,R) is determined by a polynomial Fµ

and a hill interval I. Let us formalize the hill interval definition:
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Definition 24. We say that a closed interval I is a hill interval associated to Fµ(x), if

|Fµ(x)| < 1 for every x in the interior of I and |Fµ(x)| = 1 for every x in the boundary

of I. If I is of the form [x0, x1], then we call x0 and x1 the endpoints of the hill interval.

We remark that the reduced dynamics occur in the hill interval. By definition,

I is compact if and only if F (x) is not a constant polynomial. In contrast, the constant

polynomial F (x) defines a geodesic line.

3.1.1 Classification of geodesic in Jk(R,R)

Let γ(t) be a non-geodesic line in Jk(R,R) corresponding to the pair (Fµ(x), I),

where I = [x0, x1], then γ(t) is only one of the following options:

• We say γ(t) is x-periodic if its reduced dynamics is periodic. The reduced dynamics

is periodic if and only if x0 and x1 are regular points of Fµ(x).

• We say γ(t) is homoclinic if its reduced dynamics is a homoclinic orbit. The

reduced dynamics has a homoclinic orbit if and only if one of the points x0 and

x1 is regular and the other is a critical point of Fµ(x).

• We say γ(t) is heteroclinic if its reduced dynamics is a heteroclinic orbit. The

reduced dynamics has a heteroclinic orbit if and only if both points x0 and x1 are

critical of F (x).

• We say a heteroclinic geodesic γ(t) is turn-back if F (x0)F (x1) = −1.

• We say a heteroclinic geodesic γ(t) is direct-type if F (x0)F (x1) = 1.
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3.1.2 Unitary geodesics

To prove Theorem A and B, we will introduce the concept of a unitary geodesic:

Definition 25. We say that a geodesic γ(t) in Jk(R,R) corresponding to the pair (Fµ, I)

is unitary if I = [0, 1]. We say a direct-type geodesic (or homoclinic) γ(t) is unitary, if

in addition Fµ(x(t)) → 1 when t → ±∞.

The reflection Rθ0(x, θ0, θ1, . . . , θk) = (x,−θ0, θ1, . . . , θk) is in the isometry

group Iso(Jk(R,R)). If γ(t) is a direct type or homoclinic geodesic such that Fµ(x(t)) →

−1 when t → ±∞, then Rθ0(γ(t)) is such that Fµ(x(t)) → 1 when t → ±∞.

Corollary 26. Let γ(t) be a unitary direct-type geodesic for F (x), then there exists q(x)

such that F (x) = 1− xk1(1− x)k2q(x), where 1 < k1, 1 < k2, and q(x) is polynomial of

degree k − k1 − k2 such that 0 < xk1(1− x)k2q(x) < 2 if x is in (0, 1).

Proof. By construction, F (x) is such that F (0) = F (1) = 1, F ′(0) = F ′(1) = 0, and

|F (x)| < 1 if x is in (0, 1), then using the Euclidean algorithm we find the desired

result.

Any geodesic in Jk(R,R) is related to unitary geodesic by a Carnot dilatation

and translation.

Proposition 27. Let γ(t) be a geodesic in Jk(R,R) associated to the pair (Fµ, I) and

let h(x̃) = x0 + ux̃ be the affine map taking [0, 1] to I = [x0, x1] with u := x1 − x0.

If F̂µ(h(x̃)) = Fµ(x) and γ̂(t) is the geodesic in Jk(R,R) corresponding to the pair
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(F̂µ, [0, 1]). Then γ(t) is related to γ̂(t) by Carnot dilatation and translation, that is

γ(t) = δuγ̂(
t

u
) ∗ (x0, 0 . . . , 0),

where δu is the Carnot dilatation.

Proposition 27 and the reflection Rθ0 imply that it is enough to prove Theorem

A and B for the unitaryl case.

3.1.3 The space R3
F

By classical mechanics, we get:

Proposition 28. Let c(t) be a L-periodic R3
F -geodesic for the pencil (a, b) with a hill

interval I the period is given by

L(G, I) := 2

∫
I

dx√
1−G2(x)

. (3.3)

Moreover, the changes ∆y(c, [t, t+ L]) = ∆y(G, I) and ∆z(c, [t, t+ L]) = ∆y(G, I) are

given by

∆y(G, I) := 2

∫
I

G(x)dx√
1−G2(x)

and ∆z(G, I) := 2

∫
I

G(x)F (x)dx√
1−G2(x)

. (3.4)

In [12, p. 162], we proved Proposition 28 using classical mechanics. In [11],

we showed a similar statement using a generating function of the second type, see [8,

Section 15]. L(G, I), ∆y(G, I) and ∆z(G, I) are smooth functions with respect to the

parameters (a, b) if and only if the corresponding geodesic c(t) for (G, I) is x-periodic.

We define an axillary map that will help us to prove Theorems A and B.
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Definition 29. The period map Θ : (G, I) → [0,∞]× R is given by

Θ(G, I) := (Θ1(G, I),Θ2(G, I)) := 2(

∫
I

√
1−G(x)

1 +G(x)
dx,

∫
I
G(x)

1− F (x)√
1−G2(x)

dx).

Θ1 and Θ2 are smooth function with respect the parameters (a, b) not only

when the corresponding geodesic c(t) for (G, I) is x-periodic, they are also smooth

when c(t) is a direct-type or homoclinic geodesic such that G(x(t)) → 1 when t → ±∞.

Corollary 30. Let G(x) be in PenF . Then:

(1) Θ1(G, I) = 0 if and only if G(x) = 1.

(2) If I = [x0, x1] is compact, then Θ1(G, I) is finite if and only if x0 and x1

are not critical point of G(x) with value −1.

We introduce an important concept called the travel interval:

Definition 31. Let c(t) be a R3
F -geodesic traveling during the time interval [t0, t1]. We

say that I[t0, t1] := x([t0, t1]) is the travel interval, counting multiplicity, of the c(t).

For instance, if c(t) is a R3
F -geodesic with hill interval I such that its coordinate

x(t) is L-periodic, then I[t, t+ L] = 2I.

Corollary 32. Let c(t) be a R3
F -geodesic for G(x) in PenF with travel interval I. Then

∆(c, [t0, t1]) from Definition 19 can be rewritten in terms of polynomial G(x) and the

travel interval I as follows;

∆(c, [t0, t1]) = ∆(G, I) := (

∫
I

dx√
1−G2(x)

,

∫
I

G(x)dx√
1−G2(x)

,

∫
I

G(x)F (x)dx√
1−G2(x)

).

26



In the same way, the map Cost(c, [t0, t1]) from Definition 19 can be rewritten as follows:

Cost(c, [t0, t1]) = Cost(G, I) := (

∫
I

1−G(x)√
1−G2(x)

dx,

∫
I

(1− F (x))G(x)√
1−G2(x)

dx)

Same proof that Proposition 28.

Corollary 33. limn→∞Costt(c, [−n, n]) is finite if and only if limt→±∞G(x(t)) = 1.

3.2 Direct-type geodesic

This section is devoted to proving Theorem A. Let γd(t) be an arbitrary unitary

direct-type geodesic in Jk(R,R) for a unitary polynomial Fd(x) given by Corollary 26.

We will consider the space R3
Fd

and the R3
Fd
-geodesic cd(t) := πFd

(γd(t)) and prove the

following Theorem:

Theorem 34. The R3
Fd
-geodesic cd(t) is a metric line R3

Fd
.

The strategy to prove Theorem 34 is the following: We take an arbitrary T

and build a R3
Fd
-geodesic c∞(t) in Min(K, T ) and isometry φ in Iso(R3

Fd
) such that

c([−T, T )) = φ(c∞(T )), where K is a compact subset of R3
Fd

and T is a compact

interval. By corollary 23, c(t) is minimizing in [−T, T ]. Since T is arbitrary, c(t) is a

metric line.

Let cd(t) = (x(t), y(t), z(t)). Without loss of generality, we can assume that

0 ≤ ẋ(t) and cd(0) = (x, 0, 0) for every x in (0, 1) since the proof for the case 0 ≥ ẋ(t)

is similar and we can use the t, y, and z translations.
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3.2.1 The space R3
Fd

Corollary 35. Let qmax be equal to maxx∈[0,1]{xk1(1−x)k2q(x)}, where q(x), k1 and k2

are given by Corollary 26. The set of all the direct-type R3
Fd
-geodesic with hill interval

[0, 1] is given by

Pend := {(a, b) = (s, 1− s) : s ∈ (
2

qmax
, 1)} ∪ {(a, b) = (−s, s− 1) : s ∈ (

2

qmax
, 1)}.

Moreover, the map Θ2(G, [0, 1]) : Pend → R is one to one, and Cost(cd, [t0, t1]) is

bounded by Θd := Θ1(F, [0, 1]) for all [t0, t1].

Proof. Since Fd(x) ̸= −1 if x is in [0, 1], the constant Θd is finite. Let us prove that

Cost(cd, [t0, t1]) is bounded by Θd for all [t0, t1]. Using Corollary (32) and the condition

|Fd(x)| ≤ 1 for x in [0, 1], we find that:

|Costy(cd, [t0, t1])| < Costt(cd, [t0, t1]) < 2

∫
[0,1]

√
1− Fd(x)

1 + Fd(x)
dx =: Θ1(F, [0, 1]).

To prove that Θ2(G, [0, 1]) : Md → R is one to one, we notice that the multi-

plication by minus sends (s, 1−s) into (−s, s−1) and Θ2(G, I) = −Θ2(−G, I). Then, it

is enough to consider the case (a, b) = (s, 1− s). We consider the one-parameter family

of unitary polynomials Gs(x) = s+ (1− s)Fd(x). Thus, Θ2(Gs, [0, 1]) : (0, qmax) → R is

one variable function, let us calculate its derivative:

d

ds
Θ2(Gs, [0, 1]) =

d

ds

∫
[0,1]

(1− Fd(x))Gs(x)√
1−G2

s(x)
dx =

∫
[0,1]

1− Fd(x)

(1−G2
s(x))

3
2

dx.

Since 0 < 1− Fd(x), then 0 < d
dsΘ2(Gs, [0, 1]).
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Lemma 36. Let Ω(Fd) = hill(Fd)×R2 be the region and let S+(x, y, z) : Ω → R be the

calibration for cd(t) function given by Proposition 86, then cd(t) is minimizing between

the curves that lay in the region Ω.

Proof. The proof follows by Proposition 85, since cd(t) never touches the hill interval

boundary in finite time.

Corollary 37. There exist T ∗
d > 0 such that yd(t) > 0 if T ∗

d < t, and yd(t) < 0 if

−T ∗
d > t.

Proof. By construction, limt→∞ yd(t) = ∞ and limt→−∞∆yd(0) = −∞.

Definition 38. We define the following set

Com([0, 1]) :=
{
(c(t), [t0, t1]) : c(t) is a non-geodesic line, x(t0) ∈ [0, 1] and x(t1) ∈ [0, 1]

}
.

Lemma 39. Let us consider a sequence of pair (cn(t), [−n, n]) in Com([0, 1]). If

Cost(cn, [−n, n]) is uniformly bounded, then there exists a compact subset KH of H

such that I[−n, n] ⊂ KH for all n.

The proof is Appendix A.1.1.

3.2.2 Proof of Theorem 34

3.2.2.1 Set up the Proof of Theorem 34

Let T be arbitrarily large and consider the sequence of points cd(−n) and cd(n)

where T < n and n is in N. Let cn(t) = (xn(t), yn(t), zn(t)) be a sequence of minimizing
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R3
Fd
-geodesics, in the interval [0, Tn] such that:

cn(0) = cd(−n), cn(Tn) = cd(n) and Tn ≤ n. (3.5)

We call the equations and inequality from 3.5 the endpoint conditions and the shorter

condition, respectively. Since the endpoint condition holds for all n, then the sequence

cn(t) holds asymptotic conditions:

lim
n→∞

cn(0) = (0,−∞,−∞), lim
n→∞

cn(Tn) = (1,∞,∞), (3.6)

and the asymptotic period condition:

lim
n→∞

Costy(cn, [0, Tn]) =
1

2
Θ(F, [0, 1]) =

1

2
Θd. (3.7)

Corollary 40. The sequence of R3
Fd
-geodesics cn(t) is not a sequence of geodesic lines

and does not converge to a geodesic line. In particular, cn(t) does not converge to the

abnormal geodesic.

Proof. The Calibration function from Lemma 36 implies that if cn(t) is shorter than

cd(t), then cn(t) must leave the region [0, 1]×R2 and come back, then cn(t) is a geodesic

for non-constant polynomial Gn(x), and cn(t) is not a geodesic line.

Let In travel interval of cn(t), then cn(t) cannot converge to a geodesic line,

since limn→∞ In = [0, 1] and the only line in the plane (x, θ0) that travel from θ0 = −∞

into θ0 = ∞ in a fine travel interval is the vertical line, but the vertical line has travel

interval [0, 0]. In particular, Lemma 17 implies cn(t) cannot converge to an abnormal

geodesic.
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Figure 3.1: The images show the projection to R2, with coordinates (x, y), of direct
type geodesic cd(t) and the sequence of geodesics cn(t).
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The construction of the R3
Fd
-geodesic cn is such that the initial condition cn(0)

is not bounded. The following Proposition provides a bounded initial condition.

Proposition 41. Let n be a natural number larger than T ∗
d , where T ∗

d is given by

Corollary 37, and let K0 := KH × [−1, 1] × Kz be the compact set, where KH is the

compact set from Lemma 39 and Kz := [−Θd,Θd]. Then there exist a time t∗n ∈ (0, Tn)

such that cn(t
∗
n) is in K0 for all n > T ∗

d .

Proof. Let n be a natural number larger than T ∗
d . By construction, yn(0) < 0 and

yn(Tn) > 0, the intermediate value theorem implies that exist a t∗n in (0, Tn) such that

yn(t
∗
n) = 0. Since Cost(cn, [0, Tn]) is bounded, by Lemma 39, there exists a compact set

KH such that xn(t) is in KH for all t in [0, Tn].

Let us prove that |zn(t∗n)| ≤ Θd: the endpoint conditions imply

∆y(cd, [−n, n]) = ∆y(cn, [0, Tn]) and ∆z(cd, [−n, n]) = ∆z(cn, [0, Tn]).

So Costy(cd, [−n, n]) = Costy(cn, [0, Tn]) and Corollary 35 tells us Costy(cn, [0, Tn]) is

bounded. By definition of Costy, it follows that:

zn(t
∗
n)− zn(0) = ∆z(cn, [0, t

∗
n]) = ∆y(cn, [0, t

∗
n])− Costy(cn, [0, t

∗
n]),

zd(0)− zd(−n) = ∆z(cd, [−n, 0]) = ∆y(cd, [−n, 0])− Costy(cd, [−n, 0]).

By construction, ∆y(cn, [0, t
∗
n]) = ∆y(cd, [−n, 0]), zd(0) = 0 and zn(0) = zd(−n), then

|zn(t∗n)| = |Costy(cn, [0, t
∗
n])− Costy(cd, [−n, 0])| ≤ Θd.

We just proved cn(t
∗
n) is in K.
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Let us consider the sequence of minimizing R3
Fd
-geodesics c̃n(t) := cn(t + t∗n)

in the interval Tn := [−t∗n, Tn − t∗n]. c̃n(0) is bounded and minimizing R3
Fd
-geodesics in

the interval Tn.

Corollary 42. There exists a subsequence Tnj such that Tnj ⊂ Tnj+1.

Proof. Since c̃n(0) is bounded and c(−t∗n) and c(Tn− t∗n) are unbounded, it follows that

[−t∗n, Tn − t∗n] → [−∞,∞] when n → ∞. We can take a subsequence of intervals Tnj

such that Tnj ⊂ Tnj+1 .

For simplicity, we will use the notation Tn for the subsequence Tnj .

Lemma 43. Let N be a natural number larger than T ∗
d . Then there exist compact set

KN ⊂ R3
F such that cn(t) is in Min(KN , TN ) if n > N .

Proof. Since c̃n(t) is minimizing on the interval Tn, it follows that c̃n(t) is minimizing

on the interval TN ⊂ Tn if n > N . Moreover, there exists a compact set KN such that

c̃n(TN ) ⊂ KN , since cn(0) is in K0 and cn(t) is a family of smooth functions defined on

a compact set TN .

Therefore, c̃n(t) has a convergent subsequence c̃nj (t) converging to a R3
Fd
-

geodesic c∞(t). Corollary 40 implies that c∞(t) is a normal R3
Fd
-geodesic for a polyno-

mial G(x) in PenFd
. The following Lemma provides the uniqueness of G(x) = Fd(x):

Lemma 44. G(x) = Fd(x) is the unique polynomial in the pencil of Fd(x) satisfying

the asymptotic conditions given by (3.6) and (3.7).
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Proof. By Proposition 22, c̃n(t) has a convergent subsequence c̃ns(t) converging to a

minimizing geodesic c̃(t) on the interval TN . Being a R3
Fd
-geodesic, c(t) is associated to

a polynomial G(x) = a+bFd(x). G(0) = a+b must be equal 1, to satisfy the asymptotic

conditions given by (3.6). Then (a, b) is in Pend, the set defined in Corollary 35. Since

the map Θ1(a, b) : Pend → R is one to one, the unique polynomial in Pend satisfying

the condition (3.6) and (3.7) is G(x) = Fd(x).

3.2.2.2 Proof of Theorem 34

Proof. Let c̃n(t) be the sequence of geodesics defined by the endpoint conditions (3.5).

By Lemma 43, for all N > T ∗
d there exist a compact set KN such that cn(t) is in

Min(KN , TN ) if n > N . By Proposition 22, there exist a subsequence c̃nj (t) converging

to a R3
Fd
-geodesic c∞(t) in Min(KN , TN ). Corollary 40 implies that c∞(t) is a normal

geodesic for a polynomial G(x) in PenFd
. Lemma 43 tells that G(x) = Fd(x).

Since c∞(t) and cd(t) are R3
Fd
-geodesics for Fd(x) with the same hill interval,

there exists a translation φ(y0,z0), in Iso(R3
Fd
) sending c∞(t) to cd(t). Using N is arbi-

trary and cd([−T, T ]) is bounded, we can find compact set K := KN and T := TN such

that cd([−T, T ]) ⊂ φ(y0,z0)(c∞(T )) and c∞ is in Min(K, T ). Corollary 23 implies that

cd(t) is minimizing in [−T, T ] and T is arbitrarily. Therefore, cd(T ) is a metric line in

R3
F .
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3.2.2.3 Proof of Theorem A

Proof. By Theorem 34, cd(t) is a metric line. Since πF is a subRiemannian submersion

and γd(t) is the lift of cd(t), then Proposition 3 implies that the direct type geodesic

γd(t) is a metric line in Jk(R,R)

3.3 Homoclinic geodesics in Jk(R,R)

This chapter is devoted to proving Theorem B. Let γh(t) be the homoclinic

geodesic in Jk(R,R) for Fh(x) := 1 − 2x2n. We will consider the space R3
Fh

and the

geodesic ch(t) := πFh
(γh(t)), then we will prove the following Theorem:

Theorem 45. The geodesic ch(t) is a metric line R3
Fh
.

The following Theorem shows that the method used to prove Theorem 45

cannot be used to prove the odd case F (x) := 1− 2x2n+1.

Theorem 46. Let γ(t) be the homoclinic geodesic in Jk(R,R) for F (x) := 1− 2x2n+1

and c(t) := πFh
(γ(t)) be the homoclinic R3

Fh
-geodesic. Then c(t) is not a metric line

R3
Fh
.

The proof of Theorem 46 is in Section A.2.

3.3.1 The space R3
Fh

Without loss of generality, ch(0) = (1, 0, 0), by use of the t, y and z translations.

By the time reversibility of the reduced Hamiltonian hµ given by (3.1), it follows that

x(−n) = x(n) and ∆x(ch, [−n, n])) := x(n)− x(−n) = 0 for all n.
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Lemma 47. Let ch(t) be the homoclinic R3
Fh
-geodesic for Fh(x) := 1− 2x2n, then

Θ2(F, [0, 1]) < 0.

Proof. By construction, −xF ′
h(x) = (2n− 1)(1− Fh(x)). Using integration by parts it

follows that

Θ2(F, [0, 1]) =
−2

2n− 1

∫
[0,1]

xF ′
h(x)F (x)dx√
1− F 2

h (x)

=
2

2n− 1
x
√

1− F 2
h (x)|

1
0 −

2

2n− 1

∫
[0,1]

√
1− F 2

h (x)dx.

x
√

1− F 2
h (x)|

1
0 = 0 implies the desired result.

Corollary 48. The set of all the homoclinic R3
Fh
-geodesics is given by

Penh := {(a, b) = (s, 1− s) : s ∈ (1,∞)} ∪ {(a, b) = (−s, s− 1) : s ∈ (1,∞)}.

Moreover, the map Θ2(G, [0, 1]) : Penh → R is one to one and Cost(ch, [t0, t1]) is

bounded by Θ1(F, [0, 1]) := Θh for all [t0, t1].

Proof. The proof’s first part is the same as the one from 35. To prove that Θ1(a, b) :

Penh → R is one to one, we notice the multiplication by minus sends (s, 1 − s) to

(−s, s − 1) and Θ2(G, I) = −Θ2(−G, I). It is enough we consider the one-parameter

family of homoclinic polynomial Gs(x) := s − (1 − s)Fh(x) with hill interval [0, 2n

√
1
s ].

Thus, Θ1(Gs, [0,
2n

√
1
s ]) : (0,∞) → R is a one variable function and it is enough to show

it is a monotone increasing function. Let us set up the change of variable x = 2n

√
1
s x̃ so

that F (x̃) = 1− 2x̃2n = Fh(x̃) and

Θ2(Gs, [0,
2n

√
1

s
]) =

∫
[0, 2n

√
1
s
]

2x2nGs(x)√
1−G2

s(x)
dx = (

2n

√
1

s
)n+1Θh.
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Since ( 2n

√
1
s )

n+1 is monotone decreasing and Θh is negative. Then Θ2(Gs, [0,
2n

√
1
s ]) is

a monotone increasing function with respect to s.

Corollary 49. There exist T ∗
h > 0 such that yh(t) > 0 if T ∗

h < t and yh(t) < 0 if

−T ∗
h > t. Moreover, Costy(ch, [−t, t]) < 0 if T ∗

h < t.

Proof. Since Costy(ch, [−t, t]) → Θ2(Fh, [0, 1]) when t → ∞ and Θ2(Fh, [0, 1]) < 0, we

can find the desired T ∗
h . The rest of the proof is equal to Corollary 37.

3.3.2 Set up the proof of Theorem 45

Let T be arbitrarily large and consider the sequence of points ch(−n) and ch(n)

where T < n and n is in N. Let cn(t) = (xn(t), yn(t), zn(t)) be a sequence of minimizing

R3
Fh
-geodesics in the interval [0, Tn] such that:

cn(0) = ch(−n), cn(Tn) = ch(n) and Tn ≤ n. (3.8)

We call the equations and inequality from (3.8) the endpoint conditions and the shorter

condition, respectively. Since the endpoint condition holds for all n, the sequence cn(t)

has the asymptotic conditions:

lim
n→∞

cn(0) = (0,−∞,−∞), lim
n→∞

cn(Tn) = (0,∞,∞), (3.9)

and the asymptotic period condition

lim
n→∞

Costy(cn, [0, Tn]) = Ch. (3.10)

The following Corollary tells us cn(t) is not a sequence of line geodesics. We

remark that applying the calibration function from proposition 86 is impossible.
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Corollary 50. Let n be larger than T ∗
h , where T ∗

h is given by Corollary 49, then the

sequence of geodesics cn(t) neither is a sequence of geodesic lines, nor converge to a

geodesics line. In particular, cn(t) does not converge to the abnormal geodesic.

Proof. Let us assume that cn(t) is a sequence of geodesic lines. Since ∆x(ch, [−t, t])) = 0

for all n and ∆y(ch, [−t, t])) > 0 for all n > T ∗
h , the unique geodesic line satisfying these

conditions is the one generated by the polynomial Gn(x) = 1. Since 1 − Fh(x) > 0 for

all x, then (1− Fh(x))Gn(x) > 0 for all x and it follows that:

Costy(cn, [0, Tn]) =

∫ T

0
(1− Fh(x(t)))Gn(x(t))dt > 0.

This contradicts the endpoint conditions given by (3.8) since Costy(ch, [−t, t]) < 0 if

T ∗
h < t. The same proof follows if cn(t) converges to a geodesics line c(t) generated by

G(x) = 1, since there exists N big enough that Gn(x) >
1
2 for n > N .

Notice that this proof cannot be done in the case Fh(x) = 1 − 2x2n+1. In

Section A.2 under the hypothesis Fh(x) = 1− 2x2n+1, we will find a sequence of curves

cn(t) shorter than ch(t) than ch(t) that converges to the abnormal geodesic.

The following Proposition provides the bounded initial condition.

Proposition 51. Let n be a natural number larger than T ∗
h , where T ∗

h is given by

Corollary 49, and let K0 = KH× [−1, 1]× [−Ch, Ch] the compact set, where KH and Ch

is a compact set and the constant defined by Lemma 39 and Corollary 48, respectively.

Then there exist a time t∗n ∈ (0, Tn) such that cn(t
∗
n) is in K0 for all n > T ∗

1 .

Same proof as Proposition 41. Consider the sequence of minimizing R3
Fh
-

geodesic c̃n(t) := cn(t+ t∗n) in the interval Tn := [−t∗n, Tn − t∗n], so c̃n(0) is bounded and
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minimizing on the interval Tn.

Corollary 52. There exists a subsequence Tnj such that Tnj ⊂ Tnj+1.

The proof of Corollary 52 is equal as the of Corollary 42. For simplicity, we

will use the notation Tn for the subsequence vnj .

Lemma 53. There exist compact set KN ⊂ R3
F such that cn(t) is in Min(KN , TN ) if

n > N .

The proof of Lemma 53 is equal to the of Lemma 43. Therefore, c̃j(t) has a

convergent subsequence c̃ji(t) converging to a R3
Fh
-geodesic c∞(t). Corollary 50 implies

that c∞(t) is a normal R3
Fh
-geodesic for a polynomial G(x) in PenFh

. The following

Lemma provides the uniqueness of G(x) = Fh(x).

Lemma 54. G(x) = Fh(x) is the unique polynomial in the pencil of Fh(x) satisfying

the asymptotic conditions given by (3.9) and (3.10).

Proof. By Proposition 22 c̃n(t) has a convergent subsequence c̃ns(t) converging to a

minimizing geodesic c̃(t) on the interval TN . Being a geodesic in R3
Fh
, c(t) is associated

to a polynomial G(x) = a + bFh(x). G(0) = a + b must be equal 1, to satisfy the

asymptotic conditions given by (3.9). Then (a, b) is in Penh, the set defined in Corollary

48. Since the map Θ1(G, I) : Penh → R is one to one, the unique polynomial in Penh

satisfying the condition (3.9) is G(x) = Fh(x).

The proof of Theorems 45 and B are the same as the proof of Theorems 34

and A, respectively.

39



Chapter 4

Metric lines in Engel type Eng(n)

This Chapter is devoted to proving Theorem C.

4.1 The Engel type group Eng(n) as subRiemannian man-

ifold

Let Eng(n) be the Carnot group with growth vector (n+1, 2n+1, 2n+2) and

whose first layer g1, framed by {E1, · · · , En, E0
a}, generates the following Lie algebra:

Ei
a := [Ei, E0] i = 1, · · · , n, and En+1

a := [Ei, Ei
a]. (4.1)

Otherwise, zero. The Lie algebra a is given by E0, E1
a , · · · , En

a and En+1
a : In this case

H ≃ Rn, V ≃ R and [h, h] = 0. The a∗ valued one-form AEng(n) is given by

αEng(n) = dθ ⊗ (e0 +
n∑

i=1

xiei +
1

2
||x||2Hei+1)
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If µ =
∑n+1

ℓ=0 aℓe
ℓ in a∗ then the reduced Hamiltonian Hµ is given by

Hµ(px, x) =
1

2
||px||2H +

1

2
F 2
µ(x) where Fµ(x) = a0 +

n∑
i=1

aixi + an+1
1

2
||x||2H. (4.2)

Let us consider the case an+1 ̸= 0, if we set up the change of coordinates

(x̂1, · · · , x̂n) = (
a1

an+1
+ x1, . . . ,

a1
an+1

+ xn) and define (b1, b2) = (a0 −
1

2

n∑
i=1

a2i ,
an+1

2
).

Then

Hµ(px, x) =
1

2
||px||2H +

1

2
F 2
µ(r) where Fµ(x) = b1 + b2r

2. (4.3)

Where r := ||x̂||. We conclude that after a translation, the reduced Hamiltonian Hµ is

the radial an-harmonic oscillator.

4.1.1 History of the notation Eng(n)

In [17], E. Le Donne and F. Tripaldi used the notation N6,3,1a∗ to denote the

Carnot group Eng(2). After making the symplectic reduction in the general context,

we used to find the reduced Hamiltonian Hµ for particular examples from [17], one of

these was N6,3,1a∗ . We consider the subRiemannian geodesic flow on N6,3,1a∗ and found

that the reduced Hamiltonian Hµ is the plane radial an-harmonic oscillator. We were

inspired to define the Carnot group Eng(n) by the work of R. Montgomery, in [22].

Where he considered the subRiemannian geodesic flow in Eng , and he showed that

the reduced Hamiltonian Hµ is the an-harmonic oscillator. Latter, we discovered the

relation between the homoclinic geodesics in Eng(n) and the Euler-Soliton.
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4.2 Geodesics in Eng(n)

We split the dynamics of reduced Hamiltonian Hµ, given by (4.2), into two

cases, when pθn+1 = an+1 = 0 and pθn+1 = an+1 ̸= 0. In the first case, the Hamiltonian

Hµ has a quadratic potential on the x coordinates, so the problem is a small oscillation

system, see [8, Chapter 5]. In the second case, the reduced dynamics correspond to the

radial an-harmonic oscillator, see (4.3). In sub-Section 4.2.2, we will reduce, again, the

radial an-harmonic oscillator into a Hamiltonian Hµ,ℓ(pr, r) with one degree of freedom

and effective potential Vef (r), see (4.5). We use the classification of one degree of

freedom systems to classify the case an+1 ̸= 0, as we did in Jk(R,R).

Definition 55. Let γ(t) be a non-geodesic line in Eng(n), then:

1. We say a geodesic γ(t) is oscillatory if an+1 = 0.

2. we say a geodesic γ(t) is radial if an+1 ̸= 0.

3. We say a geodesic γ(t) is r-periodic if the dynamics of reduced system (4.5) is

periodic.

4. We say a geodesic γ(t) is r-homoclinic if the dynamics of reduced system (4.5) is

a homoclinic orbit.

The following Theorem tells that oscillatory and r-periodic geodesic are not

metric lines:

Theorem 56. The oscillatory and r-periodic geodesics are not metric lines in Eng(n).

The proof is in Appendix A.5.
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4.2.1 Case an+1 ̸= 0

Proposition 57. Let SO(n) be the group of rotation of H, then the Lie algebra eng(n)

is invariant under the action of SO(n) given by

Ẽj =

n∑
i=1

Qj,iE
i, Ẽ0

a = E0
a , Ẽj

a =

n∑
i=1

Qj,iE
i
a, Ẽn+1

a = En+1
a ,

where Q := (Qj,i) is in SO(n). Moreover, the action on eng(n) induces an isometric

action φQ on Eng(n). If (x, θ) are exponential coordinates of the second type defined in

4.1, then φQ(x, θ) = (x̃, θ̃) is given by

x̃j =
n∑

i=1

Qj,ixi, θ̃0 = θ0, θ̃2j =
n∑

i=1

Qj,iθ
2
i , θ̃31 = θ31 where Q := (Qj,i) ∈ SO(n).

Proof. Let us prove that vectors {Ẽ1, . . . , Ẽn, Ẽ0
a , . . . , Ẽ

n+1
a } satisfy the bracket relations

given by (4.1): Let us start with the first layer g1,

[Ẽj , Ẽ0
a ] =

n∑
i=1

Qj,i[E
j , E0

a ] =

n∑
i=1

Qj,iE
j
a = Ẽj

a .

Let us verify that the bracket relations hold for the second layer g2,

[Ẽj , Ẽk
a ] =

n∑
i=1,i′=1

Qj,iQj,i′ [E
j , Ek

a ] =

n∑
i=1,i′=1

Qj,iQj,i′δ
k
jE

n+1
a = En+1

a = Ẽn+1
a .

Definition 58. Let Mx1,x2 be the 6 dimensional sub-manifold of Eng(n) given by

Mx1,x2 := {(x, θ) ∈ Eng(n) : x = (x1, x2, 0, . . . , 0) and θ = (θ0, θ1, θ2, 0, . . . , 0, θn)}

Lemma 59. Let γ(t) be a geodesic in Eng(n) such that γ(0) is in Mx1,x2 and γ̇(0) is

in Tγ(0)Mx1,x2, then γ(t) lies in Mx1,x2 for all t.
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Proof. By Hamilton equation we have ẋi = pxi(t), ṗxi = 2b2xi(t)Fµ(r(t)) and θ̇i(t) =

xi(t)Fµ(r(t)). The initial condition implies ẋi(0) = pxi(0) = 0, ṗxi(0) = 0 and θ̇i(0) = 0

for all 2 < i ≤ n. Therefore, ẋi(t) = 0, ṗxi(t) = 0 and θi(t) = 0 for all t and 2 < i ≤

n.

Corollary 60. Any geodesic in Eng(n) with pθn+1 ̸= 0 has the form γ(t) = φQ(γ0(t)),

where φQ is given by 57 and γ0(t) is a geodesic in Mx1,x2.

Then, it is enough to understand the dynamics of the plane an-harmonic os-

cillator to describe the dynamics of the radial an-harmonic oscillator.

4.2.2 The plane radial an-harmonic oscillator

The reduced Hamiltonian Hµ defined by equation (4.3) in polar coordinates is

given by

Hµ(px, pθ, r, θ) :=
1

2
(p2r +

p2θ
r2

) +
1

2
F 2
µ(r). (4.4)

Since the potential is radial, θ is a cyclic coordinate, and pθ is constant. If pθ = ℓ,

then the effective potential is 1
2Vef (r), where Vef (r) := ℓ2

r2
+ F 2

µ(r) and the reduced

Hamiltonian Hµ can be reduced, again, to one-degree of freedom Hamiltonian system

given by

Hµ,ℓ(px, r) :=
1

2
p2r +

1

2
Vef (r). (4.5)

Fixing the energy level Hµ,ℓ =
1
2 and using Hamilton equation ṙ = pr, we reduced the

dynamics to a quadrature in the radial coordinate.
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Definition 61. We say an interval R = [rmin, rmax] is the radial hill interval of the

effective potential Vef , if R = V −1
ef [0, 1]

Definition 62. We denote by hill(µ, ℓ) the closed annulus given by

hill(µ, ℓ) := {(x1, x2) ∈ R2 : r2min ≤ x21 + x21 ≤ r2max}.

We call hill(µ, ℓ) the hill region of the reduced Hamiltonian Hµ,ℓ Fµ(r), where rmin and

rmax are given by Corollary 61.

Corollary 63. The plane an-harmonic oscillator has an equilibrium at r = 0 if and

only if ℓ = 0 and Fµ(0) = ±1.

Proof. Let us assume (pr, pθ, r, θ) = (0, 0, 0, θ0) is an equilibrium point. By, Hamilton’s

equations for Hµ and pθ = 0 imply ℓ = 0. Then, we can read the conservation of the

energy 1
2 = Hµ as 1

2 = 1
2(p

2
r + F 2

µ(r)). If we plug (pr, pθ, r, θ) = (0, 0, 0, θ0) into Hµ we

have that Fµ(0) = 1.

Conversely, let us assume ℓ = 0 and Fµ(0) = ±1: then the reduced Hamilton

equation for Hµ with the conditions ℓ = 0 imply ṗθ = 0. The conservation of energy

tells ṗr = 0 at r = 0.

4.3 The space Rn+2
F

SO(n) × R2 acts on Rn+2
F by rotation and translation. If Q is in SO(H) and

(y0, z0) is in R2, then φ(Q,y0,z0)(x, y, z) = (Qx, y+y0, z+z0) and φ(Q,y0,z0) is in Iso(Rn+2
F ).
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Lemma 64. If R2
(x1,x2)

:= {(x1, . . . , xn, y, z) ∈ Rn+2
Fh

: 0 = x3 = · · · = xn}, then every

geodesic Rn+2
F -geodesic c(t) with b ̸= 0 has the form φ(Q,0,0)(c0(t)) where c0(t) is a

Rn+2
F -geodesic in R2

(x1,x2)
for all t.

Therefore, it is enough to work on R4
Fh
. If F (r) is given by (4.3) and HF is

the Hamiltonian defined by equation (2.7), then Vef (r) := ℓ2

r2
+ G2(r) is the effective

potential of the reduced system. This inspires the following definition.

Definition 65. We say that the three-dimensional space PenV is the pencil of F (r), if

PenV := {Vef (r) =
ℓ2

r2
+G2

µ(r) : G(r) ∈ PenF }.

We define an axillary map that will help us prove Theorems C.

Definition 66. The period map Θ(G, ℓ,R) : (G, ℓ,R) → [0,∞]× R is given by

Θ(G, ℓ,R) := (Θ1(G, ℓ,R),Θ2(G, ℓ,R)) := 2(

∫
R

1−G(r)√
1− Vef (r)

dr,

∫
R

G(r)(1− F (r))√
1− Vef (r)

dr).

Corollary 67. Let G(r) be in PenF and let ℓ be the angular momentum. Then:

(1) Θ1(G, ℓ,R) = 0 if and only if G(r) = 1 and ℓ = 0.

(2) If R is compact, then Θ1(G, ℓ,R) is finite if and only if 0 is in R and

G(0) = −1.

We introduce an important concept called the radial travel interval:

Definition 68. Let c(t) be a Rn+2
F -geodesic traveling in the time interval [t0, t1]. We

say R[t0, t1] := r([t0, t1]) is the travel interval of the c(t), counting multiplicity.

For instance, if c(t) is an Rn+2
F -geodesic with hill interval R such that its

coordinate r is L-periodic then R[t, t+ L] = 2R.
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Corollary 69. Let c(t) be an Rn+2
F -geodesic for Vef (r) in PenV and let R be its radial

travel interval. Then ∆(c, [t0, t1]) from Definition 19 can be rewritten in terms of the

effective potential Vef (r) and the travel radial interval R as follows;

∆(c, [t0, t1]) = ∆(G, ℓ,R) := (

∫
R

dr√
1− Vef (r)

,

∫
R

G(r)dr√
1− Vef (r)

,

∫
R

G(r)F (r)dr√
1− Vef (r)

).

In the same way, the map Cost(c, [t0, t1]) from Definition 19 can be rewritten as follows:

Cost(c, [t0, t1]) = Cost(G, ℓ,R) := 2(

∫
R

1−G(r)√
1− Vef (r)

dr,

∫
R

(1− F (r))G(r)√
1− Vef (r)

dr)

The proof of Corollary 69 is the same proof of Proposition 28.

4.4 Homoclinic geodesics in Eng(n)

This section is devoted to proving C. Without loss of generality, let γh(t) be

the homoclinic geodesic in Eng(2) for Fh(x) := 1 − 2r2, whose reduced dynamics has

initial condition x = (1, 0). Using Carnot dilatation and rotation, it is enough to prove

this case.

Let γh(t) be the homoclinic geodesic in Eng(n) for Fh(x) := 1 − 2r2. We

consider the geodesic ch(t) := πFh
(γh(t)) in the space R4

Fh
, and will prove the following

Theorem.

Theorem 70. The direct type geodesic ch(t) is a metric line Rn+2
Fh

.

Without loss of generality, we take the initial condition ch(0) = (1, 0, 0, 0). By

construction, ch(t) = (x1(t), 0, y(t), z(t)). Moreover, x1(−t) = x1(t) and ∆x(ch, [−n, n])) :=

x(n)− x(−n) = 0 for all n.
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4.4.1 The space R4
Fh

Lemma 71. Let ch(t) be the homoclinic R4
Fh
-geodesic for Fh(r) := 1− 2r2, then

Θ2(F, [0, 1]) < 0. (4.6)

There exist T ∗
h > 0 such that yh(t) > 0 if T ∗

h < t and yh(t) < 0 if −T ∗
h > t. Moreover,

Costy(ch, [−t, t]) > 0 if T ∗
h < t.

Same proof as Lemma 47 and Corollary 49.

Corollary 72. The set of all the homoclinic R4
F -geodesic Penh ⊂ PenV is given by

Penh := {(a, b, ℓ) = (s, 1− s, 0) : s ∈ (1,∞)} ∪ {(a, b, ℓ) = (−s, s− 1, 0) : s ∈ (1,∞)}.

Moreover, the map Θ2(G, ℓ,R) : Penh → R is one to one, and Cost(ch, [t0, t1]) is

bounded by Θ1(F, 0, [0, 1]) := Θh for all [t0, t1].

Same proof as Corollary 48.

Definition 73. Let BH be the ball of radius one on H. We define the following set

Com(BH) :=
{
(c(t), [t0, t1]) : c(t) is a non-geodesic line, x(t0) ∈ BH and x(t1) ∈ BH

}
.

Lemma 74. Let us consider a sequence of pairs (cn(t), [−n, n]) in Com(BH). If

Cost(cn, [−n, n]) is uniformly bounded then there exists a compact subset KH of H such

that x([−n, n]) ⊂ KH for all pair n.

Same proof as Lemma 39.
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4.4.2 Set up for the proof of Theorem 70

Let T be arbitrarily large and consider the sequence of points ch(−n) and ch(n)

where T < n and n is N. Let cn(t) = (xn(t), yn(t), zn(t)) be a sequence of minimizing

geodesics in the interval [0, Tn] such that

cn(0) = ch(−n), cn(Tn) = ch(n) and Tn ≤ n. (4.7)

We call the equations and inequality from (4.7) the endpoint conditions and the shorter

condition, respectively. Since the endpoint condition holds for all n, the sequence cn(t)

has the asymptotic conditions:

lim
n→∞

cn(0) = (0, 0,−∞,−∞), lim
n→∞

cn(Tn) = (0, 0,∞,∞), (4.8)

and the asymptotic period condition

lim
n→∞

Costy(cn, [0, Tn]) = Ch. (4.9)

The following Proposition provides the bounded initial condition.

Proposition 75. Let n be a natural number larger than T ∗
h , where T ∗

h is given by

Corollary 71, and let K = KH× [−1, 1]× [Ch, Ch] be the compact set, where KH and Ch

is a compact set and the constant defined by Lemma 74 and Corollary 72, respectively.

Then there exists a time t∗n ∈ (0, Tn) such that cn(t
∗
n) is in K∗ for all n > T ∗

1 .

Same proof that Proposition 41. Consider the sequence of minimizing geodesics

c̃n(t) := cn(t + t∗n) on the interval Tn := [−t∗n, Tn − t∗n] so that c̃n(0) is bounded and

minimizing on the interval Tn.
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Corollary 76. There exists a subsequence Tnj such that Tnj ⊂ Tnj+1.

The proof of Corollary 76 is equal as the of Corollary 42. For simplicity we

will use the notation Tn for the subsequence Tnj .

Lemma 77. There exists compact set KN ⊂ Rn+2
F such that cn(t) is in Min(KN , TN )

if n > N .

The proof of Lemma 77 is equal as the of Corollary 43. Therefore c̃n(t) has

a convergent subsequence c̃nj (t) converging to a Rn+2
Fh

-geodesic c∞(t), then c∞(t) is a

Rn+2
Fh

-geodesic for a polynomial G(x) in PenFh
. The following Lemma provides the

uniqueness of G(x) = F (x).

Lemma 78. (G, ℓ) = (Fh, 0) is the unique pair satisfying the asymptotic conditions

given by (4.8) and (4.9)

Proof. Corollary 63 tells that the reduced system has an equilibrium point if and only

if G(0) = 1 and ℓ = 0. The rest of the proof is the same from Lemma 54.

4.4.3 Proof of Theorem 70

Proof. Let c̃n(t) be the sequence of geodesics defined by the endpoint conditions (4.7).

By Lemma 77, for all N > T ∗
d there exist a compact set KN such that cn(t) is in

Min(KN , TN ) if n > N . By Proposition 22, there exist a subsequence c̃nj (t) converging

to a Rn2
Fh
-geodesic c∞(t) in Min(KN , TN ). Corollary 40 implies that c∞(t) is a normal

geodesic for a polynomial G(x) in PenFh
. Lemma 43 tells that G(x) = Fh(x).
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Since c∞(t) and ch(t) are Rn+2
Fh

-geodesics for Fh(r) with the same radial hill

interval, there exists an isometry φ(Q,y0,z0)(x, y, z) = (Qx, y+y0, z+z0) sending c∞(t) to

ch(t). Using N is arbitrary and cd([−T, T ]) is bounded, we can find compact sets K :=

KN and T := TN such that cd([−T, T ]) ⊂ φ(Q,y0,z0)(c∞(T )) and c∞ is in Min(K, T ).

Corollary 23 implies that ch(t) is minimizing in [−T, T ] and T is arbitrarily. Therefore,

ch(T ) is a metric line in Rn+2
Fh

.

The proof of Theorem C is the same as the proof of Theorem A.
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Chapter 5

Conclusion

(1) We developed a new method to prove that a geodesic is a metric line.

Theorem A proves the Conjecture 6 for the direct-type case, and the problem remains

open for the homoclinic case. Theorem 46 says we cannot use the space R3
F to prove

the Conjecture. However, Theorem 46 does not imply that the Conjecture is false. The

homoclinic case can be solved by showing the corresponding period map in Jk(R,R)

restricted to the homoclinic geodesics is one-to-one.

(2) The Carnot group N6,3,1 has a non-integrable subRiemannian geodesic

flow, see Theorem 100. However, N6,3,1 has one family of homoclinic geodesics up to a

dilatation. This family is related to the Euler-Soliton: there exists a two-plane inside

R3 such that the projection to the homoclinic geodesic is the Euler-Soliton, as we say in

Eng(n). In future work, we will prove that this family’s homoclinic geodesics are metric

lines in N6,3,1.
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Appendix A

Metric lines inJk(R,R)

A.1 Prelude to the proof of Lemma 39

Definition 79. Let P(k) be the vector space of polynomial on H = R of degree bounded

by k, and let ||F ||∞ := supx∈[0,1] |F (x)| be the uniform norm. We denote by B(k) the

closed ball of radius 1.

Proposition 80. B(k) is a compact set.

Proof. Since B(k) is a bounded subset of the finite-dimensional space P(k), it is enough

to prove that B(k) is closed, indeed, by Arzela-Ascoli theorem we just need to prove

that B(k) is an equi-continuous set: let F (x) be a polynomial in C(k), then the Markov

brothers’ inequality implies |F ′(x)| ≤ k2, so |F (x1)− F (x2)| < k2|x1 − x2|.

Definition 81. We say a polynomial F is unitary if F has a hill interval [0, 1], and let

PN (k) be the set of unitary polynomials. Let Fµ(x) be a polynomial with hill interval

[x0, x1] and let u := x1 − x0 be the length of the hill interval.

56



Corollary 82. If Gn(x) is a sequence of non-constant polynomials in PenF with hill in-

terval In = [xn, x
′
n] such that Gn(xn) = Gn(x

′
n) = 1, limn→∞ xn = −∞ and limn→∞ x′n =

∞, then F (x) must be even degree.

Proof. Let Gn(x) be equal to an + bnF (x). There exists Kx a compact set containing

all the roots of F (x), and let n be large enough that Kx ⊂ In. Let us assume F (x) is

an odd degree. Without loss of generality, let us assume F (x′n) > 0 and F (xn) < 0,

then 0 = G(x′n) − G(xn) = bn(F (x′n) − F (xn)), and bn = 0 since F (x′n) − F (xn) > 0,

which is a contradiction to the assumption that Gn(x) is a sequence of non-constant

polynomials.

A.1.1 Proof of Lemma 39

Proof. Let cn(t) = (xn(t), yn(t), zn(t)) be a sequence of R3
F -geodesics traveling during

a time interval [(t0)n, (t1)n] and with travel interval In[(t0)n, (t1)n] such that xn((t0)n)

and xn((t1)n) are in [0, 1] for all n. Then we will prove that if In is unbounded, then

Θ(c, [t0, t1]) is unbounded.

The sequence of cn(t) of R3
F -geodesics, induces a sequence of Gn(x) polyno-

mials, which induces a sequence of unitary polynomials Ĝn(x̃) := Gn(hn(x̃)) where

hn(x̃) is the affine map given by Definition 81, that is, hn(x̃) = (x0)n + unx̃ where

un := (x0)n − (x1)n. Since Ĝn(x̃) is in C(k). There exists a subsequence Ĝns(x̃) con-

verging to Ĝ(x̃). Let us proceed by the following cases: case Ĝ(x̃) ̸= 1 or case Ĝ(x̃) = 1.

Case Ĝ(x̃) ̸= 1: by Fatou’s lemma 0 < Cost(Ĝ) ≤ lim infn→∞Cost(Ĝn). Then

un → ∞ implies Cost(c, In) is unbounded.
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Case Ĝ(x̃) = 1: let K ′
H be a compact set such that all the roots of 1 − F (x)

are in K ′
H. There exists n∗ > 0 such that Ĝ(x̃) > 1

2 for all x̃ in [0, 1] if ns > n∗. We

split the integral for ∆z(c, In) given by Corollary 32 in the following way

∫
In

(1− F (x))Gn(x)√
1−G2

n(x)
dx =

∫
K′

H∩I

(1− F (x))Gn(x)√
1−G2

n(x)
dx+

∫
(K′

H)c∩I

(1− F (x))Gn(x)√
1−G2

n(x)
dx.

Since the first integral of the right side is finite, it is enough to focus on the second

integral.

We proceed by cases: Case (x0)n and (x1)n are both unbounded and cases (x0)

is bounded and (x1) is unbounded or (x0) is unbounded and (x1) is bounded.

Case (x0)n and (x1)n unbounded: by Corollary 82 we can assume that F (x)

is even, then the condition Ĝ(x̃) > 1
2 implies |Gn(x)| > 1

2 in the travel interval In and

(1− F (x))Gn(x) does not change sign in the set In\K ′
H, therefore

|
∫
In\K′

H

(1− F (x))Gn(x)√
1−G2

n(x)
dx| > 1

2

∫
In\K′

H

|F (x)|dx → ∞ when n → ∞.

A similar proof follows if (x0)n is bounded and (x1)n is unbounded or (x0)n is un-

bounded, and (x1)n is bounded.

A.2 Proof of Theorem 46

For simplicity, we will prove Theorem 46 for the case F (x) = 1− 2x3. Let c(t)

be the R3
F -geodesic for F (x) = 1−2x3 with initial point c(0) = (1, 0, 0) and hill interval

[0, 1]. Let us consider the travel interval I(x) = 2[x, 1], then by (??), the relation
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Figure A.1: Both images show the projection of the geodesic c(t) for F (x) = 1 − 2x3

and the curve c̃(t) to the (x, y) and (x, z) planes, respectively.

between the travel interval and the time is given by

2T = 2

∫
[x,1]

dx√
1− F 2(x)

.

By equation (??), the change in ∆y(c, t) and ∆z(c, t) are given by

∆y(F, x) := 2

∫
[x,1]

F (x)dx√
1− F 2(x)

and ∆y(F, x) = 2

∫
[x,1]

F 2(x)dx√
1− F 2(x)

.

Therefore

c(−T ) = (x,−∆y(F, t)

2
,−∆z(F, t)

2
) and c(T ) = (x,

∆y(F, t)

2
,
∆z(F, t)

2
)

Corollary 83. If F (x) = 1− 2x3, then ∆y(F, x) < ∆z(F, x) and limx→0
∆z(F,x)
∆y(F,x) = 1.

Proof. If F (x) = 1 − 2x3, then the same integration by parts, used in the proof of

Corollary 47, shows the integral ∆y(F, x)−∆z(F, x) is positive. L’Hopital rules implies

limx→0
∆z(F,x)
∆y(F,x) = 1.

A.2.1 Proof of Theorem 46

Proof. Let us consider 0 < ϵ < 1
2 and find a x∗ such that ∆z(F, x) = (1 + ϵ)∆y(F, x).

The exists δ < 0 such that F (δ) = 1+ ϵ. If δ1 = x∗ + δ and δ2 = δ1 +∆y(F, t), then we
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define the following curve c̃(t) in R3
F .

c̃(t) =



c(−n) + (−t, 0, 0) where t ∈ [0, δ1]

c(−n) + (−δ1, t− δ1, 0) where t ∈ [δ1, δ2]

c(−n) + (−δ1 + t− δ2,∆y(F, t),∆z(F, t)) where t ∈ [δ2, δ1 + δ2].

See figure A.1. The by construction, c(−T ) = c̃(0) and c(T ) = c̃(δ1 + δ2), the relation

between the T and ∆y(F, x∗) is given by 2T = ∆y(F, x∗) + Costt(F, x
∗), while, the

relation between δ1 + δ2 and ∆y(F, x∗) is given by δ1 + δ2 = 2(δ + x∗) + ∆y(F, x). If

x∗ → 0, then Costt(F, x
∗) → Θ1(F, [0, 1]) > 0, while, 2(δ + x∗) → 0. Thus there exists

an x1 such that Costt(F, x1) > 2(δ + x∗) and c̃(t) is shorter that c(t).

A.3 The Calibration method

Definition 84. Let c(t) be an R3
F -geodesic and let be Ω ⊂ R3

F a simple connected

domain, we say that a functions S : Ω → R is a calibration function for c(t), if dS(ċ) = 1

and dS(v) = (ċ, v)R3
F
for all v tangent to DF , where (,̇)̇R3

F
is the subRiemannian inner-

product in R3
F .

A classical application of a calibration one-form is the following.

Proposition 85. Let c(t) be a R3
F -geodesic in R3

F , if S : Ω → R is a calibration function

for c(t), then the R3
F -geodesic c(t) is a globally minimize within Ω.

Proof. Let S be calibration function for c(t), let A and B be two points in Ω such that
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c(t) travel from A to B with arc length ℓ(c). Let us assume c̃(t) is a curve tangent to

DF and join the points A and B with arc length ℓ(c̃), then by Stoke’s theorem, the fact

that S is a calibration for c(t) and Cauchy-Schwarz inequality we have

ℓ(c) =

∫
c
dS =

∫
c̃
dS =

∫
c̃
(ċ, ˙̃c)R3

F
dt ≤

∫
c̃
|| ˙̃c||R3

F
dt = ℓ(c̃).

By Cauchy-Schwarz inequality we know that ℓ(c) = ℓ(c̃) if and only if ˙̃c is parallel to ċ

a.e..

A canonical method to find a calibration function is to solve the Hamilton-

Jacobi equation defined for the subRiemannian Hamiltonian function, see [21] or [12,

Section 5]. In the context of the space R3
F we have the following Proposition

Proposition 86. A calibration function S± for a R3
F -geodesic c(t), generated by G(x) =

a+ bF (x) in the pencil of F (x), is given by

S±(x, u, z) = ±
∫ x√

1−G2(x̃)dx̃+ ay + bz.

S± is smooth inside the region Ω(G) := hill(G) ∪ R2, where hill(G) := G−1([−1, 1])

is the hill region of G(x) and C1 on the boundary of the hill region, and the abnormal

curve does not cross from one connected set to another.

Proof. By Proposition , the R3
F -geodesic c(t) has derivative

ċ(t) = ±
√
1−G2(x(t))

∂

∂x
+G(x(t))(

∂

∂y
+ F (x(t))

∂

∂z
),

we notice dS± = ±
√
1−G2(x)dx+ ady + bdz, then

dS±(ċ) = 1−G2(x) +G(x(t))(a+ bF (x(t))) = 1−G2(x) +G2(x(t)) = 1.
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We notice calibration function provided by Proposition 86 is globally defined

if and only if G(x) is a constant polynomial, otherwise, it defined in sub-region of R3
F

and the geodesic is minimizing in the region Ω(G) until it touches its boundary. It is

worth seeing how this argument looks in each of our three cases.

Recall non-line geodesics in Jk come in three “flavors”: heteroclinic, homoclinic

and x-periodic. It is worth going into details around the time interval T , the domain of

the geodesic, for each of the three cases:

(x-Periodic). Choose a time origin so that x(0) = x0 and x(L/2) = x1. Then

T = (0, L/2) or (L/2, L) up to a period shift. The minimizing arcs correspond to half

periods of the x-periodic geodesic. The domain Ω projects onto the interior (a, b) of the

hill interval.

(Heteroclinic.) If γ is heteroclinic then T = R and c : R → Ω is globally

minimizing within Ω. If one or both endpoints x0, x1 is a local maximum of F 2(x) then

Ω projects to an interval (α, β) strictly bigger than (x0, x1)

(Homoclinic). In this case, the x curve bounces once off the non-critical end-

point of the hill interval. Say this endpoint is b and that we translate time so that

x(0) = x1. Then T is of the form (−∞, 0) or (0,∞). The Hamilton-Jacobi minimality

argument does not allow us to include t = 0 region Ω(G) within the domain of γ as γ(0)

is outside Ω(g).
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A.4 Geodesics in Eng(n)

Here we will introduce the necessary tools to prove Theorems 56. Since we are

interested in studying non-line geodesics, we will be restricted to the case µ ̸= 0. As

we said before, the dynamics are split into two cases; when pθn+1 = an+1 equals zero or

not. Let us start with the case pθn+1 = an+1 = 0

A.4.1 Small oscillations

The condition pθn+1 = an+1 = 0 implies the reduced Hamiltonian Hµ from

(4.3) has potential 1
2(a0+

∑n
i=1 aixi)

2. Using the translation x1 → x1− a0
a1
, the reduced

Hamiltonian is given by

Hµ =
1

2
(px, px) +

1

2
(Bx, x)H, (A.1)

where ( , )H is the Euclidean product on H, Idn×n is the identity matrix and B is the

following n by n matrix

B =



a21 a1a2 . . . a1an−1 a1an

a1a2 a22 . . . a2an−1 a2an

...
...

. . .
. . .

...

a1an−1 a2an−1 . . . a2n−1 an−1an

a1an a2an . . . an−1an a2n


(A.2)

Lemma 87. For any (a1, . . . , an) ̸= 0, the matrix B has rank one.

Proof. If vi = ai+1ei,−aiei+1, then (Bvi, vi)H = 0.
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We know by linear algebra that the pair of quadratic forms (Idn×npx, px) and

(Bx, x)H, where the first one is positive-definite, can be reduced to principal axes by a

linear change of coordinates x̃ = Qx and the reduced Hamiltonian Hµ, given by (4.5),

in the new coordinates x̃ is the following

Hµ(px̃, x̃) = Hline(px1 , · · · , pxn1+1) +Hosc(pxn1+1 , · · · , pxn , xn1+1, . . . , xn)

Hline
1

2
=

n−1∑
i=1

p2x̃i
and Hosc =

1

2
p2x̃n

+
1

2
λx̃2n+2.

(A.3)

Then at Hµ(px̃, x̃) has n− 1 cycle coordinate and n− 1 constant of motion, namely, xi

and px̃1 for 1 ≤ i ≤ n− 1.

Let us built a solution with initial point the origin. The solution of x̃i is x̃i =

px̃it for 1 ≤ i ≤ n−1, and the energy level Hµ(px̃, x̃) =
1
2 implies Hline

1
2 ≤ 1

2 . Moreover,

Hline
1
2 = 1

2 implies that the corresponding geodesic is a geodesic line. In contrast, using

Hamilton equations for xn, we find that ¨̃xn = λxn, so x̃n(t) =
√
2Hosc sin(ωt), where

ω = 1√
λ
.

x̃(t) = (px̃it, . . . , px̃it,
√

2Hosc sin(ωt)). (A.4)

Corollary 88. The solution to the Hamiltonian A.3 is bounded in the coordinates x̃n

and unbounded in the coordinates x̃i such that 1 ≤ λi ≤ n− 1 and px̃i is not zero.

A.5 Proof of Theorem 56

A.5.0.1 Prelude to proof of Theorem 56

The following proofs rely on the method of blowing-down geodesics as explained

by E. Hakavuouri and E. Le Donne, in [14]. Suppose that γ : R → G is a rectifiable
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curve in a Carnot group G. For h ∈ R+ form

γh(t) = δ 1
h
γ(ht).

where δh : G → G is the Carnot dilation. One easily checks that if γ is a geodesic then

so is γh for any h > 0.

Definition 89 (blow-down). A blow-down of γ is any limit curve γ̃ = limk→∞ γhk

where hk ∈ R is any sequence of scales tending to infinity with k, and the limit being

uniform on compact sub-intervals,

In [14], E. Hakavouri and E. Le Donne proved the following powerful lemma

Lemma 90. If γ is globally minimizing geodesic parameterized by arc length then every

blow-downs γ̃ of γ(t) is also a globally minimizing geodesic parameterized by arc length.

A.5.0.2 Proof of Theorem 56

Proof. The strategy of the proof is the same in both cases, we will consider a small

oscillation or a r-periodic geodesic γ(t), and we will compute one of its blow-down

γ̃(t) = limk→∞ γhk
and check that is not parameterized by arc length.

Case r-periodic geodesics: Let L be the period, let us consider the sequence

hn = nL and the compact interval [0, 1]. We compute the change undergone by the

coordinate θ0 of γnL(t) after time change by 1:

∆y(γnL, [0, 1]) :=
1

nL
∆y(γ, [0, nL]) =

1

L
∆y(γ, [0, L]) < 1. (A.5)

Since ∆y(γnL, [0, 1]) is constant for all n. The change undergone by the coordinate after

time change by 1 for the geodesic is equal to 1
L∆y(γ, [0, 1]). Being γnL(t) a geodesic
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in Eng(n), there exists an µn in a such that γnL(t) has momentum µn. The relation

between hill regions h(µn, ℓ) and hill(µ, ℓ), given by Definition 62, of the geodesics γnL(t)

and γ(t) is hill(µn, ℓ) = 1
nLhill(µ, ℓ). Since hill(µ, ℓ) is bounded, γ̃(t) has hill region

equal to 0.

Therefore, γ̃(t) is a curve tangent to the vector field Y , γ̃(t) is a line. Instead

of being parametrized by arc-length, moving one unit along the line requires a time of

L/∆y(γ, [0, L]) > 1 of the blow-down time. We conclude that γ̃(t) is not parameterized

by arc length.

Case small oscillations geodesics: The fact that γ(t) is not a line implies Hosc

is a constant different from zero. Let us consider γ(t) the geodesic corresponding the

solution x̃(t) given by A.4. We define γn(t) = δnγ(nωt), by construction the reduce

dynamics of x̃n(t) is the following

x̃n(t) = (px̃1t, . . . , px̃n−1t,

√
2Hosc

n
sin(nωt)). (A.6)

If we take the limit n → ∞, then limn→∞ x̃n(t) = t(px̃1 , . . . , px̃n−1 , 0). However,

|| ˙̃xn(0)|| = 2Hlin+2Hosc = 1 for all n. Therefore, γ̃(t) is a curve tangent to
∑n−1

i=1 px̃iXi

, so γ̃(t) is a line. Rather that being parameterized by arc length, moving one unit

along the line requires a time 1
2Hlin

of the blow-down time. We conclude that γ̃(t) is

not parameterized by arc length.
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Appendix B

G as A-principle bundle

B.1 The left action of A

Definition 91. The left-action of A on G is a function φ : A × G → G given by

φ(a, g) := a ∗ g such that φ(a1 ∗ a2, g) := φ(a1, φ(a2, g)), where ∗ is the Carnot multi-

plication.

By construction, φ(a, g) is in Iso(G) and since A is abelian, φ(a1 ∗ a2, g) =

φ(a2 ∗ a1, g). If ξ is in g then the action of A on G defines the infinitesimal generator

σ : a → g in the following way

σξ(g) =
d

dt
φ(exp(tξ), g)|t=0 =

d

dt
exp(tξ) ∗ g|t=0. (B.1)

The map σ sends a vector ξ in a to a Killing vector field σξ since φ is in Iso(G). We

say the vector field X and the map is σ are A-invariant if X(a ∗ g) = (La)∗X(g) and

σξ(a ∗ g) = (La)∗σ(g). The infinitesimal generator σξ is equinvariant in general, see
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[9, p. 108] or [21, p. 161] for more details. It is a general property of infinitesimal

generators that A abelian implies that σξ(g) is A-invariant.

Let {Ei} be the base for h with 1 ≤ i ≤ n, let {Eℓ
a} be the base for a with

1 ≤ ℓ ≤ m. An alternative notation is; {Ek
a } be the base for v with 1 ≤ k ≤ n1 and

let {Ej
a} be the base for [g, g] whit n1 + 1 ≤ j ≤ m. Then, we will use the index i’s for

vector in h, ℓ’s for vector in a, and when we want to distinguish between v and [g1, g1],

we will use k’s for vector in v and j’s for vector in [g1, g1]. We denote by Xi and Y ℓ,

the left extension of Ei and Eℓ, that is, Xi(g) := (Lg) ∗ Ei and Y ℓ(g) := (Lg) ∗ Eℓ
a, in

the same way, we denote by Y k := (Lg) ∗ Ek
a and Y j := (Lg) ∗ Ej

a left extension of Ek

and Ej . Then {Xi} is a base for Dh with 1 ≤ i ≤ n, and {Y k} is the base for Dv with

1 ≤ k ≤ n1.

σ(g) sends the canonical base Eℓ for A, with 1 ≤ ℓ ≤ m, to the frame of Killing

vector fields σℓ(g). Thus, the frame σℓ(g) defines a canonical co-frame ωℓ(g) ∈ D⊥
h with

1 ≤ ℓ ≤ m, such that, ωℓ1(σ
ℓ2)(g) = δℓ2ℓ1 , and ωℓ1(Dh)(g) = 0. It follows that the

co-frame σℓ is A-invariant. We also split the base Eℓ, σℓ(g) and ωℓ(g) into the space

corresponding to v and [g, g], as we did with the left-invariant vector field; that is, we

use Ek, σk(g) and ωk(g) for 1 ≤ k ≤ n1 and Ej , σj(g) and ωj(g) for k1 + 1 ≤ j ≤ m

such that, ωℓ1(σ
ℓ2)(g) = δℓ2ℓ1 .

We remark that (Lg)∗a and σ(a) are the same as abstract Lie algebras and

as sub-vector spaces of TgG. However, they are different Lie algebras inside TgG. In

general, only the left-invariant vector fields in σ(a) and (Lg)∗a are the ones corresponding

to the left translation of the last layer gs.
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B.1.1 G as A-principle bundle

We can think of πA : G → H as a principle A-bundle. In our case, we have iden-

tified H with a sub-vector space Dh ⊂ TgG, which is complementary to (Lg)∗a ⊂ TgG,

that is Dh ⊕ (Lg)∗a = TgG. This way, H defines a connection on our principal bundle

πA. Note: (Lg)∗a represents the vertical space for πA, and Dh is an A-invariant choice of

horizontal space by left-translation, that is dπA((Lg)∗a) = 0 and (La)∗Dh(g) = Dh(ag),

as a connection on principal A-bundle requires. For more bundles with connections, see

[24, Chapter 8], [21, Chapter 12] , or [9, sub-Chapter 2.9].

B.1.2 Connection form

The connection one-form ω(g) on G is an a valued one-form given by

ω(g) =

m∑
ℓ=1

ωℓ ⊗ eℓ(g). (B.2)

ω(g) is A-invariant since (La)∗ω(g) = ω(a ∗ g). By definition ker ω(g) = Dh(g) and

ω ◦ σ(g) = Ida.

The canonical projection π is such that dπ has a canonical inverse map

Definition 92. If (v, u) = (v1, · · · , vn, u1, · · · , un1) is in TRd1, then we denote by hor :

TRd1 → TG the map given by hor(v, u) :=
∑n

i=1 viX
i +

∑n1
k=1 ukY

k;

dπ ◦ hor = Idg1 , we say that hor is a horizontal lift with respect to dπ. The

horizontal map hor defines a linear projection that formalizes the definition of the a∗-

valued one-form AG on Rd1 , presented in the introduction.
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Definition 93. We denote by ΠRd1 the linear projection from T ∗G to T ∗H give by

ΠRd1 (λ) := λ ◦ hor. We define the a∗-valued one-form AG on Rd1 by

AG := ΠRd1 (ω)(g), AM
G := ΠRd1 (ω)(g)|H and AE

G := ΠRd1 (ω)(g)|V .

B.2 Exponential coordinates of the second kind (x, θ)

We use the frame Xi and Y ℓ to give coordinates to the Carnot group at a

point g in the following way: define a map from the coordinates (x, θ) ∈ Rn+m to G by

Φ(x) :=
n−1∏
i=0

exp(xn−iX
n−i) and Φ(θ) :=

m∏
ℓ=1

exp(θℓY
ℓ) = exp(

m∑
j=1

θℓY
ℓ).

Definition 94. The exponential coordinates (x, θ) are given by a unique chart (Rn+m,Φ)

where a point is given by g := Φ(x, θ) := Φ(θ) ∗ Φ(x).

Proposition 95. Let G be a metabelian Carnot group and let g = (x, θ) be in G. Then

the left-invariant vector fields and the left-invariant one-forms on G are given by

X1(g) =
∂

∂x1
, Xi =

∂

∂xi
+

m∑
j=n1+1

AM
ij (x)

∂

∂θj
2 ≤ i ≤ n,

Y k(g) =
∂

∂θk
+

m∑
j=n1+1

AE
kj(x)

∂

∂θj
1 ≤ k ≤ n1,

Θk(g) = dθk and Θj(g) = dθj −
n∑

i=1

AM
ij (x)dxi −

n1∑
k=1

AE
kj(x)dθk,

where AM
ij (x) and AE

kj(x) are homogeneous polynomial functions on the horizontal co-

ordinates.

The proof the Proposition 95 is in [10]
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B.3 Examples

This Section will prove that Eng(n) has integrable subRiemannian geodesic

flow and show the Carnot group N6,3,1 has non-integrable geodesic flow.

B.3.1 The Engel type group Eng(n)

Eng(n) is the first example of an arbitrary rank distribution of step 3 whose

subRiemannian geodesic flow is integrable, besides metabelian Carnot groups such that

dimA = dimG− 1.

Theorem 96. The subRiemannian geodesic flow on Eng(n) is integrable by meromor-

phic functions for all n.

Lemma 97. Let us consider the following functions

Lij := PXiPYj − PXjPYi i ̸= j CN :=
1

2

N∑
i,j=1

L2
ij .

Then Lij and CN are constants of motion through the sub-Riemannian geodesic flow in

Eng(n).

Proof. Let us use the Poisson bracket to prove that Lij is a constant of motion:

{Lij , H} =PXi{PYj , H}+ PYj{PXi , H} − PXj{PYi , H} − PYi{PXj , H}

=− PXiPXjPYn+1 + PYjPY0PYi + PXjPXiPYn+1 − PYiPY0PYj = 0.

CN is a constant of motion being the sum of constants of motion.

Lemma 98. The functions Lij satisfy the following relationship

{Lij , Lkl} = PYn+1(δikLjl + δjlLik − δilLjk − δjkLil).

71



Proof. Let us compute the following Poisson bracket

{PXi , Lkl} = PXk
{PXi , PYl

}+ PYl
{PXi , PXk

} − PXl
{PXi , PYk

} − PYk
{PXi , PXl

}

= PYn+1(PXk
δil − PXl

δik),

{PYj , Lkl} = PXk
{PYj , PYl

}+ PYl
{PYj , PXk

} − PXl
{PYj , PYk

} − PYk
{PYj , PXl

}

= PYn+1(−PYl
δjk + PYk

δjl).

{Lij , Lkl} =PXi{PYj , Lkl}+ PYj{PXi , Lkl} − PXj{PYi , Lkl} − PYi{PXj , Lkl}

=PYn+1(PXi(−PYl
δjk + PYk

δjl) + PYj (PXk
δil − PXl

δik)

− PXj (−PYl
δik + PYk

δil)− PYi(PXk
δjl − PXl

δjk))

=PYn+1(δikLjl + δjlLik − δilLjk − δjkLil).

Lemma 99. The functions Lij and CN satisfy the following relationship

{CN , Lkl} = 0 if N ≤ k < l or k < l ≤ N.

Proof. Let us compute the Poisson bracket

{CN , Lkl} =

N∑
i,j=1

Lij{Lij , Lkl} = PYn+1

N∑
i,j=1

Lij(δikLjl + δjlLik − δilLjk − δjkLil)

If k < l < N , then δik, δjl, δilLjk and δjk are zero. So the non-trivial case is when

k < l ≤ N ;

{CN , Lkl} = PYn+1

N∑
i<j

Lij(δikLjl + δjlLik − δilLjk − δjkLil)

− PYn+1

N∑
j<i

Lij(δikLjl + δjlLik − δilLjk − δjkLil) = 0.

Same proof for the case N ≤ k < l.
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Proof. If n = 2v, then we consider the following constant of motion

H,L1,2, L3,4, . . . , L2v−1,2v︸ ︷︷ ︸
v constants

, C4, C6, · · · , C2v︸ ︷︷ ︸
v−1 constants

.

By Lemma 99, the constants of motion are in involution. While, if n = 2v+ 1, then we

consider the following constant of motion

H,L2,3, L4,5, . . . , L2v,2v+1︸ ︷︷ ︸
v constants

, C2, C4, · · · , C2v︸ ︷︷ ︸
v constants

By Lemma 99, the constants of motion are in involution.

B.3.2 N3,6,1

Let N3,6,1a be a Carnot group with growth vector (3, 5, 6) and first layer g1,

framed by {E1, E2, Ea}, generates the following Lie algebra:

E1
a := [E1, Ea] E2

a := [E2, Ea], E3
a := [E2, E1

a ] = [E1, E2
a ],

Otherwise, zero. The Lie algebra a is given by Ea, E
1
a , E

2
a and E3

a : So in this case

N3,6,1a∗ = A⋊R2 and AN3,6,1a∗ = dθ1⊗ (e1+xe2+ ye3+xye4). Then if µ = (a1, a2, a3)

in a∗, the reduced Hamiltonian Hµ is given by

Hµ(px, x) =
1

2
(p2x + p2y + (a0 + a1x+ a2y + a3xy)

2).

Theorem 100. The subRiemannian geodesic flow on N3,6,1 is not integrable by analytic

functions.

The notation N3,6,1 was taken from [17].
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B.3.2.1 Background Theorem

Here we will use the theory of the Hamiltonian systems with two degrees of

freedom two and homogeneous potential of degree 3 ≤ k; that is, we will consider the

following Hamiltonian function

H =
1

2
(p2x + p2y) + ϕ(x, y), where ϕ(λx, λy) = λk(x, y). (B.3)

Let us introduce the Background Theorem used to prove the non-integrability of the

Hamiltonian from equation (B.3).

Definition 101. Let ϕ be a homogeneous potential ϕ(x, y) of degree k; we say that a

point p = (x, y) ̸= 0 is a Darboux point if ∇ϕ(p) = p. Then the homogeneity of the

potential implies one eigenvalue of the Hessian Hessϕ is k − 1, and a second one is

given by λ = TrHess(p)− (k − 1)

Yoshida proved the following Theorem.

Background Theorem 2 (Yoshida). Let Sk be the following region

Sk :={λ < 0, 1 < λ < k − 1, k + 2 < λ < 3k − 2, · · · ,

j(j − 1)
k

2
+ j < λ < j(j + 1)

k

2
− j, · · · }.

If λ is in Sk, then the Hamiltonian system (B.3) is non-integrable by analytic functions.

B.3.2.2 Proof of Theorem 100

Proof. Let µ = (0, 0, 0, a) with a ̸= 0, then 1
|a|(1, 1) is a Darboux point and λ = −1.

then λ is in S3, so Hµ is is not integrable by analytic functions.
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Appendix C

Glossary of mathematical symbols
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Symbol Description Reference

Jk(R,R) Jet space of function from R to R Section 3.1

Eng(n) Engel type Section 4.1

G Carnot group Definition ??

g Lie algebra of G Definition ??

[G,G] Commentator group Definition ??

g1 First layer of g Definition ??

Rd1 Quotient G/[G,G] Definition 7

π Canonical projection from G to Rd1 Equation (2.1)

D Non-integrable distribution Definition 7

distRn+2
F

subRiemannian distance on Rn+2
F Definition 2

Fµ(x) A polynomial on H sub-Section (2.2.1)

I Hill interval Definition 24

Rn+2
F subRiemannian manifold Section 2.3

πF Projection from G to Rn+2
F Equation (2.6)

A Maximal normal abelian subgroup of G containing [G,G] Equation (8)

H quotient group G/A Definition ??

πA Canonical projection from G to H Equation (2.2)

a Lie algebra of A Definition 9

T ∗G Cotangent bundle of G sub-Section 10

HsR subRiemannian kinetic energy Equation (10)

γ(t) subRiemannian geodesic on G Definition 10

T ∗H Cotangent bundle of G sub-Section 11

AG a∗ value one-form on Rd1 Definition 93

AM
G a∗ value one-form on H Definition 93

AE
G a∗ value one-form on V Definition 93

η(t) αG-curve on H Definition 11

(x, θ) Exponential coordinates of second kind Definition B.2

Hµ Reduced Hamiltonian Equation (2.4)

J Momentum map induce by A sub-Section 10

v g1 ∩ v Definition 9

h a⊥ with respect the subRiemannian inner product Definition 9

V H⊥ ⊂ Rd1 Definition 9

DF The (n+ 1)-rank non-integrable distribution in Rn+2
F sub-Section 2.3.1

πF The subRiemannian submersion from G to Rn+2
F Equation 2.6

Table C.1: Glossary of Mathematical symbols.
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pr The subRiemannian submersion from Rn+2
F to Rn+1 Equation 2.6

HF Kinetic energy on T ∗Rd1
F Section 2.3

PenF Pencil of F Definition 14

c(t) subRiemannian geodesic on Rn+2
F Definition 13

Iso(M) Isometry group of the subRiemannian manifold M

∆t(c, [t0, t1]) Time change in the time interval [t0, t1] Definition 19

∆y(c, [t0, t1]) y change in the time interval [t0, t1] Definition 19

∆z(c, [t0, t1]) z change in the time interval [t0, t1] Definition 19

Cost(c, [t0, t1]) Cost map in the time interval [t0, t1] Definition 19

Costt(c, [t0, t1]) Cost t in the time interval [t0, t1] I Definition 19

Costy(c, [t0, t1]) Cost y in the time interval [t0, t1] Definition 19

K Compact set on Rn+2
F Proposition 22

Min(K, [t0, t1]) Sequentially compact space of geodesics Proposition 22

KH Compact set on H Lemma 39

L(G, I) The period of (G, I) Proposition 28

∆y(G, I) y change of (G, I) Proposition 28

∆y(G, I) z change of (G, I) Proposition 28

Θ(G, I) Period map Definition 29

Θt(G, I) Period map Definition 29

Θy(G, I) Period map Definition 29

I Travel interval Definition 31

∆t(G, I) Time change during the travel interval I Proposition 32

∆y(G, I) y change on the travel interval I Corollary 32

∆z(G, I) z change on the travel interval I Corollary 32

Costt(G, I) Cost t function on the travel interval I Corollary 32

Costy(G, I) Cost y function on the travel interval I Corollary 32

Pend The set of all the direct-type R3
Fd.t

-geodesic Corollary 35

Penh The set of all the homoclinic R3
Fh
-geodesic Corollary 48

Fµ(r) A polynomial of a single variable r Equation (4.3)

Hµ(pr, pθ, r, θ) Planar an-harmonic oscillator Equation (4.4)

Hµ,ℓ(pr, r) Reduced Hamiltonian Equation (4.5)

hill(µ, ℓ) Plane hill region Definition 62

PenV Pencil of Vef Definition 65

R Radial travel interval Definition 68

Θ(G, ℓ,R) Radial period map Definition 66

Table C.2: Glossary of Mathematical symbols.
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Θt(G, ℓ,R) Radial period map Definition 66

Θy(G, ℓ,R) Radial period map Definition 66

Costt(G, ℓ, I) Cost t function on the travel radial interval R Corollary 32

Costy(G, ℓ, I) Cost y function on the travel radial interval R Corollary 32

P(k) space of polynomial of degree bounded by k Definition 81

hor Horizontal lift Definition 92

φ Left action of A on G Definition 91

σ Infinitesimal generator Equation (B.1)

ω Connection one-form Equation (B.2)

ΠRd1 Linear projection Definition 93

So(H) Group of rotation on H sub-Section 57

N6,3,1 Carnot group with growth vector (3, 5, 6) sub-section B.3.2

Table C.3: Glossary of Mathematical symbols.
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