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Abstract

Chains and Monsters

by

Alex L. Castro

This dissertation is an extended version of earlier works published by the author

and my supervisor Prof. Richard W. Montgomery dealing with the solution of two

different problems in differential geometry. Although these problems are different in

nature, the techniques involved in their solution share a good deal of commonality and

coincidently both had their origins in the works of Élie Cartan and his school.

Part one concerns the chains of left-invariant structures Cauchy-Riemann struc-

tures on the three-sphere viewed as a Lie group. Cauchy-Riemann manifolds borrow

their name from the problems in several complex variables they first arouse, and É.

Cartan was the first person to systematically study them. The moduli space of these

left-invariant structures form a half-line, and using Fefferman’s characterization of chains

as null-geodesics of an associated conformal structure we compute these chains by ap-

plying tools from geometric mechanics to the geodesic flow. We show that for almost

all values of the modulus parameter, either two or three types of chains occur. To the

authors knowledge this has been the first time the computations of the chains for these

structures have appeared in the literature.

In the second part we change gears and construct a tower of fibrations asso-

ciated to space curves generalizing earlier work by Montgomery-Zhitomirskii for planar



curves, and having its origins in the classification problem of Goursat distribution flags

up to local diffeomorphism.

Cartan introduced the method of prolongation which can be applied either to

manifolds with distributions (Pfaffian systems) or integral curves to these distributions.

Repeated application of prolongation to n-space endowed with its tangent bundle yields

the Monster tower, a sequence of manifolds, each a projective Pn−1-bundle over the

previous one, each endowed with a rank n distribution.

The pseudo-group of diffeomorphisms of n-space acts on each level of the ex-

tended tower. We take initial steps toward classifying points of this extended Monster

tower under this pseudogroup action. Arnol’d’s list of stable simple curve singularities

plays a central role in these initial steps.
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Chapter 1

Introduction and Historical Digression

“Eu não sei quase nada, mas desconfio de muita coisa”.
Grande sertão: veredas - Página 16 de João Guimarães Rosa - Publicado
por J. Olympio, 1958 - 571 páginas.

1.1 Poincaré and Several complex variables

Higher-dimensional complex analysis, or several complex variables as its nowa-

days commonly known, is rather young compared to its one-dimensional cousin. There

are various names that could be mentioned here in relation to its early development,

including of course K. Weierstrass work on multi-variable analytic function theory. But

instead we shall fast forward our tale a tad bit, and start with H. Poincaré’s works on

the subject. And though Poincaré started pioneering the field in the late nineteenth

century, his piece of work which have certainly caused the most bewilderment in the

community was a note dating from 1907 where he investigates the question to whether

or not Riemann’s mapping theorem admits a multidimensional generalization.
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Our reader may recall that Riemann mapping theorem occupies a central place

in analytic function theory. For the purpose of illustration we shall state here a weaker

version of the full-blown theorem found in most standard treatises in complex analysis,

though we extracted our present version from M. Levi’s delightful book [Lev09]:

Theorem 1.1.1 Let D be the open region bounded by a simple closed curve C in the

complex plane and let z0 be a point in D. There exists an analytic function f that

maps D onto the unit disk ∆ = {z : |z| < 1} in a one-to-one fashion, with f(z0) and

f ′(z0) > 0.

How should one generalize holomorphic maps to higher dimensions? A funda-

mental property of holomorphic functions, rather useful in practice, is that f preserves

angles at all points where f ′ 6= 0. But requiring a mapping in dimension n > 2 to be

conformal reduces drastically the class of maps one can study. According to J. Liou-

ville’s theorem, a smooth conformal map in dimensions in dimension three of higher

must be linear (cf. [DFN92]).

It is more fruitful to look at maps F : D1 → D2 between domains of C2, or more

generally Cn, and requiring each component fi of F = (f1, . . . , fn) to be holomorphic

in the classic sense. We shall call these maps holomorhic too, and if they admit a

holomorphic inverse they are said to be biholomorphic.

Poincaré (cf. [Jac85], mainly introduction) tackled the question of whether

or not Riemann’s mapping theorem extends to domains in C2. He derived a negative

answer to the problem by computing the group of biholomorphic self-mappings of the
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unit ball in C2

{(z, w) : |z|2 + |w|2 < 1}

and of the polydisk

{(z, w) : |z|2 < 1, |w|2 < 1}

and verifying these two groups are not isormorphic. But Poincaré did not stop there. In

the same paper he showed that two real hypersurfaces in C2 are in general biholomor-

phically inequivalent. Roughly, his argument was to show that the smooth boundary of

a domain in C2 contains intrinsic holomorphic invariant information about its ‘shape’.

The gist of Poincaré’s argument, can be summarized by the following amusing

‘physicists’s argument’ provided by R. Penrose [Pen83]. Consider the freedom involved

in specifying the real hypersurface boundary of a region in C2. This is provided by one

real function of 3 variables (e.g. =w in terms of <z,=z,<w).

For the intrinsic structure of this boundary, we must factor it out by the

freedom provided by the local holomorphic maps of C2 to itself. This is provided

locally by two holomorphic functions of two variables. But a holomorphic function is

determined by its analytic values on any real environment, e.g. on its values where

its arguments, say z and w are real. The real and imaginary parts are each, in effect,

independent real analytic functions, so the freedom to be factored out by is that of four

real functions of two real variables. The amount of intrinsic freedom in the structure of

the boundary is therefore

1 real function of 3 real variables
4 real functions of 2 real variables

.
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However, any finite number of functions of two variables must be regarded as

‘peanuts’ in the context of free functions of three variables. This is a heuristic indication

that there must be “intrinsic invariants” of the boundary shape.

Monsieur Poincaré concludes his ingenious note by posing the question of find-

ing differential invariants to distinguish one real hypersurface from another. Smooth

hypersurfaces M3 in C2, or in Cn were eventually christened Cauchy-Riemann mani-

folds, or just CR-manifolds in the several complex variables trade. By restricting the

Cauchy-Riemann operator to a smooth hypersurface M3, we are led to a complex valued

vector section L : M → TM ⊗ C which describes the interaction of the hypersurface

with the ambient complex structure. We shall have more to say about Cauchy-Riemman

manifolds in the next section.

1.2 S.S.-Chern, J. Moser’s and differential invariants of

CR-manifolds

Poincaré’s question for hypersurfaces in C2 was first completely answered by

É. Cartan, using his powerful equivalence method. We refer the reader to the beautiful

monograph by Howard Jacobowitz [Jac90] where Cartan’s paper is distilled and rewrit-

ten in modern language for the benefit of our entire community! Cartan’s equivalence

method, used to construct differential invariants in the solution of Poncarés question,

is explained in a very didactic way, and the reader is put in Cartan’s shoes and led to

trace back all the insights involved in his solution.
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More recent work of S. S. Chern and J. K. Moser [CM83] on the classification

of hypersurfaces M2n−1 in Cn with nondegenerate Levi form, a family of curves in M ,

called “chains”, has been singled out. Simply stated, a chain is a curve in M , such that,

after a local holomorphic change of coordinates, M can be approximated to high order

by a quadratic surface Q, e.g. =w = |z|2 that makes contact with M along . One of the

main results in the paper of Chern and Moser (op. cit.) states that, for every p ∈ M

and every tangent vector v ∈ TpM transversal to the holomorphic tangent space at p,

there is a chain through p in the direction of v, and that is unique, subject to some

further conditions.

Permit us to be more explicit here. In modern language, a CR structure on

a three-dimensional manifold M3 is a 2-plane distribution H ⊂ TM3 together with a

fibre preserving J : H → H with J2 = −I, an almost complex structure. Given such

a structure, we may choose a real 1-form ω which annihilates H and a complex 1-form

ω1 which annihilates all vectors of the form X + iJX, X ∈ H. These choices can be

done in such a way that ω ∧ ω1 ∧ ω1 is different from zero in a neighborhood of a given

point. Since Cartan was originally interested in results of a local nature on M3, so we

may shrink M and assume ω ∧ ω1 ∧ ω1 is everywhere different from zero.1 Any three-

dimensional submanifold M of C2 has an induced CR structure. Let J̃ : C2 → C2 be

the standard complex structure of C2. Then H = TM ∩ J̃TM and J = J̃ |H . Note that

if F : D1 → D2 is a biholomorphism of open sets in C2 , then M ∩D1 and F (M) ∩ V

have the same CR structure. The forms ω and ω1 can also be directly determined for
1Conversely, given ω and ω1 with ω ∧ ω1 ∧ ω1 we may easily construct H and J .
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M ⊂ C2 . To do this let M be given by r(Z, Z̄) = 0 with Z = (z, w) and dr 6= 0 at

points of M . For definiteness assume that at a given point p ∈M we have dz ∧ dr 6= 0.

Now let ω = i∂r and ω1 = dz. The operator ∂ and ∂̄ are the coboundary operators

associated to the Dobeault complex in C2. Loosely speaking, ∂ = ∂
∂zdz + ∂

∂wdw acting

on forms. Since dr = ∂r + ∂̄r = 0⇒ ∂r is imaginary.

We are now guaranteed to have ω ∧ ω1 ∧ ω1 6= 0.2

Definition 1.2.1 A CR structure on M3 is strictly pseudo-convex if

dω = igω1 ∧ ω1( mod ω) 6= 0. (1.2.1)

On the other hand, in several complex variables there is also a notion strictly-

pseudoconvexity of a hypersurface M3 = {r = 0}.

Definition 1.2.2 A hypersurface M3 = {r = 0} ⊂ C2 is said to be strictly-pseudoconvex

at p if the quadratic form, also known as Levi form,

H(p) =
∂2r

∂z̄∂z
(p)zz̄ +

∂2r

∂z̄∂w
(p)z̄w +

∂2r

∂z∂w̄
(p)zw̄ +

∂2r

∂w̄∂zw
(p)ww̄,

is positive definite. The vector v = (z, w) sits in TpM
3 ∩ JTpM3.

A dilation r̃ = λr, λ 6= 0 changes H(p) to a conformally equivalent quadratic form.

Later on, when we are presenting the bulk of our work we shall explain how

these two apparent different notions of pseudoconvexity in M3 are actually equivalent.

As shown by Jacobowitz [Jac85], following Chern and Moser, there is always

a local biholomorphism which brings strictly-pseudoconvex hypersurface to the normal

form
2It is easy to show that this gives the same CR structure as the previously defined H and J .
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{(z1, z2) : =w = |z|2 +G(z, z̄,<w), G ∈ O(4)}.

Let us set, w = u + iv. Then (z, u) provides local coordinates on any hyper-

surface in the normal form above.

To find ω for the induced CR structure on a submanifold of the form given

previously, we take the defining function r to be

r =
1
2i

(w − w̄)− zz̄ −G,

where G is extended off the (z, u)-plane. Thus

ω = i∂r = i(
∂

∂z
dz +

∂

∂w
dw)(

1
2i

(w − w̄)− zz̄ −G) =

= iz̄dz +
1
2
dw − iGzdz − i Gw︸︷︷︸

= 1
2
Gu

dw.

But

dw = du+ idv = du+ i(zdz̄ + z̄dz + dG︸︷︷︸
Gzdz+Gz̄dz̄+Gudu

).

So after collecting all similar terms as well as it is possible in the expression for ω above

we end up with:

ω =
1
2

((1 +A)du+ (iz +B)dz̄ − (iz̄ − B̄)dz),

where A = O(6) and B = O(3), recalling thatG = O(4). By replacing ω by a (1+A)−1ω,

which still annihilates the subbundle H, we can write

ω̃ =
1
2

(du+ (iz + C)dz̄ − (iz̄ − C̄)dz).
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Differentiating,

dω̃ =
1
2

(dC ∧ dz̄ + dC̄ ∧ dz + 2dz ∧ dz̄).

Next if we expand dC in the basis ω, dz, dz̄, we can write dC = C0ω+C1dz+C1dz̄ and

reexpress dω as

dω = (1− i1
2
C1 + i

1
2
C1︸ ︷︷ ︸

=D

)idz ∧ dz̄( mod ω).

Thus d(D−1ω) = D−1dω( mod ω) = idz∧dz̄( mod ω) which allows us to take ˜̃ω = D−1ω

and w1 = dz.

In conclusion, we have just seen that on a strictly pseudo-convex hypersurface

in C2 it is always possible to choose ω and ω1 such that dω = iω1 ∧ ω1( mod ω). This

choice is not unique. Cartan [Car33] has shown how to use any one choice to calculate

quantities which are in fact independent of the choice.

Consider for instance, a set of equations

ω1 = −µω, (1.2.2)

dµ = F (µ, x)ω,

defined on M3 × C where F is assumed to be smooth. When written in local coordi-

nates, the corresponding direction field gives rise to a second order differential equation.

Through each point p and in each direction v transverse to H there is a unique (un-

parameterized) curve which satisfies (1.2.2). From the work of Cartan [Car33], given

a CR structure one can always write one such system with F depending only on the

differential invariants associated to the CR structure under study, defining in this form
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a CR invariant system of curves. The resulting curves are called chains. For example,

for the oscullating hyperquadric v = |z|2 reduce to:

ω1 = −µω,

dµ = iµ|µ|2ω.

This particular system can be integrated by hand.

Chains have certain similarities to geodesics in Riemannian manifolds. H.

Jacobowitz [Jac85], and later Lisa Koch [Koc88], showed that any two sufficiently close

points in a CR-manifolds can be joined by a chain. But chains also present a some

‘pathological’ behavior not akin to geodesics. Fefferman to our knowledge was the first

to notice it. Next we digress on how the ideas of Fefferman permitted the realization of

the present work.

1.3 Fefferman shedding light on the subject

In the work of Cartan, Chern and Moser chains appear as solutions of a com-

plicated second order system of differential equations, and it seems very hard to actually

compute them. But it is clear that detailed information about chains is very important

for a deeper understanding of the complex geometry of hyper-surfaces.

One such example is J.H. Cheng’s theorem [Chê88] stating that chain pre-

serving diffeomorphisms are either CR isomorphisms or anti-isomorphisms. G. Sparling

and P. Nurowski [NS03] have investigated, much more in the spirit of Cartans orig-

inal treatment, also the relation between the ‘path-geometry’ of second-order ODE’s
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and three-dimensional CR structures and it seems that it is possible to almost entirely

reconstruct the underlying CR structure from the path geometry associated to the cor-

responding system of chains. This seems to be a raison d’étre for Cheng’s theorem.

Back Charles Fefferman in [Fef76] introduced some brilliant new ideas that,

ultimately, lead to a computable characterization of chains on the boundary ∂D of a

strictly pseudoconvex domain D. Below is an account originally told by Michael Range

in the “Mathematical Reviews on the Web.”

The starting point was an idea conceived by the Japanese mathematician I.

Naruki, who introduced an extra variable to Cn and used the Bergman kernel KD of D

to define a metric ds2 on D×C∗, here D denotes a strictly pseudoconvex domain in Cn.

However, since KD is really unknown in the interior of D, ds2 cannot be calculated.

Fefferman solved this problem as follows. First, by restricting the above metric ds2

to ∂D × S1 one obtains a nondegenerate Lorentz metric on ∂D × S1, denoted again

by ds2, whose conformal class is a biholomorphic invariant. The central role of this

Lorentz metric is revealed by the next step: it turns out that the chains on ∂D are

obtained by projecting the light rays (geodesics with tangent of length 0) defined by ds2

from ∂D×S1 to ∂D. By invoking some machinery Fefferman himself developed earlier,

more specifically an asymptotic expansion of the Bergman kernel near the boundary

one could now, in principle, compute the Lorentz metric ds2. But Fefferman takes one

further step: he notes that to calculate ds2 one does not really need the Bergman kernel;

instead, one can use the solution u of a suitable boundary value problem associated

with a second order nonlinear partial differential equation of the Monge-Ampére type.
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However all that is really needed for the problem at hand is the formal second order

approximation to the solution u, and this can be computed! Beginning with a function

that defines the boundary ∂D, the author calculates explicitly the Lorentz metric ds2

and the Hamiltonian system that defines the light rays. As a nifty application of this

approach, Fefferman goes on to show that the hypersurface v = |z|2 + 2u|z|8 has chains

which spiral in to the origin! This is one example of the unusual behavior of chains

when compared to geodesics.

And it is here that our story begins.

1.4 Burns-Rossi’s example and pseudo-Hermitean geome-

try of Farris and Lee

Fefferman’s construction has only one immediate shortfall : it does not auto-

matically generalize to abstract CR structures. And non-realizable CR structures, i.e.

CR structures which cannot be viewed as hypersurfaces in some complex ambient space,

even locally, abound.3

The first such example was described by H. Lewy in [Lew57]. He introduced a

complex valued smooth linear differential operator defined on smooth functions, nowa-

days known as Lewy operator, and showed that in three dimensions the resulting PDE

admits no solution in the smooth category. Lewy operators, typically denoted by L,

are commonly used to describe abstract CR structures on three manifold and are rep-
3Real analytic CR structures are always locally embedabble. Cf. [Jac90].
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resented by a complex-valued vector field. One can comfortably say it “describes the

interaction of M with the ambient complex case”, supposing M is embedded.

And even if we restrict ourselves to the subcategory of analytic CR manifolds

there are still examples of locally non-embeddable three-manifolds that are not globally

embeddable! There is a one-dimensional deformation of the standard CR structure in

S3, all of which are left-invariant, and that does not admit a global realization in C2.

To our knowledge, this is example is due to Dan Burns [Bur79], who adapted it from an

older paper by H. Rossi [Ros65]. In Appendix A we re-derive Burns’ proof using purely

representation theoretic arguments, first suggested to us by Gil Bor. We include it here

for sake of illustration and for its aesthetic properties.

Inspired by Bill Goldman’s book [Gol99], and the curious behavior of chains

first pointed out by Fefferman, we decided to investigate the behavior of chains for the

Burns-Rossi structures described above.

To implement our program, we had to surmount Fefferman’s ambient construc-

tion and use a more ‘canonical’ procedure using only differential geometric data intrinsic

to M3, removing thus the need for an ambient complex structure. Luckily, for that,

Frank Farris and John Lee had already thought up a plan.

Farris [Far86] and Lee’s [Lee86] working definition of CR manifold is similar to

the one we gave earlier. Lee’s characterization, which we have ultimately opted for, rely

on a choice of a one-form, the so-called pseudo-Hermitian structure on M , which anni-

hilates the maximum complex subbundle of the tangent bundle TM . Lee, and Farris,

defines Lorentz metrics on an intrinsically defined circle bundle Z S1

→ M . The charac-
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terization is in terms of differential forms which are intrinsic to the bundle Z and which

are normalized using the chosen pseudo-Hermitian structure. This construction renders

a metric that transforms conformally under a change of pseudo-Hermitian structure;

and that they agree with the Fefferman metric when M is embedded.

Much to our surprise, we found Fefferman’s spiralling behavior in the chains

from the Burns-Rossi example. In our work Z ∼= SU(2)× S1. The Fefferman dynamics

is governed by a Hamiltonian system in T ∗Z, a Hamiltonian system in the contangent

bundle of Lie group. By applying Lie-Poisson reduction we faced now with a non-

linear system of ordinary differential equations resembling Euler’s equation for a free

rigid body, and that is also integrable. Spiralling behavior here is due to the existence of

homoclinic orbits in the reduced dynamics. It remains to investigate whether qualitative

dynamical behavior of chains can be read off the conformal invariants of Fefferman’s

metric, the first obvious example being its Weyl curvature tensor.

Now that we have described the background of our play, let the first act begin!
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Chapter 2

Our results : behavior of Chains

This is a formatted reproduction of our paper which has been published
Pacific Journal of Mathematics, vol. 238, no. 1, 41-71 2008.

The left-invariant CR structures on the three-sphere S3 = SU(2) form a family

of CR structures containing the standard structure. After the standard structure, these

form the most symmetric CR structures possible in dimension 3. See Cartan [Car33].

The purpose of this note is to compute the chains for these structures. (Computations

of Cartan curvature type invariants for the left-invariant CR structures can be found in

[Čap06]. )

The chains on a strictly pseudoconvex CR manifold are a family of curves on

the manifold invariantly associated to its CR structure. Chains were defined by Cartan

[Car33]and further elucidated by Chern-Moser [CM83], and Fefferman [Fef76]. Chains

play a role in CR geometry somewhat similar to that of geodesics in Riemannian geome-

try. The left-invariant CR structures on S3 are strictly pseudoconvex. Our computation

of the chains for these structures appears here, apparently for the first time.
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The space of left-invariant structures on S3 = SU(2) modulo conjugation is a

half-line parameterized by a single real variable a. Any left-invariant CR structure is

conjugate to one of those presented in the normal form below (section 2.1, equations (

2.1.2), (2.1.3). The standard structure corresponds to a = 1. Its chains are obtained

by intersecting S3 ⊂ C2 with complex affine lines in C2. (See [Gol99] for especially

good visual descriptions.) In particular all chains for the standard structure are closed

curves. Here is our main result:

Theorem 2.0.1 Consider the left-invariant CR structures on the three-sphere. They

form a one-parameter space, with parameter a and a = 1 corresponding to the standard

structure, as given by the normal form of section 2.1, equations ( 2.1.2), (2.1.3). Then,

for all but a discrete set of values of a two types of chains are present: closed chains

and quasi-periodic chains dense on two-torii. The curves of each type are dense in

S3. A bifurcation occurs at a =
√

3 so that for a >
√

3 a third type of chain occurs,

corresponding to a homoclinic orbit and which accumulates onto a periodic chain ( a

geometric circle). For all a >
√

3 all three types of chains: periodic, quasi-periodic, and

homoclinic are present and every chain is one of these three types. For a <
√

3 only the

closed chains and quasi-periodic chains are present.

Remark. We have left open the possibility that for a finite set of a ∈ [1,
√

3]

all chains are closed.)

The computations leading to the theorem are based on a construction of Feffer-

man [Fef76], refined and generalized by Lee [Lee86] and Farris [Far86]. Starting with a
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strictly pseudoconvex CR manifold M the Fefferman construction yields a circle bundle

S1 → X →M together with a conformal class of Lorentzian metrics on X. The chains

are then the projections to M of the light-like geodesics on X. It follows that we can

look for chains by solving Hamiltonian differential equations.

Once we have the Hamiltonian system for Fefferman’s metric, a simple picture

from geometric mechanics underlies this theorem. For our left-invariant structures this

Hamiltonian system is very similar to that of a free rigid body, but with configuration

space being SU(2) = S3 instead of the rotation group SO(3). Like the rigid body, this

Hamiltonian system is integrable. Its solutions – the chains – lie on torii, the Arnol’d-

Liouville torii. As in the case of the rigid body, the non-Abelian symmetry group forces

resonances between the a priori three frequencies on the torii: so that the torii are

in fact two-dimensional, not the expected three dimensions, of 3 = dim(S3).. When

the frequencies are rationally related we get closed chains. Otherwise we get the quasi-

periodic chains. The phase portrait (figure 2.2 below) changes with a and the bifurcation

at a =
√

3 corresponds to the origin turning from an elliptic to a hyperbolic fixed point

in a bifurcation sometimes known as the Hamiltonian figure eight bifurcation.

2.0.1 Outline

There are five steps to the proof of the theorem. The paper is organized along

these steps.

0. Find the normal form for the left-invariant structures on SU(2).

1. Compute the Fefferman metric on SU(2)× S1 for the left-invariant CR structures.
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2. Reduce the Hamiltonian system for the Fefferman geodesics by the symmetry group

SU(2)× S1.

3. Integrate the reduced system.

4. Compute the geometric phases ( holonomies) relating the full motion to the reduced

motion.

We briefly describe the methods and ideas involved in each one of the steps

above, and in so doing link that step to the section in which it is completed.

Step 0. Finding a normal form. Section2.1 ) In section 2.1 we derive

the normal form (2.1.2), (2.1.3) for the left-invariant CR structures with single real

parameter a. This normal form is well-known and standard. Its derivation is routine.

The normal form can be found for example in Hitchin [Hit95] p. 34, and especially the

first sentence of the proof of Theorem 10 on p. 99 there. Hitchin provided no derivation

of the normal form. For completeness we present the derivation on the normal form in

section 2.1

Step 1. Finding the Fefferman metric. Section 2.2.

In section 2.2 we compute the Fefferman metric associated to our normal forms.

We follow primarily [Lee86]. Inverting this metric yields the Hamiltonian H = Ha whose

solution curves correspond to chains.

Step 2. Constructing the reduced dynamics. Sections 2.4 and 2.3.The
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chains for the left-invariant CR structures are the projections to S3 of the light-like

geodesics for the metrics computed in step 1. These geodesics are solutions to Hamilto-

nian systems on T ∗(S3×S1) whose Hamiltonians we write H = Ha : T ∗(S3×S1)→ R.

As with all “kinetic energy” Hamiltonians, H is a fiber-quadratic functions on the cotan-

gent bundle. To specify that the geodesics are light like, we only look at those solutions

with H = 0. The Fefferman metrics are always invariant under the circle action. In

our case of left-invariant CR structures the metrics are also invariant under the left

action of S3 = SU(2) (extended in the standard way to the cotangent bundle). Con-

sequently we can reduce the Fefferman dynamics by the groups S1 and SU(2). This

reduction is performed in sections section 2.4 and 2.3. Section 2.4 provides generalities

concerning reducing left-invariant flows on Lie groups, and as such helps to orient the

overall discussion. In section 2.3 we compute the reduced flow. In order to perform the

reduction fix the standard basis e1, e2, e3 for the su(2). Write its dual basis, viewed as

left-invariant one-forms, as ω1, ω2, ω3. Write (g, γ) for a point of S3 × S1 and dγ for

the one-form associated to the angular coordinate γ. Any covector β ∈ T ∗g,γ(S3 × S1)

can be expanded as β = M1ω
1(g) + M2ω

2(g) + M3ω
3(g) + Pdγ so we can write have

H = H(g, γ;M1,M2,M3, P ). Left-invariance implies that H does not depend on g or

γ so we can think of the Hamiltonian as a function H = H(M1,M2,M3, P ) on R3 ×R.

The Euclidean space R3×R represents su(2)∗×R∗, the dual of the Lie algebra of our Lie

group, SU(2)× S1. Equivalently, R3 ×R is the quotient space T ∗(S3 × S1)/(S3 × S1).

The reduced dynamics is a flow on this space. The coordinate function P is the momen-

tum map for the action of the circle factor and as such is constant along solutions for
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the reduced dynamics. The function H generates the reduced dynamics: Ṁi = {Mi, H}

and Ṗ = {P,H}(= 0) where {·, ·} is the ‘Lie-Poisson bracket’. See section 2.4.

Step 3. Solving the reduced dynamics. Section 2.5. The phase portrait

found in figures 2.1, and 2.2 summarizes the reduced dynamics. . The computations

proceed as follows. The functions P and K = M2
1 + M2

2 + M2
3 are Casimirs for the

Lie-Poisson structure, meaning that {K,h} = {P, h} = 0 for any Hamiltonian h used

to generate the reduced dynamics. The solutions to the reduced dynamical equations

thus lie on the curves formed by the intersections of the three surfaces P = const.,

K = const. and H = 0 in R4 = R3 × R. For typical values of these constants , these

curves are closed curves. At special values the curves may be isolated points, or may

be singular, like in the case of the homoclinic eight (figure 2.2).

When P = 0 we can solve for the dynamics explicitly. The corresponding

chains are the left translates of a particular one-parameter subgroup in G = S3. The

case P 6= 0 can be reduced to P = 1 by the following scaling argument. We have

H(λM1, λM2, λM3, λP ) = λ2H(M1,M2,M3, P ). Up on S3 × S1 this scaling represents

leaving positions alone and scaling momenta, and hence velocities. Thus the reduced

solution curves with initial conditions (λM1, λM2, λM3, λP ) and those with initial con-

ditions (M1,M2,M3, P ) represent the same geodesics, and so the same chains, just

parameterized differently. Choosing λ = 1/P we can always scale the case P 6= 0 to the

case P = 1. Now we have a single Hamiltonian h = H(M1,M2,M3, 1) on the standard

rigid body phase space R3. We represent the surface h = 0 as a graph M3 = q(M1,M2; a)
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over the M1 −M2 plane, where q is an even quartic function of M1,M2. We form the

solution curves by intersecting this graph with the level sets of K. To simplify the

analysis we project the resulting curves onto the M1M2 plane. A critical point analysis

of K restricted to the graph locates the bifurcation value a =
√

3 for the reduced phase

portrait as described in theorem 1.

Step 4. Geometric phases. Section 2.6. We follow the idea presented in

the paper [Mon91] in order to reconstruct the chains in S3 from the reduced solution

curves. Some mild modifications are needed to that idea, since our initial group is

SU(2) × S1 rather than the group SO(3) of that paper. Fix P = 1 and a value of

K so that the reduced curve C of step 1 is closed. The left action of SU(2) × S1 on

T ∗(S3×S1) has a momentum map with values in su(2)×R = R4 and solutions (chains)

must lie on constant level sets of this momentum map. One factor of this momentum

map is P from steps 2 and 3 which we have set to 1. Upon projecting the level set onto

T ∗S3 via the projection T ∗S3 × T ∗S1 → T ∗S3 we obtain an embedded S3 ⊂ T ∗S3 (the

graph of a right-invaraint one-form) together with a projection onto the reduced phase

space R3 × {1} of step 3. The inverse image of C under this projection is a two-torus,

and all the chains whose reduced dynamics is represented by C and whose momentum

map has the given fixed value lie on this two-torus within T ∗(S3). One angle of this

torus represents the reduced curve. The relevant question is: as we go once around the

reduced curve, how much does the other angle change? Call this amount ∆θ. If the

value of ∆θ is an irrational multiple of 2π then the chain is not closed and forms one

of the quasi-periodic chains of theorem 1, dense on its two-torus. If its value of ∆θ is a
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rational multiple p
q of 2π then the chain is closed, corresponding to some p, q winding on

its torus. With certain modifications, the basic integral formula for ∆θ from [Mon91]

is valid. One term in this formula corresponds to a holonomy of a connection, and is

termed the “geometric phase”, explaining the subtitle we have given to this step 4. The

values of ∆θ depends only on the values of a and K and its dependence is analytic in

these variables. Thus the proof of the theorem will be complete once we have shown

there is a value of a for which K → ∆θ(K, a) is not constant.

In order to prove non-constancy of ∆θ(K, a) , take a >
√

3 so that the reduced

dynamics has a homoclinic eight. Denote the value of K on the eight by k(a). We show

that as K → k(a) we have that ∆θ(a,K)→∞.

Steps 0 – 4 now completed, theorem 1 is proved.

Appendices We finish the paper with two appendices. In appendix A.1 we

verify that when a = 1 the Fefferman geodesics for the Hamiltonian computed here (eq

2.3.3) correspond to the well-known chains for the standard three-sphere. In appendix

2 we show that the left-invariant CR structures for a 6= 1 correspond to the family of

non-embeddable CR structures on S3 discovered by Rossi, and frequently found in the

CR literature.

An Open problem. We end appendix A.2 with an open problem inspired

by the Rossi embedding of S3/(antipodal map) and a conversation with Dan Burns.
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2.1 A normal form for the left-invariant CR structures

(step 0).

2.1.1 Preliminaries. Basic Definitions.

A contact structure in dimension 3 is defined by the vanishing of a one-form

θ having the property that θ ∧ dθ 6= 0. Let M be the underlying 3-manifold and TM

its tangent bundle. The contact structure is the field of 2-planes ξ = {(m, v) ∈ TM :

θ(m)(v) = 0} ⊂ TM . It is a rank 2 sub-bundle of the tangent bundle. The one-form θ

and fθ, for f 6= 0 a function, define the same contact structure.

Definition 2.1.1 A strictly pseudoconvex CR structure on a 3-manifold M consists of

contact structure ξ on M together with an almost complex structure J defined on the

contact planes ξ.

We will primarily be using the following alternative, equivalent definition

Definition 2.1.2 A strictly pseudoconvex CR structure on a 3-manifold M consists of

an oriented contact structure ξ on M together with a conformal equivalence class of

metrics defined on contact planes ξ.

To pass from the first definition to the second, we construct the conformal

structure from the almost complex structure J in the standard way. Namely, the con-

formal structure is determined by knowing what an orthogonal frame is, and we declare

e, J(e) to be such a frame, for any nonzero vector e ∈ ξ. An alternative to this con-

struction is to choose a contact form θ for the contact structure and then construct its
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associated Levi form

Lθ(v, w) = dθ(v, Jw) (2.1.1)

which is a quadratic symmetric form on the contact planes. The contact condition

implies that the Levi form is either negative definite or positive definite. If it is negative

definite, replace θ with −θ to make it positive definite. We henceforth insist that θ, J

are taken so the Levi form is positive definite. This assumption on (θ, J) is equivalent

to assuming that the orientation on the contact planes induced by θ and induced by

J agree. (Note that a choice of contact one-form orients the contact planes. ) The

conformal structure associated to (θ, J) from definition 2.1.1 is generated by the Levi

form. If we change θ → fθ with f > 0 then the Levi form changes by Lθ → fLθ,

showing that this definition of conformal structure is independent of (oriented) contact

form θ.

To go from definition 2.1.2 to definition 2.1.1, take any oriented orthogonal

basis vectors E1, E2 having the same length relative to some metric in the conformal

class. Define J by J(E1) = E2, J(E2) = −E1. Thus in dimension 3 we can define a

CR structure by a contact form θ, defined up to positive scale factor, together with an

inner product on the contact planes ω = 0 to represent the conformal structure, also

only defined up to a positive scaling. Choosing the scale factor of either the contact

form or the quadratic form fixes the scalar factor of the other one through the Levi-form

relation, eq. (2.1.1).
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2.1.2 The left-invariant case.

We take M = S3 which we identify with the Lie group SU(2) in the standard

way, via the action of SU(2) on S3 ⊂ C2. A left-invariant CR structure on S3 is

then given by the Lie algebraic data on su(2). This data consists of a ray in su(2)∗

representing the left-invariant contact form θ up to positive scale and a quadratic form

on su(2) defined modulo θ, and positive definite when restricted to ker(θ). Conjugation

on SU(2) maps left invariant CR structures to left-invariant CR structures, and induces

the co-adjoint action on su(2)∗. This action is equivalent, as a representation, to the

standard action of the rotation group SO(3) on R3 via the 2:1 homomorphism SU(2)→

SO(3). Consequently, we can rotate the contact form θ to anti-align with the basis

element ω3. Thus we take θ = −ω3. The contact planes are then framed by the left-

invariant vector fields e1, e2 ∈ su(2). The choice of −ω3 is made so that e1, e2 is the

correct orientation of the plane, as follows from the structure equation

dω3 = −ω1 ∧ ω2.

This structure equation also proves that the plane field −ω3 = 0 is indeed contact,

so that the corresponding CR structure (no matter the choice of J) will be strictly

pseudoconvex. A quadratic form on the contact plane is given by a positive definite

quadratic expression in ω1, ω2 , that is: A(ω1)2 + 2Bω1ω2 + C(ω2)2, viewed mod ω3.

The isotropy group of ω3 acts by rotations of the contact plane (the e1, e2 plane). A

quadratic form can be diagonalized by rotations, so upon conjugation by some element

of the isotropy subgroup of ω3 we can put the quadratic form in the diagonal form
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A(ω1)2 +B(ω2)2 with A,B > 0. The form is only well-defined up to scale, and we can

scale it so that A = 1/B, i.e the conformal structure is that of (1/a)(ω1)2 + a(ω2)2,

a > 0. We have proved the bulk of :

Proposition 2.1.1 (Normal form) Every left-invariant CR structure on S3 is con-

jugate to one whose contact form is given by

θ = −ω3 (2.1.2)

and whose associated conformal structure is

Lθ =
1
a

(ω1)2 + a(ω2)2 (2.1.3)

The associated almost complex structure J = Ja is defined by J(e1) = 1
ae2, J(e2) =

−ae2. The structure defined by a is isomorphic to the structure defined by 1/a. As the

notation indicates, the quadratic form Lθ is indeed the Levi-form associated to θ, J as

per eq. (2.1.1).

To see that J in the proposition is correct, note that the choice θ = −ω3 as

contact form induces the orientation {e1, e2} to the contact planes, and that (e1,
1
ae2)

are orthogonal vectors having the same squared length (1/a)relative to the given metric

Lθ. To see that the structure defined by a is isomorphic to the structure defined by 1
a

observe that rotation by 90 degrees converts (1/a)(ω1)2 +a(ω2)2 to a(ω1)2 +(1/a)(ω2)2.

Finally, compute from dθ = ω1 ∧ω2 and the form of J that indeed, the Levi form is the

given quadratic form Lθ.
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2.2 Fefferman’s metric (step 1).

When the strictly convex CR structure on M is induced by an embedding

M ⊂ C2, Fefferman [Fef76] constructed a circle bundle Z →M together with a confor-

mal Lorentzian metric on Z invariantly associated to the CR structure. Farris [Far86]

and then Lee [Lee86] generalized Fefferman’s construction to the case of an abstract

strictly pseudoconvex CR structure, i.e. one not necessarily induced by an embedding

into C2. In this section we construct the Fefferman metric for the family of left-invariant

CR structures from step 1 (proposition 2.1.1 there). We most closely follow Lee’s pre-

sentation.

We begin with a general construction. Let π : Z → M be any circle bundle

over M . Fix a contact form θ. Recall that the Reeb vector field associated to θ is the

vector field on M uniquely defined by the two conditions

θ(R) = 1

iRdθ = 0.

Changing θ to gθ, g a function, changes R to 1
gR + Xg where Xg lies in the contact

plane field and is determined pointwise by a linear equation involving dg and dθ which

is reminescent of the equation relating a Hamiltonian to its Hamiltonian vector field.

We extend the Levi form (2.1.1) to all of TM by insisting that Lθ(R, v) = 0 for all

v ∈ TM and continue to write Lθ for this extended form. Let σ be any one-form on Z

with the property that σ is nonzero on the vertical vectors (the kernel of dπ), Then

gθ = π∗Lθ + 4(π∗θ)� σ (2.2.1)
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is a Lorentzian metric on Z. Here � denotes the symmetric product of one-forms:

θ � σ = 1
2(θ ⊗ σ + σ ⊗ θ).

The trick needed is a way of defining σ in terms of the contact form, and
J , in such a way that a “conformal change” θ 7→ gθ of the contact structure
induces a conformal change of the metric gθ.

Warning. Farris and Lee, use a different definition of the symmetric product �: their

θ � σ is twice ours, so that in their formula for the metric our 4 is replaced by a 2. We

have chosen our definition so that, using it, (dx+ dy)2 = dx2 + 2(dx� dy) + dy2, where

θ2 = θ ⊗ θ.

2.2.1 Forming the circle bundle from the canonical bundle. (2,0)

forms.

The circle bundle Z →M will be a bundle of complex-valued 2-forms, defined

up to real scale factor. A choice of contact form θ on M induces various one-forms on Z

in a canonical way. One of these one-forms will be the form σ needed for the Fefferman

metric, eq (2.2.1). Here are the main steps leading to the construction of Z and its

one-form σ.

The complexified contact plane ξC = ξ⊗C splits under J into the holomorphic

and anti-holomorphic directions, these being the +i and −i eigenspaces of J , where J is

extended from ξ to ξC by complex linearity. In the case of 3-dimensional CR manifold,

if we start with any non-zero vector field E tangent to ξ, then Z = E − iJE spans the

holomorphic direction, while Z̄ = E+ iJE spans the anti-holomorphic direction. In our
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case

Z = e1 −
i

a
e2 (2.2.2)

is holomorphic, while

Z̄a = e1 +
i

a
e2 (2.2.3)

is the anti-holomorphic vector field.

Remark. Third definition of a 3-dimensional CR manifold. Eq (2.2.2)

corresponds to yet a 3rd definition of a CR manifold.

Definition 2.2.1 (CR structure, 3rd time ’round). A CR structure on M3 is a complex

line field, i.e. a rank 1 subbundle of the complexified tangent bundle TM ⊗ C which is

nowhere real.

Such a complex line field is locally spanned by a “holomorphic” vector field Z as in

eq 2.2.2. Writing Z = E1 − iE2 with E1, E2 real vector fields, we define the 2-plane

field ξ to be the real span of E1, E2, and we set J(E1) = E2, J(E2) = −E1. The

“strictly pseudoconvex” condition, which is the condition that ξ be contact, is that

E1, E2 together with the Lie bracket [E1, E2] span the real tangent bundle TM .

The almost complex structure J on the contact planes of a CR manifold induces

a splitting of the space of complex-valued differential forms into types Ωp,q similar to

the splitting of forms on a complex manifolds. We declare that a complex valued k-form

β is or of type (k, 0) (that is to say “holomorphic”) if iZ̄β = 0 for all anti-holomorphic

vector fields Z̄. In dimension 3, one only needs to check this equality for a single nonzero

such vector field, such as Z̄ of eq ( 2.2.3) as above.
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Our case. The (1,0) forms for the left-invariant structure for the parameter

value a of Proposition 2.1.1 is spanned by

θ = −ω3 ;ωa = ω1 + iaω2 : (1, 0) forms (2.2.4)

The (2,0) forms are spanned (over C) by

θ ∧ ωa : (2, 0) forms (2.2.5)

In dimension 3 the space of all (2, 0) forms, considered pointwise, forms a complex

line bundle, denoted by K and called the canonical bundle as in complex differential

geometry. Z is defined to be the “ray projectivization” of K:

Z = K \ { zero section }/R+.

We next recall from Lee [Lee86] how a choice of contact form θ determines the

one-form σ.

1. Volume normalization equation. Fix the contact form θ on M . The volume

normalization equation is

√
−1 θ ∧ iRζ ∧ iRζ̄ = θ ∧ dθ. (2.2.6)

The right hand side is the standard volume form defined by a choice of contact structure.

On the left-hand side, R = Rθ is the Reeb vector field for θ. The 2-form ζ ∈ Γ(K), a

section of the canonical bundle is to viewed as the unknown. The equation is quadratic

in the unknown since multiplying ζ by the complex function f multiplies the left hand

side of the volume normalization equation by |f |2. It follows by this scaling that there is
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a solution, ζ0 to the volume normalization which is unique up to unit complex multiple

ζ 7→ eiγζ.

Said slightly differently, eq. (2.2.6) defines a section of

s = sθ : Z → K

of the ray bundle K → Z, since once we fix the complex phase of ζ, the equation

uniquely determines the real phase factor. Fix a solution, which is to say, a smoothly

varying pointwise choice of solutions

ζ0 : M → K

to eq (2.2.6). Such a solution choice defines a global trivialization of Z, since we can

express any point z of Z can be uniquely expressed via this section as

sθ(z) = eiγζ0(π(z))

where m = π(z) ∈M . Thus the choice ζ0 induces a global trivialization:

Z ∼= M × S1.

(A more pictorial, equivalent description of this trivialization of Z is as follows. Form

the ray generated by ζ0(m), which is a point in the circle fiber Zm, over m. Rotate

this ray by the angle γ until you hit the ray z ∈ Zm, thus associating to z a point

(m, γ) ∈M ×S1) We henceforth use this identification Z = M ×S1 and define a global

one-form on Z by

ζ(m, γ) = eiγζ0(m). (2.2.7)
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We check now that the two-form ζ depends only on the choice of contact form

θ, and so, up to this choice, is intrinsic to Z. The total space K of the canonical

bundle , like any total space constructed as a bundles of k-forms, has on it a canonical

form k-form Ξ. To describe Ξ write a typical point of K as (m,β) ∈ K, m ∈ M ,

β ∈ Λ(2,0)TxM . Then we can set Ξ(x, β) = π∗xβ where β ∈ Λ(2,0)TxM and π : K → M

denotes the projection. This canonical form, like all such canonical forms, enjoys the

reproducing property that if β : M → K is any section, then β∗Ξ = ζ. We use the

section s = sθ : Z → K to pull back Ξ:

ζ := s∗θΞ.

The reproducing property shows that, under the global trivialization of Z induced by

ζ0, we have that ζ is given by formula (2.2.10) above.

Our case. Return to the left-invariant situation: Choosing θ = −ω3 we get

θ ∧ dθ = −ω1ω2ω3. The Reeb field

R = −e3. (2.2.8)

Writing ζ0 = gθ ∧ ωa we compute that iRζ0 = gωa. Using ωa ∧ ω̄a = −2iaω1 ∧ ω2 we

compute that the left-hand side of the volume normalization equation (2.2.6) expands

out to −2a|g|2ω1ω2ω3. Th volume normalization equation (2.2.6) then implies that

|g|2 = 1/2a. Thus

ζ0 =
1√
2a
θ ∧ ωa (2.2.9)
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is a global normalized section of K. It induces a global trivialization of Z, as just

described, so that we can think of Z as S3 × S1. with (m, eiγ) being the ray through

the (2,0) form eiγζa(m). The two-form ζ on Z is given, under this identification, by this

same algebraic relation:

ζ = eiγ
1√
2a
θ ∧ ωa (2.2.10)

where we are not using different symbols to differentiate between a form β on M and

its pull-backs π∗β to Z.

Proposition 2.2.1 (Lee: [Lee86], p. 417) Fix the contact form θ for the CR mani-

fold M . Let ζ be the induced one-forms on Z as just described. Let R be the Reeb vector

field for θ.

A. There is a complex valued one-form η on Z, uniquely determined by the

conditions: .

ζ = θ ∧ η (2.2.11)

ivη = 0 whenever π∗v = R (2.2.12)

B. With η as in A, there is a unique real-valued one form σ on Z determined

by the equations

dζ = 3iσ ∧ ζ (2.2.13)

σ ∧ dη ∧ η̄ = Tr(dσ)iσ ∧ θ ∧ η ∧ η̄. (2.2.14)

The meaning of Trace in this last equation is as follows. Any solution σ to (2.2.13) has

the property that dσ is basic, i.e. is the pull-back of a two-form on M , which by abuse
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of notation we also denote by dσ. Any two-form on M can be expressed as fdθ+ θ ∧ β.

Set Trace(fdθ + θ ∧ β) = f .

C. The form σ = σ(θ) determined by the equations (2.2.11, 2.2.12, 2.2.13,

2.2.14) is the form σ appearing in the Fefferman metric gθ of eq (2.2.1). If θ 7→ fθ,

f > 0 then the Reeb extended Levi form Lθ and σ transform in such a way that gfθ =

fgθ, i.e. the conformal class of the Fefferman metric is indeed invariantly attached to

the CR structure.

Remark. An equivalent definition of the trace used in eq (2.2.14) is as follows.

Take a two-form such as dσ on M , restrict it to the contact plane and then use the Levi

form Lθ to raise its indices and thus define its trace, Tr(dσ).

The forms on Z in the left-invariant case. In our left-invariant situation

the forms θ, ζ of the theorem have been described above in equations (2.1.2), (2.2.10).

They are θ = −ω3, ζ = θ ∧ η with

η =
1√
1/2a

(eiγωa) (2.2.15)

and

ωa = (ω1 + iaω2)

This η is indeed the η of part A of the theorem, since if V is any vector field on Z

satisfying π∗V = R then iV π
∗η = iRη = 0, down in M = S3. (Recall we use η for π∗η

as forms on Z.)

Now we move to the computations o part B of the Proposition for the one-form

34



σ. We compute:

σ =
dγ

3
+ fθ , f =

1
8

(a+ 1/a) (2.2.16)

Here are key steps along the way of the computation.

dη = idγ ∧ η +
1√
2a
eiγdωa (2.2.17)

= idγ ∧ η +
1√
2a
eiγθ ∧ (−ω2 + iaω1) (2.2.18)

Then

dζ = idγ ∧ ζ

It then follows from the first equation in part B of the theorem, and the reality of σ

that

σ =
dγ

3
+ fθ

for some real function f . We have Tr(dσ) = f . Setting dvol = dγ ∧ θ ∧ ω1 ∧ ω2 we

compute the right hand side of eq (2.2.14) to be (f/3)dvol, while its left hand side is

equal to [(1/3)(1 + a2)/2a − f ]dvol. Setting the two 4-forms equal and solving for f

yields f = (1 + a2)/8a as claimed.

Returning now to the form of the Fefferman metric, eq. (2.2.1), and using

θ = −ω3 we see that the metric is given (up to conformality) by

ds2 = {1
a

(ω1)2 + a(ω2)2}+ 4ω3 � (
1
8

(a+
1
a

)ω3 − dγ

3
) (2.2.19)
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Written in terms of the basis {e1, e2, e3,
∂
∂γ } this metric is

g(a) =



1
a 0 0 0

0 a 0 0

0 0 1
2(a+ 1

a) −2
3

0 0 −2
3 0


. (2.2.20)

2.3 Reduced light ray equations (step 2.)

The geodesics for any metric ds2 = Σgijdxidxj , Riemannian or Lorentzian, can

be characterized as the solutions to Hamilton’s equations for the Hamiltonian defined

by inverting the metric, and viewing the result as a fiber quadratic function on the

cotangent bundle:

H(x, p) =
1
2

Σgij(x)pipj . (2.3.1)

(See for example, [AM78], [Arn99], or [Mon02].) Here gij(x) is the matrix pointwise

inverse to the matrix with entries gij(x).

If we are only interested in light-like geodesics, then we restrict to solutions

for which H = 0. It is important that these geodesics are conformally invariant. If

d̃s2 = fds2 is a metric conformal to the original, then the corresponding Hamiltonians

are related by H̃ = H/f and the two Hamiltionian vector fields, are related on their

common zero level set {H = 0} by XH̃ = (1/f)XH provided H = 0. This proportionality

of vector fields says that the set of light rays for any two conformally related metrics

ds2, d̃s2 are the same as sets o unparameterized curves.

The Hamiltonian for the Fefferman metric lives on T ∗Z. Any covector p ∈ T ∗z Z
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can be expanded in the basis ω1, ω2, ω3, dγ dual to the basis in which the matrix (2.2.20)

was computed:

p = M1ω1 +M2ω2 +M3ω3 + Pdγ

The inverse matrix to (2.2.20) is

g(a) =



a 0 0 0

0 1
a 0 0

0 0 0 −3/2

0 0 −3/2 −9
8(a+ 1

a)


, (2.3.2)

It follows that the Fefferman Hamiltonian for our left-invariant CR structure with pa-

rameter a is given by

Ha(g, γ;M1,M2,M3, P ) =
1
2
{aM2

1 +
1
a
M2

2 − 3M3P −
9
8

(a+
1
a

)P 2}. (2.3.3)

2.4 Left-invariant geodesic flows.

Our Hamiltonian (2.3.3, 2.2.20) generates the geodesic flow for a left-invariant

(Lorentzian) metric on the Lie group G = SU(2)× S1. In this section we review some

general facts regarding left-invariant geodesic flows, and specify to our situation. We

refer the reader to [AM78], especially chapter 4, or [Arn99], especially Appendix 2, for

background and more details regarding the material of this section and the next.
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2.4.1 Generalities

Let Q be a manifold. Let ds2 be a metric on Q as above. The geodesic flow

for ds2 is encoded by a Hamitlonian vector field X on T ∗Q which is defined in terms of

the Hamiltonian above in eq (2.3.1). The vector field X can be defined by the canonical

Poisson brackets {, } on T ∗Q according to X[f ] = {f,H}, for f any smooth function on

T ∗Q. It is worth noting that the momentum scaling property H(q, λp) = λ2H(q, p), for

p ∈ T ∗qQ corresponds to the fact that the geodesic γ̃(t) with initial conditions (q, λp)

is simply the same geodesic γ(t) as represented by the initial conditions (q, p) but just

parameterized at a different speed: γ̃(t) = γ(λt)

Now suppose that Q = G is a finite dimensional Lie group and the metric

is left-invariant, i.e. left translation by any element of G acts by isometries relative

ds2. The left action of G on itself canonically lifts to T ∗G, and left-invariance of the

metric implies that the Hamiltonian H is left-invariant under this lifted action. Write

g for the Lie algebra of G, and g∗ for the dual vector space to g, which we identify

with T ∗eG, where e ∈ G is the identity. Using the codifferential of left-translation, we

left-trivialize T ∗G = G× g∗, and use corresponding notation (g,M) ∈ G× g∗ for points

in the trivialized cotangent bundle. Then the left-invariance of H means that, relative

to this trivialization we have

H(g,M) = H(M)

depending on M alone.

Let ea be a basis for g, the Lie algebra of G, and ωa the corresponding dual
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basis for g∗. Then we can expand

M = ΣMaω
a

and

H =
1
2

ΣgabMaMb

where gab is the matrix inverse to the inner product matrix gab = ds2(ea, eb). We find

that

{Ma,Mb} = −ΣcdabMd

where cdab are the structure constants of g relative to the basis ea.

It follows that the geodesic flow can be pushed down to the quotient space

(T ∗G)/G = g∗, and as such it is represented in coordinates by

Ṁa = −Σk,b,rg
rbckabMrMk

We will call these the “reduced equations”, or “Lie-Poisson equations”. They are a

system of ODE’s on g∗. We will call the quotient map T ∗G → (T ∗G)/G = g∗ the

reduction map. (Warning: This map is not the reduction map of symplectic reduction.)

2.4.1.1 Momentum Map

The left-action of G on itself, lifted to T ∗G has for its momentum map the

map J : T ∗G → g∗ of right trivialization. In terms of our left-trivialized identification

J(g,M) = Ad∗g−1M where Ad∗g : g∗ → g∗ denotes the dual of the adjoint representa-

tion Adg of G on g. The left-invariance of H implies that each integral curve for the
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Hamiltonian vector field X, - i.e. the geodesics when viewed as curves in the cotangent

bundle, lies within a constant level set of J .

Each individual constant level-set J−1(µ) is the image of a right-invariant one-

form G → T ∗G, and as such is a copy of G in T ∗G. The projection of such a level

set onto g∗ by the reduction map yields as image the co-adjoint orbit through µ , thus:

π(J−1(µ)) = G · µ where G · µ = {M : M = Ad∗gµ, g ∈ G} ⊂ g∗. Since the integral

curves in T ∗G lie on level sets of J , the integral curves of the reduced dynamics lie on

such co-adjoint orbits.

2.4.1.2 Unreducing

Let Gµ denote the isotropy group of µ ∈ g∗ under the co-adjoint action. As

smooth G-spaces we have π(J−1(µ)) = G · µ = G/Gµ , and the projection of J−1(µ)→

π(J−1(µ) is isomorphic to the canonical bundle projection G → G/Gµ with fiber Gµ.

When G is compact then for generic µ we have that Gµ ∼= T , where T is the maximal

torus T of G. If the typical integral curves C for the reduced dynamics are closed curves

C ⊂ G · µ ⊂ g∗, then the integral curves for the original dynamics sit on manifolds

π−1(C) ∩ J−1(µ) which is a T -bundle over the circle T . In our particular situation this

bundle will be trivial, so that it is itself a torus of one more dimension than T .

2.4.1.3 Casimirs

A Casimir on g∗ is a smooth function such that for all smooth functions h

on g∗ we have that {C, h} = 0. The values of a Casimir stay constant on the solu-
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tions to the reduced equation. For G compact with maximal torus T the algebra of

Casimirs is functionally generated by r = dim(T ) polynomial generators, these gener-

ators being polynomials invariant under the co-adjoint action. The common level set

C1 = c1, . . . , Cr = cr of these r Casimirs is, for generic values of the constants ci, a

co-adjoint orbit G · µ for which Gµ = T .

2.4.2 The case of Lorentzian metrics on SU(2)× S1

The Hamiltonian for the Fefferman metric (eq 2.3.3)) computed from step

1 is that of a left-invariant Lorentzian metric on G = SU(2) × S1. We specialize

the discussion of the last few paragraphs to this situation. Then the dual of the Lie

algebra of G splits as g∗ = R3 × R. The R3 factor acts like the well-known angular

momentum from physics. The coordinates as M1,M2,M3, P appearing in eq 2.3.3) are

linear coordinates on g∗ = R3 × R. . Their Lie-Poisson brackets are

{M1,M2} = −M3, {M3,M1} = −M2, {M2,M3} = −M1

together with

{Mi, P} = 0.

The rank of G is 2. The algebra of Casimirs is generated by two Casimirs

P and K = M2
1 +M2

2 +M2
3 (Casimirs)

Using momentum scaling, we can split the analysis of the reduced geodesic flow into

two cases, P = 0, and P = 1.
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2.4.2.1 Case 1: P = 0

We will see that for our Hamiltonian the first case is easily solved. The re-

duced dynamics will be trivial: M1 = M2 = 0, M3 = const. Up on G, the corresponding

geodesics are left translates of the one-parameter subgroup corresponding to the 3 di-

rection.

2.4.2.2 Case 2: P = 1

When P = 1 we have for our Hamiltonian the function H(M, 1) on R3 =

R3 × {1} ⊂ g∗. We are only interested in the light-like geodesics, which means we will

set H(M, 1) = 0. This defines a paraboloid in R3. The integral curves for the reduced

dynamics lie on the intersections of this paraboloid with the spheres K = r2
0. These

intersections typically consist of one or two closed curves, which are the closed integral

curves of the reduced dynamics.

2.4.2.3 Co-adjoint action and identifications

The co-adjoint action of G on g∗ = R3 × R acts trivially on the R factor,

since that corresponds to the Abelian factor S1. The R3 factor of g∗ is identified with

both su(2) and su(2)∗ and the identification is such that the co-adjoint (or adjoint)

action corresponds to the standard action of SO(3) on R3 by way of composition with

the 2:1 cover SU(2) → SO(3). (The S1 factor of G acts trivially on R3.) Under this

identification, the co-isotropy subgroup SU(2)L ⊂ SU(2) of a non-zero vector L ∈ R3

consists of the one-parameter subgroup generated by L, and in SO(3) to rotations about
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the axis L.

2.4.2.4 Unreducing

The momentum map J : T ∗G→ R3 × R splits into

J = (L, J0) = ((L1, L2, L3), J0) with J0 = P.

The fact that J0 = P is the R component of J is a reflection of the triviality of the

co-adjoint action on the R factor of g∗ = R3 × R.

The solution curves back up on T ∗G corresponding to a given reduced solution

curve C lie on submanifolds J−1(µ) ∩ π−1(C). The value of µ = (L,P ) is constrained

by the co-adjoint orbit on which C lives. This constraint is simply K = ΣL2
i . Only

the case K 6= 0 is interesting. Then the isotropy Gµ is one of the maximal torii Gµ =

SU(2)L×S1 = S1×S1 ⊂ SU(2)×S1. The first S1 factor is the circle SU(2)L as in the

paragraph 2.4.2.3. It follows from the dicussion of (2.4.1.2) that J−1(µ) ∩ π−1(C) is a

Gµ = S1×S1 bundle over C. We also saw in (2.4.1.1) that J−1(µ) ∼= G = S3×S1. The

projection π restricted to J−1(µ) is the composition S3×S1 → S3 → S2 ⊂ R3×{P = 1}

where the last map is the Hopf fibration. The Hopf fibration is trivial over S2 \ {P} for

any point P ∈ S2. It follows that J−1(µ) ∩ π−1(C) in isomorphic to a three torus, T 3.

One factor of this three-torus is the S1 factor of SU(2)×S1, and corresponds to the extra

angle γ we add when constructing the circle bundle on which Fefferman’s metric lives.

We project out this angle when forming the chains. Thus the chains lie on two-torii

T 2 ⊂ SU(2). One angle of the two-torus corresponds to a coordinate around a curve C

in the reduced dynamics. The other angle is generated by the circle SU(2)L ⊂ SU(2).

43



2.5 The reduced Fefferman dynamics.

2.5.1 The case P = 0

When P = 0 we see that H = 1
2(aM2

1 + 1
aM

2
2 ). Since H = 0 we have that

M1 = M2 = 0 along light-like solutions with P = 0. From the constancy of the Casimir

K it follows that M3 = const. also, so that the reduced solution is a constant curve.

Generally speaking, for a left-invariant metric on a Lie group G, the geodesics in G

which correspond to a constant solution M(t) = const. = M∗ of the reduced equations

consist of the one-parameter subgroup exp(tξ) and its left translates gexp(tξ), where

Iξ = M∗ and I is the “inertial tensor”, i.e. the index lowering operator corresponding

to the metric at the identity. In our case I maps the e3 axis to the M3 axis, so that

the corresponding geodesic is the 1-parameter subgroup exp(te3 and its translations

gexp(te3). (More accurately, I−1(0, 0,M3, 0) is a linear combination of e3 and the basis

vector ∂
∂γ . We project out the angle γ to form the chain corresponding to a light-like

geodesic, so these chains are indeed generated by e3.) These P = 0 chains are precisely

circles of the Hopf fibration S3 = SU(2)→ S2 = SU(2)/S1, where the S1 is generated

by e3 and acts by right multiplication.

2.5.2 The case P = 1.

Set P = 1 in H to get

Ha(M1,M2,M3; 1) =
1
2

(aM2
1 +

1
a
M2

2 − 3M3 − c(a))
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Figure 2.1: A schematic diagram of a P -slice. Reduced solutions lie in the intersection
of the paraboloid H = 0 and the growing level spheres K =const.

where we have set

c(a) = −9
8

(a+
1
a

).

Recall that we are only interested in the solutions for which H = 0. The surface H = 0

is a paraboloid which we can express as the graph of a function of M1,M2:

{H = 0} = {(M1,M2,M3) : M3 =
1
3

(aM2
1 +

1
a
M2

2 − c(a))} (2.5.1)

The solution curves must also lie on level sets of K = M2
1 +M2

2 +M2
3 . In other words,

the solution curves are formed by the intersection of the paraboloid H = 0 with the

spheres K = r2
0. See figure 2.1. These intersection curves are easily understood by using

M1,M2 as coordinates on the paraboloids, i.e. by projecting the paraboloid onto the

M1 −M2 plane. They are depicted in figure 2.2.

Eq 2.5.1 yields M3 in terms of M1 and M2 on the paraboloid. Plug this
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Figure 2.2: Phase portrait for the reduced equations obtained via the projection in
figure 1, for a = 2 , P = 1, and K is small.

expression for M3 into K to find that on the paraboloid

K = (1− 2
9
c(a)a)M2

1 + (1− 2
9
c(a)
a

)M2
2 +

1
9

(aM2
1 +

1
a
M2

2 )2 + c(a)2.

For a close to 1 the coefficients of the quadratic terms, M2
1 and M2

2 are positive, and close

to 1/2. The only critical point for K is the origin and is a nondegenerate minimum.

It follows that all the intersection curves are closed curves, circling the origin. As a

increases the sign of the coefficient in front of the M2
1 term eventually crosses 0 and

becomes negative. This happens when 1− 2
9c(a)a = 0 which works out to a =

√
3. After

that the origin becomes a saddle point for K, and the level set of K passing through the

origin has the shape of a figure 8, with the cross at the origin. Inside each lobe of the

eight is a new critical point. See figure 2.2 below. This change as a crosses past
√

3 is

an instance of what is known as a “Hamiltonian pitchfork bifurcation” or “Hamiltonian

figure eight” bifurcation among specialists in Hamiltonian bifurcation theory.

To re-iterate: for 1 < a <
√

3 all reduced solution curves are closed and

surround the origin. For a >
√

3 the origin becomes a saddle point, and the level set of
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K passing through the origin consists of three solution curves: the origin itself which is

now an unstable equilibrium, and two homoclinic orbits corresponding to the two lobes

of the eight. Being homoclinic to the unstable equilibrium, it takes an infinite time to

traverse either one of these homoclinic lobes.

The situation is symmetric as a decreases, with the bifurcation occurring at

a = 1/
√

3. This is as it must be, from the discrete symmetry alluded to in Proposition

2.1.1, namely that a 7→ 1/a while M1 7→M2,M2 7→M1 is a symmetry of the system.

2.6 Step 4: Berry phase and unreducing.

As per the discussion in (2.4.2.4), associated to each choice of closed solution

curve C ⊂ R3 × {1} and each choice µ 6= 0 of momentum, we have a family of chains

which lie on a fixed two torus T 2 = T 2(C;µ) ⊂ T ∗S3. Our question is : are the chains

on this T 2 closed? The Fefferman dynamics restricted to T 2 is that of linear flow on a

torus. Let φ be a choice of angular variable around C, which we call the base angle.

Let θ be the other angle of the torus, which we call the ‘vertical angle’ chosen so that

the projection T 2 → C is (φ, θ) 7→ φ. We take both angles defined mod 2π. As we

traverse the chain, every time that the base angle φ varies from 0 to 2π, (which is to

say we travel once around C) the vertical angle θ will have varied by some amount ∆θ.

The amount ∆θ does not depend on the choice of chain within T 2. If ∆θ is a rational

multiple of 2π then the chains in T 2 are all closed. If ∆θ is an irrational multiple of 2π,

then none of the chains in T 2 close up, and we have the case of quasi-periodic chains
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corresponding to irrational flow on T 2.

Without loss of generality we can suppose that µ = r0e3 where e3 denotes the

final element of the standard basis of su(2)∗ = R3. For why we can assume this without

loss of generality refer to subsection 2.4.2.3 above. In this case K = r2
0 and this fixing

of Kalmost fixes the reduced curve C. (See the second paragraph in the proof of the

proposition immediately below for details.) Remembering the modulus parameter a, we

see that

∆θ = ∆θ(K, a).

Since the dynamical system defined by the Fefferman metric depends analytically on

initial conditions and on the parameter a, we see that ∆θ(K, a) is an analytic function

of a and K. It follows that in order to prove theorem 1, all we need to do is show that

for a single value of a, the function K 7→ ∆θ(K, a) is non-constant. We see that in

order to prove Theorem 1 it only remains to prove:

Proposition 2.6.1 For a >
√

3 the function K 7→ ∆θ(K, a) is non-constant.

Proof of Proposition.

Fix a >
√

3. Consider the value K = c(a)2 corresponding to the homoclinic

figure eight through the origin in the M1M2 plane. We will show that

lim
K→c(a)2

−

∆θ(K, a) = +∞. (2.6.1)

and that for K slightly less than c(a)2 the value of ∆θ(K, a) is finite. It follows that

the function K 7→ ∆θ(K, a) varies, as required.
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Let m(a) denote the absolute minimum of K on the paraboloid. The minimum

is achieved at two points, the elliptic fixed points inside each lobe of the homoclinic eight.

For values of r2
0 between m(a) and c(a)2 the level set K = r2

0 consists of two disjoint

closed curves C1, C2, one inside each lobe of the eight. These two curves are related

by the reflection (M1,M2) 7→ (−M1,M2). The entire dynamics is invariant under this

reflection, so that the value of ∆θ on C1 equals its value on C2. (The two components

are traversed in the same sense.) Consequently ∆θ(K, a) is well-defined and finite for

m(a) < K < c(a)2, being equal to the common value of ∆θ(Ci).

In what follows we arbitrarily fix one of the two components of K = r2
0 and

call it C.

The key to establishing the limit (2.6.1) is a Berry phase formula for ∆θ which

mimics earlier work of one of us ([Mon91]). The formula expresses ∆θ as the sum of

two integrals:

∆θ(K, a) = dynamic + geometric (2.6.2)

where

dynamic =
1√
K

∫ T

0
fdt

and

geometric = −(oriented solid angle).

Both the dynamic and the geometric terms can be expressed as line integrals around C.

In the dynamic term, T = T (K) is the period of the curve C, and where

f =
1
2

[aM1(t)2 +
1
a
M2(t)2 + c(a)]. (2.6.3)
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The integral is done around the projection of the curve C to the M1M2. The time t is

the time parameter occuring in the reduced equations, which is the same as the geodesic

time. In the second formula, the oriented solid angle is the standard oriented solid angle

enclosed by a closed curve such as C in space. The absolute value of an oriented solid

angle is always bounded by 4π. On the other hand, 1√
K
f > 1

2
√
K
c(a). Consequently,

if we let the curve C approach the lobe of the homoclinic orbit which contains it, then

its period T (K) tends to ∞. We now see that the dynamic term of eq. (2.6.2) tends to

+∞. Thus, the corollary is proved once we have established the validity of the Berry

phase type formula (2.6.2).

2.6.1 Proof of Berry phase formula

We begin the proof of eq. (2.6.2) by recalling by summarizing our situation,

and applying the discussion of (2.4.2.4) for relating the reduced dynamics to dynamics

in T ∗(SU(2)×S1) and curves in T ∗SU(2). We have fixed J = (L,P ) to equal the value

µ = (r0e3, 1) ∈ R3×R where r0 6= 0. The values of the Casimirs which characterize our

reduced curve C are then K = r2
0, and P = 1. The Fefferman light-like geodesics CF

associated to C and our choice of µ must lie on the manifold J−1(µ)∩ π−1(C) which is

a three three-torus inside T ∗(SU(2) × S1). Project this three torus into T ∗S3 via the

the product structure induced projection: pr2 : T ∗(S3 × S1) = T ∗S3 × T ∗S1 → T ∗S3

and in this way arrive at a two-torus X(C) = pr2(J−1(µ))∩ π−1(C)) ⊂ T ∗SU(2)× {1}

which projects onto C via the canonical projection T ∗(SU(2)) × {1} → R3 × {1}. We

will soon need that X(C) ⊂ L−1(r0e3)×{1} which follows from the fact that J = (L,P )
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so that pr2(J−1(µ)) = L−1(r0e3)×{1}. The canonical projection just refered to is that

of the quotient map T ∗(SU(2)) → R3 for the (lifted) left action of of SU(2) on itself.

The momentum map associated to this map is L. We will also use that the canonical

projection, T ∗(SU(2)) → R3 restricted to level sets of L corresponds to symplectic

reduction for T ∗SU(2). The chains ch associated to the reduced solution C and our

choice of momentum axis e3 lie in the two-torus X(C). To coordinatize X(C) choose

any global section Ĉ : C → X(C) and let φ be an angular coordinate around C so

that Ĉ is a closed curve in X(C) parameterized by φ and projecting onto C. Now act

on Ĉ by the one-parameter subgroup exp(θe3) = SU(2)L. Then any point of X(C)

can be written as exp(θe3) · Ĉ(φ) ∈ X(C) where θ, φ are global angular coordinates.

(The multiplication “·” of “exp(θe3) · Ĉ(φ)” denotes the action of the group element

exp(θe3) ∈ SU(2) on T ∗SU(2) by cotangent lift.)

Every cotangent bundle T ∗Q is endowed with a canonical one-form. Let Θ be

the canonical one-form on T ∗SU(2). Our Berry phase formula (2.6.2) will be proved

by applying Stoke’s theorem to the integral of Θ around a well-chosen closed curve c in

X(C).

This curve curve c ⊂ X(C) ⊂ T ∗SU(2) × {1} is the concatenation of two

curves. One curve is any one of the chains ch corresponding C –which is to say – the

projection by pr2 of any one of the Fefferman geodesics CF ⊂ J−1(µ)∩π−1(C) covering

C. We parameterize ch by the Fefferman dynamical time, 0 ≤ t ≤ T making sure to

stop when, upon projection,we have gone once round C, so that C(0) = C(T ). Having

gone once round C, we must have ch(T ) = exp(∆θe3) · c(0). The “holonomy” ∆θ is
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the angle we are trying to compute. For the other curve cgroup we simply move

backwards in the group direction to close up the curve: cgroup(s) = exp(−se3) · ch(T ).

Our curve c is then the concatenation + of these two smooth curves:

c = cgroup + ch.

The curve c is a closed curve lying in the two-torus X(C). Not all closed curves

in the two-torus bound discs, but X(C) ⊂ L−1(r0e3) × {1} ∼= SU(2) which is simply

connected, so that c does bound a disc D̃ ⊂ L−1(r0e3)× {1}. Apply Stoke’s formula:∫
D̃
dΘ =

∫
cgroup

Θ +
∫
ch

Θ. (2.6.4)

The proof of (2.6.2) proceeds by evaluating each term in eq (2.6.4) separately.

Write S2 for the two-sphere K = r2
0, P = 1. Write πr0 : L−1(r0e3)→ S2 for the

restriction of the canonical reduction map π : T ∗SU(2)× {P = 1} → R3 × {1}. Under

πr0 the disc D̃ projects onto a topological disc D ⊂ S2 which bounds our reduced curve

C. S2 is the symplectic reduced space of T ∗SU(2) by the left action of SU(2), reduced at

the value L = r0e3. A basic result from symplectic reduction, essentially its definition,

asserts that as a symplectic reduced space S2 is endowed with a 2-form ωr0 (the reduced

symplectic form) defined by π∗r0ωr0 = i∗(−dΘ), where i : L−1(r0e3) → T ∗SU(2) is the

inclusion. Let dΩ denote the unique rotationally invariant two-form on the two sphere,

normalized so that its integral over the entire sphere is 4π. (The form dΩ is not closed,

but the notation is standard, and suggestively helpful, so we use it.) It is well-known

that ωr0 = −r0dΩ, which is to say, that

r0(π∗r0(dΩ)) = i∗r0(dΘ).
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(See [AM78] for the standard “high-tech” computation, and [Mon91] for an elementary

computation of this well-known fact.) Thus

∫
D̃

(dΘ) =
∫
D
r0dΩ = r0( solid angle enclosed by C) (2.6.5)

It is worth noting that this area is a signed area, positive or negative depending on the

orientation of the bounding curve C of D.

It follows from the definition of the momentum map on the cotangent bundle

that Θ( dds(exp(se3)(p)) = r0 for any point p ∈ L−1(r0e3). It follows that

Θ = r0dθ along cgroup,

and thus ∫
cgroup

Θ = −r0∆θ. (2.6.6)

where the minus sign arises because in travelling along cgroup we moved backwards in

the e3-direction.

It remains to compute
∫
ch Θ. For this computation we will have to work on

T ∗(SU(2)× S1). There we have the canonical one form

ΘF = Θ + Pdγ. (2.6.7)

Now relative to any coordinates xa for SU(2) × S1, where pa are the corresponding

momentum coordinates we have

ΘF = Σpadxa.
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Plugging in along one of the light-like Fefferman geodesics and using the metric relation

pa = Σgabẋa where gab are the metric components we see that

ΘF (ĊF (t)) = 2H = 0

where the last equality arises becasue the Fefferman geodesic is light-like. Since pr2 ◦

CF = ch where pr2 : T ∗SU(2) × T ∗S1 → T ∗SU(2) is the projection, we have, from

(2.6.7),

Θ(
d

dt
ch) = −P γ̇ = −γ̇,

where we used P = 1. It follows that∫
ch

Θ = −
∫ T

0
γ̇dt

Now γ̇ = ∂H
∂P . Referring back to the equation for the Hamiltonian, and remembering

that we set P = 1 after differentiating we see that

γ̇ = −3
2
M3 − c(a).

Now using the formula for M3 in terms of M1,M2 and a bit of algebra we see that

−γ̇ = f,

where f is as in the eq (2.6.3). Thus:∫
ch

Θ =
∫ T

0
fdt. (2.6.8)

Putting together the pieces (2.6.5), (2.6.6), (2.6.8) into Stokes’ formula (2.6.4)

and some algebra yields the Berry phase formula (2.6.2).
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Part II

Singular Curves and Monsters
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Chapter 3

Introduction

“A colheita é comum, mas o capinar é sozinho.”

Grande sertão: veredas - Página 57, de João Guimarães Rosa - Publicado
por J. Olympio, 1958 - 571 páginas
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Chapter 4

Our results: Curve singularities and

monster towers

This is a formatted reproduction of our paper which has been submitted to the
Journal of the London Mathematical Society.
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Part III

Conclusion
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Chapter 5

Conclusion
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Appendix A

Some Ancillary Stuff About Chains

A.1 The dynamics when a = 1.

The chains for the standard structure on S3 are formed by intersecting S3 ⊂ C2

with complex lines in C2. See [Gol99]. In this appendix we verify that the Fefferman

metric description of chains when a = 1 yields these circles.

The key to our verification is the observation that when a = 1 the Fefferman

Hamiltonian (2.3.3) splits into two commuting pieces H = H0−H1 with {H0, H1} = 0.

This observation and the following method of computation is the same one which led to

explicit formulae for subRiemannian geodesic flows in chapter 11 of [Mon02], formulae

identical to that of Lemma 1 below. We have H0 = 1
2K = 1

2(M2
1 + M2

2 + M2
3 ) and

H1 = 1
2(M3 − 3

2P )2. Since the two Hamiltonians commute, their flows up on the

cotangent bundles commute. This observation leads to the explicit formula for the
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chains through the identity:

ch(t) = exp [t(M1e1 +M2e2 +M3e3)] exp
[
−t(M3 −

3
2
P )e3)

]
(A.1.1)

The Mi, P are constants which satisfy the H = 0 condition

(M2
1 +M2

2 +M2
3 ) = (M3 −

3
2
P )2.

In this formula (A.1.1) for the chains, the first factor corresponds to the flow of H0,

whose integral curves correspond to one-parameter subgroups in SU(2), and the second

factor corresponds to the projection to SU(2) of solutions to the Hamilton’s equation

for −H1.

To verify that the chains computed via Fefferman’s metric are the circles de-

scribed above we use two lemmas from linear algebra.

Lemma 1. ( circles in SU(2)) Every geometric circle in SU(2) = S3 through

the identity can be parameterized as γ(t) = exp(αt)exp(−βt) where α, β ∈ su(2) are Lie

algebra elements of the same length.

Lemma 2. When β = ce3 as in equation (A.1.1) then these circles sit on

complex lines.

Remark. The condition |α| = |β| in lemma 1 is a 1 : 1 resonance condition.

The proofs rely on identifying the quaternions H with C2 and hence the group

of unit quaternions with SU(2) and S3. Since the contact plane is annihilated by ω3,
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and is to correspond with the TxS3 ∩ J(TxS3), we must take the identification C2 ∼= H2

such that the complex structure on C2 corresponds to right multiplication by k, where

k is to correspond to e3 in su(2).

Proof of lemma 1. In a Euclidean vector space, (such as H) the circles are

described by c(t) = P +r(cos(ωt)e1 +sin(ωt)e2) where P is the center of the circle, r its

radius, and where e1, e2 are an orthonormal basis for the plane through P containing the

circle. Now use the fact that for a unit quaternion n we have exp(nt) = cos(t)1+(sin(t)n.

Thus γ(t) of lemma 1 is equal to (cos(t) + sin(t)α)((cos(t) − sin(t)β). Algebra and

trigonometry identities yield

γ(t) =
1
2

[(1− αβ) + cos(2t)(1 + αβ) + sin(2t)(α− β)]

which we can rewrite as

γ(t) = P + cos(2t)v + sin(2t)w,

with P = 1
2 [(1−αβ), v = 1

2(1+αβ) and w = 1
2(α−β). It remains to show that v and w

have the same length and are orthogonal. Using ᾱ = −α and remembing that α is unit

length we see that we have v = −αw and so indeed |v| = |w|. Their common length

is the radius r of the circle. Since the Euclidean inner product is given by Re(vw̄) the

fact that v = −αw also shows that v and w are orthogonal. Q.E.D.

Proof of lemma 2. Let v, w be as in the proof of lemma 1. We must show

that the real 2-plane spanned by v and w is a complex line when β = k. Recall that under

our identification of C2 with H the complex structure corresponds to multiplication on
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the right by k. Now compute wk = v, to see that the span of v and w is indeed a

complex line. Q.E.D.

A.2 Relation to the Rossi example.

Rossi [Ros65] constructed a much-cited example of a family of non-embeddable

CR-structures on S3. The purpose of this appendix is to show that Rossi’s family is

isomorphic to our left-invariant CR family with a 6= 1. This isomorphism is well-known

to experts. We include it here for completeness. We use the description of CR manifolds

to be found in the remark towards the beginning of section 2.2.1. In that construction

a CR structure is defined as the span of complex vector field. Let Z be the complex

vector field corresponding to the standard CR structure. In terms of our left invariant

frame, the Lewy operator of the standard structure on S3 can be written as:

Z = e1 − ie2. (A.2.1)

See equation (2.2.2) of section 2.2.1. Then Rossi’s perturbed CR structure is

defined by

Zµ = Z − µZ̄

with µ a real parameter. On the other hand, we saw (again, cf. equation 2.2.2) that

our left-invariant CR structures correspond to the span of

Za = e1 −
i

a
e2.
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Set a = 1 + ε and expand out: Za = e1 − i(1 + ε)e2 = e1 − ie2 − iεe2 = Z + 1
2ε(Z − Z̄).

Upon rescaling Za by dividing by (1 + 1
2ε) we see that span(Za) = Span(Z − µ(ε)Z̄),

where µ(ε) =
1
2
ε

1+ 1
2
ε
. This shows that the left-invariant structure for a corresponds to

Rossi’s structure for µ = µ(ε).

The important facts concerning Rossi’s structures for µ 6= 0 is that every CR-

function for one of these structures on S3 is even with respect to the antipodal map

(x, y, z) 7→ (−x,−y,−z). We recommend Burns’ [Bur79] for the proof. This forced

evenness implies that there is no CR embedding of our left-invariant structures for

a 6= 1 into Cn for any n. The structures do however, have explicit 2 : 1 immersions

into C3 which can be found in Rossi. See also Burns ([Bur79]) or Falbel [Fal92]. Upon

taking the quotient by the antipodal map each a 6= 1 structure induces a left-invariant

CR structure on RP 3 = SO(3) which does embed into C3.

This embedded image bounds a domain within an explicit Stein manifold S ⊂

C3. We shall return to this point in the next section.

A.2.1 Representation theory behind the scenes

If we view S3 as embedded in C3 as the unit sphere there : {|z|2 + |w|2 = 1},

the associated Lewy operator (A.2.1) can be expressed as:

Z0 = w
∂

∂z̄
− z ∂

∂w̄
. (A.2.2)

In these coordinates we have:
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Zt = Z0 + tZ0, t ∈ R.

Using purely representation-theoretic arguments we demonstrate the Burns-

Rossi structures cannot embed globally, fulfilling a claim in the previous paragraph. We

also show that these CR structures, after dividing by an appropriate discrete kernel,

embed though in C3 as a SO(3) invariant structure. This reproduces in part Burns’

original argument, and completes Gil’s suggestion to re-derive Burns embedding map

through purely algebraic means.

We start with a lemma.

Lemma A.2.1 Every CR-function for one of these structures on S3 is even with respect

to the antipodal map (z, w) 7→ (−z,−w).

Corollary A.2.1 Since CR-functions do not separate antipodal points, we cannot

have a global embedding.

A.2.1.1 Proof of Lemma

First we recall that the space of square integrable functions on the three-sphere

decomposes, topologically, as

L2(S3, dg) =
⊕̂
p,q

Hp,q, (A.2.3)
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where Hp,q are harmonic1 homogeneous polynomials of type (p, q) and dg is the Haar

measure. By that we mean that any polynomial in Hp,q is a linear combination of

monomials of the form zk1 z̄k2wk3w̄k4 , where k1 + k2 = p and k3 + k4 = q. (Restricted

to S3.) Recall that the space of polynomials P = C[z, z̄, w, w̄] breaks into homogeneous

components (‘Newton’s theorem’) and we can write

P =
⊕

Pn,

Pn = { homogeneous polynomials of degree n }. Let us call C[S3] the restriction2 of P

to S3. It follows from Weierstrass’ theorem C[S] is a dense subset of L2(S3, dg). Each

component Hn breaks further into Hn =
⊕

p+q=nH
p,q, with Hp,q described as above.

The action of SU(2) in these polynomial spaces is the contravariant one, (gh)(m) :=

h(g−1m). In fact, for a given n all the Hp,q with p+q = n are irreducible representations

of SU(2). We give a proof of this fact this below. It follows from a simple computation

on the bi-degrees that

Z0(Hp,q) ⊂ Hp−1,q+1.

To verify these maps are non-trivial we must remark that if zn ∈ Hn,0, then Z0
n(zn) =

n!wn 6= 0 in H0,p. Therefore Hp,q Z0→ Hp−1,q+1 is non-trivial as desired. Then, by Shur’s

lemma, the intertwining operator induced by Z0 must be an isomorphism.3 A similar

argument applied to Z0 also shows that Hp,q Z0→ Hp+1,q−1 is an intertwining operator.
1The kernel of 4R4 is invariant under the action of SO(4) and consequently invariant under SU(2)

embedded in SO(4) as the diagonal subgroup of SU(2)R × SU(2)L/{±1}. Consequently, within each
subspace of homogeneous polynomial of degree n, called here P n, the kernel ker4P n is also SU(2)
invariant.

2It is easy to check that the restriction map commutes with the action of SU(2).
3Provided that p− 1 ≥ 0, q ≥ 0.
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Now take a solution u of the perturbed Lewy operator Zt : Zt(u) = 0. Such

functions would serve as coordinates functions for a potential embedding. Using (A.2.3)

we consider a Hilbert space decomposition of u in terms of uk ∈ Hk:

u =
∑
k≥0

uk.

Then, Zt(uk) = 0,∀k. Assume uk = u2l+1 =
∑

p+q=2l+1 u
p,q, and write out Zt(uk) = 0

in Hp,q components. Therefore,

(k, 0) : 0 = Z0(uk−1,1) (A.2.4)

(k, 1) : −tZ0u
k,0 = Z0(uk−2,2)

(k − 2, 2) : −tZ0u
k−1,1 = Z0(uk−3,3)

...

(1, k − 1) : −tZ0u
2,k−2 = Z0(u0,k)

(0, k) : −tZ0u
1,k−1 = 0.

These series of equations together with the injectivity of each one of the Z0, Z0 on the

respective spaces, and the assumption that k = 2l+1 implies that u2l+1 = 0, as desired.

Q.E.D.

A.2.1.2 Proof that the Hp,q spaces are irrep’s of SU(2)

Representations of SU(2) are the same as representations of su(2) which in

turn, by complexification, are the same as representations of sl(2,C). We are going to
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describe the action of su(2) on Hn, the space of homogeneous harmonic polynomials of

degree n, in terms of maximal weight representations [ES02]. Let h ∈ sl(2,C) be the

element

 1 0

0 −1

. The the action of h on polynomials can be described as follows:

Lhp(z, z̄, w, w̄︸ ︷︷ ︸
=x∈R4

) =
d

dt
|t=0p(exp(−th)x) =

= 〈∂zpdz + ∂z̄pdz̄ + ∂wpdw + ∂w̄pdw̄,−z∂z − z̄∂z̄ + w∂w + w̄∂w̄〉,

where the “angled brackets” denote the natural pairing of a vector and a covector. In

particular, h(zk1 z̄k2wk3w̄k4) = (k3 + k4)− (k2 + k1). Now using the structure theory of

sl(2,C) we decompose Hn into weight spaces:

Hn =
⊕
k

V [k],

where

V [k] = {p ∈ V [k] ⇐⇒ h(p) = kp}.

By direct inspection, one verifies that the maximal weight k of this representation is

k = n, and that V [n] is generated by wpw̄q, p + q = n. Since any representation of

sl(2,C) is completely reducible, we must have:

Hn ∼=
⊕

dkVk,

where Vk is isomorphic to the irrep Sk(C2).

Let us denote by e (resp. f) the raising (resp. lowering) operator [ES02]

associated to the sl(2, C) action on V . Since V [n] is the subspace of maximal weight we

must have e(V [n]) = 0. By fixing a basis {b1, b2, . . . , bn+1} on V [n], each basis vector bi
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will generate an irrep of sl(2, C) span by bi, f(bi), f2(bi), . . . . Now recall that V [n] itself

has dimension (n+ 1). On the other hand, each Hp,q itself is an invariant subspace.

Lemma A.2.2 (Dimension of the kernel of the Laplacian)

ker(4)|Pn = dim(Hn) = dim(Sn(R4))− dim(Sn−2(R4)),

where Sn(R4) is the space of homogeneous polynomials in four variables of degree n.

The proof is an induction on the degree n. See [Arn04] for more details on

spherical harmonics.

Corollary A.2.2

dim(Hn) = Cn+3
3 − Cn+1

3 = (n+ 1)2,

where in the formula Cn+k
k is the number of polynomials of degree n in (k+1) variables.

Since each subspace Hp,q is invariant, and contains an element of maximal weight n,

namely wpw̄q, they all must contain a copy of Sn(C2) embedded as the irrep generated

by wpw̄q. But according to lemma (A.2.2), dim(Hn) = (n + 1)2 and Hn =
⊕
Hp,q

where each Hp,q contains a subspace of dimension (n + 1). We have thus proved that,

by dimensionality, that each Hp,q is itself a degree (n+ 1) irrep of SU(2). Q.E.D.

Remark. Permit us to say it would be interesting to analyze from this same point

view, i.e. representation theory, spherical harmonics etc., if the left-invariant structures

of SL2(R) or SE(R2) are also globally realizable. We will leave however these prospects

of exploration to the interested reader.
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A.2.1.3 Proof of Burns’ embedding formula

Theorem A.2.1 The space of solutions of Zt(u) = 0 in H2 is three-dimensional, and

spanned by the “almost-embeddings”:

X =
√

2
2i
[
z2 + w2 + t(z2 + w2

]
, (A.2.5)

Y =
√

2
2
[
z2 − w2 − t(z2 − w2)

]
,

Z =
√

2 [zw − tzw] .

One can easily verify that the coordinate functions are invariant under composition un-

der the antipodal map, and in fact provide a global embedding of SU(2)/{±I} ∼= SO(3).

Proof of the theorem. Let us denote the irrep of G = SU(2) on Sym2(C2) by V . Now

consider H = SO(3) ∼= SU(2)/{±I}. In general, when H is a subgroup of index two in

a group G, there is a close relationship between their representations [FH91].

Let U and U ′ denote the trivial and nontrivial representation of G obtained

from the two representations of G/H4. For any representation V of G, let V ′ = V
⊗
U ′.

In our case, we have that V ∼= V ′ since up to isomorphism SU(2) has only one three-

dimensional irrep. Next if we consider W to be the restriction to SO(3) of the standard

representation of SU(2) on V it follows from a result in ([FH91], pp. 64) that W splits

as W = W ′
⊕
W ′′ where W ′ is conjugate to W ′′, but non-isomorphic. This splitting

of the restriction W is the group-theoretic justification for Burns’ embedding formula.

Q.E.D.
4Since G/H has order two, the only two irreps G/H the trivial one and the ‘antipodal’ irrep which

sends a vector to its antipodal image.
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Remark A.2.1 Another more “straightforward” explanation for this fact is as follows.

Let v2, v �w,w2 be a basis for V = Sym2(C2) viewed as a complex vector space, where

v, w are the canonical basis of C2. There is a natural action of SO(3) on V obtained

by restriction of the SO(3,C) action there, and this latter representation is irreducible.

Since SO(3) also preserves a nondegenerate symmetric bilinear form on V it must be real

[FH91]. This implies that there exists a complex linear SO(3)-module homomorphism

φ such that φ2 = Id and which splits V into a sum of real eigenspaces V−
⊕
V+, also

SO(3) invariant subspaces.

A.2.1.4 What is so interesting about these embeddings?

A little bit algebra shows that under Burns’ embedding A.2.5, the source space

C2 gets mapped to

(1 + t2)(X2 + Y 2 + Z2) = 2t(|X|2 + |Y |2 + |Z|2) ⊂ C3, (A.2.6)

which is not a complex manifold but the original three-sphere gets mapped to

Qt ∩ S5
t
∼= SO(3), 5 (A.2.7)

where S5
t = {|X|2 + |Y |2 + |Z|2 = (1 + t2)} and Qt =

{
X2 + Y 2 + Z2 = 2t

}
. We are

assuming the target complex ambient space C3 has coordinates X,Y, Z ∈ C. From now

on, and to give our problem yet another geometric twist, we can think of the CR three

manifolds obtained via Burns’ embedding as boundaries of the portion of quadric Qt

sitting inside the 5-sphere S5
t . Permit us to denote the corresponding complex manifold

5The resulting quadric is isometrically invariant under SU(2) action.
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by Σ2
t . It is worthwhile pointing out that the resulting manifold in the critical case t→ 0

has a conical singularity at the origin.

Based on previous geometric observation, and the purely geometric synthetic character-

ization of the chains for the standard structure on the 3-sphere, Dan Burns asked us

the following question:

Find a “synthetic” construction of the chains for the left-invariant (image)
structures, in the spirit of the construction of the chains for the standard
structure, but now using complex curves in Σ2

t .

Robin Graham upon seeing this challenge suggested to us first trying to equip the open

complex surface Σ2
t with a canonical complex hyperbolic metric, such as the Bergman

metric on the unit ball in C2, in the spirit of geometric function theory from which one

could try construct Riemann surfaces which would intersect the boundary at “infinity”

along chains. Though we did not entirely succeed in providing a synthetic construction

for the left-invariant chains, our quest for a possible family of complex hyperbolic metrics

on the Σ2
t proved to be very illuminating.

Such metrics, though in an entirely different context, were first predicted6 by

Andrew S. Dancer and Ian A. B. Strachan [DS94]. We dedicate our next session to

shortly explain the Dancer-Strachan proof.

A.3 Kähler-Einstein metrics with SU(2) action

Dancer and Strachan (op. cit.) took the challenge of analyzing Kähler-Einstein

metrics in real dimension four admitting an isometric action of SU(2) with generi-
6An infelicitous surprise, since your present author had ambitions to construct these metrics himself!
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cally three-dimensional orbits. On the other hand, if there exists a family of equiv-

ariant Kähler-Einstein metrics in Σ2
t and conformally asymptotic to a left-invariant

CR strucutre then as suggested by Robin Graham these metrics are expected to have a

SO(3) isometry. It is therefore expected that if there is a metric solving Graham’s prob-

lem such metric should lie within the two families constructed by Dancer and Strachan.

As it happens, our left-invariant CR structures can be read off from the asymptotic

expansion at infinity of their metrics.

A.3.1 Generalities. Cohomogeneity one Kähler-Einstein metrics

Suppose that we have a metric g in four real dimensions with an isometric

action of SU(2). We also suppose that the generic orbit is three-dimensional. The

union of the principal orbits will form an open dense set in M . On this set we can write

the metric as

g = dt2 + gt, (A.3.1)

where t is the arc-length parameter along a geodesic orthogonal to the group orbits, and

gt is homogeneous metric on the orbits. In general the homogeneous part will look like:

gt = a(t)2σ2
1 + b(t)2σ2

2 + c(t)σ2
3,

where the σi are invariant one-forms satisfying dσ1 = σ2 ∧ σ3 and cyclically . For

the purpose of our analyze, it is convenient to introduce a new transversal coordinate

denoted by u and such that dt = (abc)du. To avoid additional bookkeeping we rewrite
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the metric as:

g = (abc)2dt2 + a(t)2σ2
1 + b(t)2σ2

2 + c(t)σ2
3, (A.3.2)

where by abuse of notation we are also denoting the new parameter u by t.

From now on derivatives with respect to t shall be denoted by a prime, ’ .

We have an orthonormal coframe for g given by e0 = (abc)dt, e1 = aσ1,

e2 = bσ2 and e3 = cσ3 and one makes a choice of orientation so that

Ω+
1 = e0 ∧ e1 + e2 ∧ e3,

Ω+
2 = e0 ∧ e2 + e3 ∧ e1,

Ω+
3 = e0 ∧ e3 + e1 ∧ e2,

are self-dual two-forms. Assuming that the metric is Kähler with respect to some

complex structure, and that there is a complex structure inducing this orientation.

Now the Kähler form Ω on a complex surface is always self-dual and therefore, Ω =

A(t)Ω+
1 +B(t)Ω+

2 + C(t)Ω+
3 . The Kähler condition imposed to Ω implies:

(Abc)′ = Aa2bc, (A.3.3)

(aBc)′ = Bab2c,

(abC)′ = Cabc2.

By a sleeky change of dependent variables: w1 = bc, w2 = ac, w3 = ab, the original

system A.3.3 becomes:

w′1 = w2w3 + αw1,

w′2 = w3w1 + βw2,
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w′3 = w1w2 + αw3,

where the functions α, . . . etc. satisfy A′ = −αA etc. Thus for each metric g there

is a three-dimensional space of closed, self-dual, SU(2) invariant two-forms, which are

candidates for Kähler forms. Then there comes the necessity for checking which of these

two-forms are in fact Kähler forms for some choice of complex structure. Given such a

form Ω we can use the metric to define an endomorphism I of the tangent bundle by

g(IX, Y ) = Ω(X,Y ).

Moreover I is an almost complex structure if and only if A2 + B2 + C2 = 1. Dancer

and Strachan then go on to check for which A,B,C’s the almost complex structure is

integrable and their computations result in the following theorem.

Theorem A.3.1 (op. cit., pp. 517) If the metric A.3.2 is Kähler and not hyper-Kähler

the one of the following three conditions hold:

1. α = 0, β = γ,

2. β = 0, γ = α,

3. γ = 0, α = β.

And conversely, if (1), (2) or (3) is true then the metric is Kähler.

We now consider what form the Einstein equations take for such metrics. Let us denote

the Einstein constant by Λ.
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Theorem A.3.2 (op. cit., pp. 517) In terms of the variables w1, w2, w3, and assuming

that (3) in theorem A.3.1 holds the Einstein equations reduce to:

α = −Λw3
2.

Corollary A.3.1 The Kähler-Einstein metrics of the form A.3.2 which are not hyper-

Kähler are given, up to permutations, by solutions of the equations:

a′ =
1
2
a(b2 + c2 − a2), (A.3.4)

b′ =
1
2
b(c2 + a2 − b2),

c′ =
1
2
c(a2 + b2 − c2 − 2Λa2b2).

Let us just say that in what concern us here only the Λ < 0 is of interest 7. By rescaling

t, a, b, c we can set Λ equal to −1.

A.3.2 Complete metrics

Let us summarize Dancer and Strachan’s main results. Since our expressions

for the metric as well as the equations are invariant under changes of sign of a, b, or c

we shall take a, b, c to be positive.

Main results:

• The critical points of the equations A.3.4 ‘with a, b, c ≥ 0’ are the points satisfying

a = b, c = 0 and cyclically. The linearization about a critical point which is not

the origin has one positive, one negative and one zero eigenvalue. Hence there is

at least one unstable curve for such critical point.
7In [DS94] they describe that all such metrics for Λ have already been studied.
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• Complete metrics must be defined on a semi-infinite interval (−∞, η), where the

upper limit is finite.

• Solutions to A.3.4 (with a ≥ b and a, b, c ≥ 0) defined on (−∞, η) are unstable

curves of critical points (q, 0, q) or (q, q, 0) where q ≥ 0.

• If the critical point is (q, 0, q) then we have a > b. Otherwise a ≡ b. In the case

(q, q, 0) there is only a discrete family of complete metrics, correponding to the

quantization condition q2 = half-integer. 8

• The trajectories of solutions to A.3.4 which give complete metrics with a > b ≥ 0

are precisely the unstable curves with b ≥ 0 are precisely the unstable curves with

b ≥ 0 of the critical points (q, 0, q) where q is positive.

From now on we shall refer to η as the blow-up time of the corresponding solution, and

the two families of metrics corresponding to the families of critical points (q, q, 0) and

(q, 0, q) shall be referred to as families (I) and (II), respectively. We are particularly

interested in family (II), i.e., the family of complete metrics corresponding to the un-

stable manifolds of (q, 0, q) for q ≥ 0, the main reason being the following. Let us find

the asymptotics of the metric as t→ η. If we let r = 2
√
ab the metric A.3.2 becomes

g = W−1dr2 +
1
4
r2(V σ2

1 + V −1σ2
2 +Wσ2

3), (A.3.5)

8These metrics have in fact an even bigger symmetry group, namely, U(2).
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where W = c2/ab and V = a/b. (This is a permissible change of coordinates because

one can show (ab)′ > 0. ) Moreover r →∞ as t→ η. Now

dW

dr
=
dW

dt

dt

dr
=

2
r

(
a

b
+
b

a
) + r − 4

r
W.

Now asymptotically a/b→ L ≥ 1 and so,

dW

dr
=

2
r

(L+ L−1) + r − 4
r
W.

Therefore the metric is asymptotically

g ∼W−1dr2 +
1
4
r2(Lσ2

1 + L−1σ2
2 +Wσ2

3), (A.3.6)

where W = (1
2(L+ L−1) + r2

6 + κ
r4 ) and κ is some constant of integration. Notice that

the conformal asymptotic structure [Biq06] is not that of a conformal metric, but of a

CR-structure given by the contact form σ3 = 0 and carrying a Levi form σ2
1 + aσ2

2 ,

where a = L−2. To see it, notice that as r → ∞ the metric ‘blows-up’ faster in the

direction transverse to the plane σ3 = 0 since r2W = O(r4).

As t→ −∞ we have,

a ∼ q,

b ∼ k exp(q2t),

c ∼ q

for some constant of integration k, so the metric is asymptotically

∼ q4k2 exp(2q2t)dt2 + q2(σ2
1 + σ2

3) + k2 exp(2q2t)σ2
2.
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Putting v = k exp(q2t) brings the metric asymptotically into the form

∼ dv2 + q2(σ2
1 + σ2

3) + v2σ2
3

as v → 0, so we obtain a complete metric by adding a ‘bolt’(physicists),

or a sphere(mathematicians).9 The form of the metric on the bolt means that the un-

derlying manifold is topologically the total space of the tangent bundle over S2. The

underlying complex complex structure is that of a Grauert tube.

A.3.3 Tubes and Szöke’s rigidity theorem

We need to explain what we mean by a (Grauert) tube on TS2. For the

round sphere S2 in R3, the tangent tangent bundle TS2 can be identified [Sző99] with

a submanifold of R3 × R3 as follows

TS2 ∼= {(x, v) : ||x||2 = 1, 〈x, v〉 = 0}.

Now let Q2 be affine quadric X2+Y 2+Z2 = 1 in C3. When we identify C3 with R3
⊕

R3

under the map (X,Y, Z) 7→ vreal + vimaginary, where vreal is the three-dimensional

vector of the real parts of X,Y, Z etc. Q1 becomes:

{v1, v2 ∈ R3 : 〈v1, v1〉 − 〈v2, v2〉 = 1, 〈v1, v2〉 = 0}.

We can now define a map δ : TS2 → Q2 as follows:

(x, v) 7→ cosh(||v||)x+ i
1
||v||

sinh(||v||)v. (A.3.7)

9The asymptotic metric as we approach v = 0 is known in general relativity as Eguchi-Hanson metric.
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Moreover this map has a nice group theoretic property. The diffeomorphism δ is equiv-

ariant with respect the SO(3) action in both TS2 and Q1. To see it, in the target SO(3)

is identified with a subgroup of SO(3,C) preserving Q1. In the source, the identification

goes as follows. Given a 2-frame in R3, i.e. a pair of orthonormal vectors, let the first

vector define a point in S2 and the second a unit tangent vector to the sphere at that

point. In this way, the Stiefel manifold V2(R3) ∼= SO(3) may be identified with the unit

tangent bundle to S2. Therefore the tangent bundle TS2 is a cohomogeneity-one space

for the extended SO(3) action. Relative to A.2.7, notice how by rescaling both x, v in

the definition of δ by a factor of
√

2t we get a map from TS2√
2t

to Qt, and if we take

||v|| small enough we can get ||δ(x, v)|| ≤ (1 + t2) since

||δ(x, v)|| = cosh(2||v||) =
1
2

(exp(2||v||) + exp(−2||v||)). (A.3.8)

Our model of S2 as a Riemannian manifold is that of the unit sphere equipped with

the induced round metric from R3. The corresponding Riemannian manifold shall be

denoted by (S2, can) from now on. We let T rS2 denote the open disk bundle in TS2

consisting of tangent vectors of norm less than r with respect to this metric. (Note that

r can also be infinite.)

Definition A.3.1 We call T rS2 a tube of radius r.

It follows from our arguments in the previous paragraph that δ provides an equivariant

map between a tube of radius T r(t)S2 of radius10 r(t) and the family complex surfaces Σ2
t .

The complex structure on T r(t)S2 is obtained by pulling back the canonical complex
10The function r(t) is strictly monotonic with respect to t.
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structure on Q2 by δ. Denote this complex structure by I. This is a special type

complex structure on TS2, since it interacts with the metric structure. We follow

Szöke’s ([Sző99]) paper to explain the properties of this complex structure.

Take v1, v2 ∈ S2 with 〈v1, v2〉 = 0. Then the map c : S1 → S2 defined by c(θ) =

cos(θ)v1 +sin(θ)v2 is a unit speed geodesic of S2. We can continue this map analytically

to the entire complex plane and induce a map ĉ : C → C3, ĉ(z) = cos(z)v1 + sin(z)v2.

The image of ĉ lives in the quadric Q1. One can now check by hand that the following

diagram is commutative:

C ĉ→ Q1

↑i ↑δ

TR dc→ TS2

The resulting complex structure on TS2 is called an adapted complex structure, adapted

with respect to g. If the tube T rS2 has an adapted complex structure then it is called

a Grauert tube.

If T rS2 has an adapted complex structure, then each for each orthonormal 2-frame

v1, v2 the associated map ĉ is holomorphic on ĉ−1(T rS2) and the resulting image is a

Riemann surface away from the zero section of T rS2.

Robert Szöke and Leslie Lempert [LS91] have shown that

|| • || : TS2 → R

is strictly plurisubharmonic [Sha76] with respect to the adapted complex structure

above, and therefore it follows that the relatively compact domain (T rS2, I) is strictly
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pseudoconvex. We say that || • || is a strictly plurisubharmonic exhaustion of TS2.

Now it follows from the work of Cheng and Yau [CY80] that a strictly pseudoconvex

relatively compact domain D in a Stein manifold X admits a complete Kähler-Einstein

metric. This metric is unique if we normalize the Einstein constant to be −1. But

(T rS2, I) is also Stein. To see it, use the map δ. Let us denote this unique Cheng-

Yau-Kähler-Einstein metric of T rS2 by hr. Szöke’s main theorem, a so-called rigidity

theorem, is the following:

Theorem A.3.3 ([Sző01], pp. 2916) If r,R are distinct positive finite numbers then

the Kähler-Einstein manifolds (T rS2, hr) and (TRS2, hR) are not isometric.

A.4 Dancer and Strachan predictions

Besides strong existence results proved in ([DS94, DS02]) one can also find some “for-

mulas” predicting:

1. how to determine the equivalence class of left-invariant CR structures at the con-

formal infinity (our moduli parameter a),

2. estimates for the radius of the Grauert tube for different metrics.

By summoning formula A.3.5, one sees that the equivalence class of left-invariant CR

structures at infinity is characterized by the parameter L which a priori could be com-

puted as

L(q) = lim
t→t∗

a(t)/b(t), (A.4.1)
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where a(t), b(t) are the coordinate functions of the unstable manifold of the critical point

(q, 0, q) and t∗ the upper limit of the maximal interval of existence of the corresponding

solution, or blow-up time if you wish. Analogously, after Dancer and Strachan’s con-

clusion (cf. op. cit., remark on pp. 524) that the topology of the underlying manifolds

is that of a Grauert tube of finite radius, one could also a priori compute the radius of

these tubes by the formula

R(q) =
∫ t∗

−∞
a(t)b(t)dt, (A.4.2)

using again our “knowledge” of the unstable manifolds. However an explicit determi-

nation of the unstable manifolds is in practice impossible. There is evidence the system

A.3.4 is not integrable using Painlevé analysis and also due to the lack of a twistor

interpretation of the problem in hand. But if one contents himself or herself with nu-

merical evidence, then simple numerical integration can provides us with a good deal of

information concerning the behavior of A.3.4.

At each critical point (q, 0, q) the unstable direction is (0, 1, 0) with eigenvalue q2. Since

most solutions go off to infinity in finite time, we re-parameterize our system by multi-

plying the right-hand side of

ȧ = p1(a, b, c), (A.4.3)

ḃ = p2(a, b, c),

ċ = p3(a, b, c),
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by 1/s = 1/
√

1 + p2
1 + p2

2 + p2
3 and append a new equation to system A.4.3 written as

d
dt t̂ = 1/s. Our new system is the following,

ȧ = p1(a, b, c)/s, (A.4.4)

ḃ = p2(a, b, c)/s,

ċ = p3(a, b, c)/s,

d

dt
t̂ = 1/s.

We borrowed this renormalization idea from Hirota and Ozawa [HO06]. In their work

they use the term “arc-length transform” for the above reparameterization of A.3.4.

Let us call a solution to A.4.4 a regularized solution. An important consequence of

this “regularization” procedure is that the solutions of A.4.3 no longer blow up in

finite time, and moreover we can predict the blow-up time of the old system by studying

the asymptotic behavior of t̂(t). Our integration scheme can be briefly summarized as

follows:

1. At each critical point (q, 0, q) we consider a initial condition of the form (q, ε, q) ,

ε� 1 and shoot A.4.4 from there.

2. We let the solutions run for a fixed time interval T and monitor the terminal value

of t̂. Starting at a(T ), b(T ), c(T ), t̂(T ) we run another round of numeric integration

for an extra 4T and compare |t̂(T +4T )− t̂(T )| to some predetermined precision

parameter δ. If |t̂(T +4T )− t̂(T )| < δ we stop the simulation and call t̂(T +4T )

the asymptotic value of t̂ or the blow-up time t∗ of (q, 0, q). The parameters L

(eqn. A.4.1) and R ( eqn. A.4.2) can also be computed in this step.
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3. If we have not reached the desired precision for the terminal value of t̂ we repeat

the first part of step (2).

Using Mathematica c©, we set our simulation parameters as follows:

• The parameter q identifying the critical point A.3.4 was varied from 0.01 to 10 at

intervals of 4q = 0.05 .

• We initialize the time variable t̂ at zero, t̂(0) = 0 and as specified above we shoot

the remaining variables in the direction of the unstable manifold at (q, 0, q) which

coincidentally is (0, 1, 0), ∀q 6= 0. Our initial run is T = 10 and 4T = 5. For each

numerical integration we set (a(0), b(0), c(0)) = (q, 0, q) + 10−2(0, 1, 0).

• For every value of q, once we have determined the terminal time t∗q we perform

a numerical quadrature to determine the parameters L and R according to the

formulas (A.4.2) and (A.4.1), respectively.

• Each value t∗q , Rq and Lq is stored and at the end we plot our results as a function

of q.

For values of q near zero, since (0, 0, 0) is a degenerate critical point of A.3.4 we expect

that the blow up time of the unstable manifolds should drastically increase since the

singularity at the origin “slows” them down and therefore their permanence time near

the origin is bigger. In figure A.1 display a semi-log plot of the blow-up, or terminal

time, as a function of q. Figures A.3 and A.2 show how the predicted CR parameter L

and the tube radius R varies with q. We conclude this section by mentioning here that
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Figure A.1: Semi-log plot of blow time t∗ versus critical point parameter q.

Figure A.2: Plot of Grauert radius R versus critical point parameter q.

that relation between the parameter L in A.3.6 and the moduli parameter a is

a = L−2.

But looking the graph of L (A.3) we notice that L range’s is [1,∞), and therefore a

should theoretically be in the interval (0, 1]. We remarked earlier that the map a 7→ 1/a

is a symmetry of left-invariant CR structures, and therefore according to our last remark

by letting L vary we obtain every single CR structure in our family.
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Figure A.3: Semi-log plot of asymptotic CR parameter L versus parameter q.

If we invoke Szöke’s rigidity theorem for tubes, and the Lewy-Fefferman11 theorem then

according to our numerical experiments left-invariant CR structures corresponding to

different values of the moduli should be inequivalent. An analytic proof of all the

statements above remain elusive.

A.5 Equivariant Kähler geometry. Stenzel and Kan’s work.

Family (II) should correspond to some complete invariant metrics in Grauert

tubes of finite or infinite radius. These metrics have been in fact more-or-less explicitly

described in the works of M. Stenzel and Su-Jen Kan [Ste93, Kan07]. Stenzel, and later

Kan, use the SO(3) symmetry present to reduce the highly-nonlinear complex Monge-

Ampére equation in T rS2 to a simple second-order ordinary differential equation for a

potential of the form ψ = f(u) , and u is related to some invariant plurisubharmonic

exhaustion of T rS2 in the sense of several complex variables. In what follows we provide
11Two strictly pseudoconvex domains on a Stein manifold are biholomorphically equivalent if and

only if their boundaries are CR equivalent.
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an elementary derivation of the (non-homogenous) equivariant Monge-Ampére ODE’s

for T rS2.

The precise statement of our problem can be stated as follows.

Find on a given strictly pseudoconvex domain D ⊂ Σ2 of a Stein surface a
complete Kähler-Einstein metric.

ds2 =
∑

gjk̄(z)dzjdzk.

A Kähler metric ds2 is called Kähler-Einstein if

Ricjk̄ = −kgjk̄. (A.5.1)

There are three cases to consider in equation A.5.1: k > 0, k = 0, k < 0. The case

k = 0 (“Ricci-flat”) was extensively investigated by Stenzel in [Ste93]. It follows from

S. B. Meyers’ theorem that there is no complete Kähler-Einstein metric of positive Ricci

curvature on a non-compact manifold. Therefore we can restrict our attention to the

k < 0 case.

In terms of a local potential ψ for the Kähler metric we have (gij) =
√
−1∂∂(•, J•) and

(Ricjk̄) = −
√
−1∂∂ log det(

∂2ψ

∂zj∂zk
)(•, J•).

By rescaling the potential, or equivalently the metric, ψ 7→ λψ the Ricci tensor does

not change, showing we can suppose that the Einstein constant k is −1. Permit us to

remark again that the general theory of symmetric Kähler-Einstein metrics on rank-one

symmetric spaces have been studied by Stenzel and Kan in (op. cit.), so to save paper we

deal only with a single example pertinent to our purposes, namely the “complexification”
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of the two-sphere.

We have identified already the cotangent bundle of S2 with the affine quadric

Q2 = {X,Y, Z ∈ C : X2 + Y 2 + Z2 = 1} ⊂ C3

via the map A.3.7. Using Stenzel’s notation let τ be the restriction to Q2 of the function

XX+Y Y +ZZ. We are searching for a Kähler potential of the form ψ = f ◦ τ . Fixing

Z 6= 0, X,Y become coordinate functions of an open dense chart in Q2 \ {Z = 0}. For

sake of convenience and the tensorial nature of our present calculations we rename our

variables as follows: X 7→ z1, Y 7→ z2, Z 7→ z3. All derivatives of τ will be with respect

to z1, z2 where conjugate indices indicate derivatives with respect to z1, z2. By implicit

differentiation we can take partial derivatives of z3 if necessary too.

A straightforward computation leads to

det(f ◦ τ)ij = ((f ′ ◦ τ)2 + (f ′ ◦ τ)(f ′′ ◦ τ)τ ijτiτj) det(τij). (A.5.2)

Now det(τij) = |z3|−2τ . Our choice for τ above now becomes clear. From A.3.8 it

follows that given p ∈ Q2, cosh−1(τ(p)) = cosh−1(||δ(x, v)||) = 2||v||, where v ∈ TxS2.

But by a result of Szöke and Lempert [LS91] the function || • || on TS2 satisfies the

homogeneous complex Monge-Ampère equation:

(∂∂ cosh−1 τ) ∧ (∂∂ cosh−1 τ) = 0,

where ∂ and ∂ satisfy d = ∂ + ∂. Using this fact we can also explicitly compute that

τ ijτiτj = τ−1(τ2 − 1).
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Therefore we can rewrite A.5.2 as

det(f ◦ τ)ij = (τ(f ′ ◦ τ)2 + (f ′ ◦ τ)(f ′′ ◦ τ)(τ2 − 1))|z3|−2. (A.5.3)

Thus the Kähler-Einstein equation for our ansatz potential ψ = f ◦ τ becomes

∂∂ log det(f ◦ τ)ij = ∂∂f ◦ τ (A.5.4)

⇒ ∂∂[log[τ(f ′ ◦ τ)2 + (f ′ ◦ τ)(f ′′ ◦ τ)(τ2 − 1)]− f ] ≡ 0.

(Recall that ∂, ∂ only involve derivations with respect to z1, z2, z1, z2. Notice also that

log |z3|−2 = − log z3− log z3 ⇒ ∂∂ log |z3|−2 =0, implying this last term do not interfere

in the metric components.)12 Since our differential operators are second order, we make

an “intelligent guess” that

log[τ(f ′ ◦ τ)2 + (f ′ ◦ τ)(f ′′ ◦ τ)(τ2 − 1)]− f = d+ cτ.

But since ∂∂τ > 0 we are forced to assume that c ≡ 0. (This is a type of local (1, 1)

Poincaré lemma.) Henceforth the equation for the potential becomes,

τ(f ′)2 + f ′f ′′(τ2 − 1) = κ exp(f),

where κ = exp(d) depending on r and we are viewing now f as a function of the

“variable” τ . Changing the independent variable to w = cosh−1 τ brings us to the

following normal form:

d

dw
(f ′(w))2 = 2κ(sinhw). (A.5.5)

12In fact if multiply any Kähler potential by an analytic function g(z3, z3) we do not affect the metric
components. This corresponds to a gauge freedom in the choice of the potential.
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In Kan’s paper one can find 5 infinite families of ODE’s generating Kähler-Einstein

potentials in compact rank-one symmetric spaces.13 Equation A.5.5 can be found in

([Kan07], pp. 646 with n = 2).

Remark A.5.1 In Stenzel’s and Kan’s language the energy function

ρ = (cosh−1 ◦τ)2 ∼ (|| • ||2 : TS2 → [0,∞))

is a SO(3)-invariant, real analytic, strictly plurisubharmonic exhaustion of TS2

[Sző01]. Therefore the level sets ρ−1(r), r 6= 0 are invariant strictly pseudoconvex hy-

persurfaces, or a CR manifold in TS2 and coinciding with the SO(3) orbits there. Each

orbit, as expected, is diffeomorphic to the sphere bundle in TS2, and there is an ex-

ceptional or singular orbits diffeomorphic to S2 corresponding to the zero level set of

ρ. (One says the center is an isotropic manifold.) Finally, the values of || • || provide

so-called slice-coordinates for the orbit structure of the SO(3) action.

In conclusion a (complete) solution to equation A.5.5 can be interpreted as an equiv-

ariant Kähler-Einstein potential and consequently a SO(3) symmetric Kähler-Einstein

metric. These metrics should be isometric to metrics predicted by Dancer and Strachan

in ([DS94, DS02]). By the uniqueness of analytic continuation, if there exists a po-

tential function for a Kähler-Einstein metric in a Grauert tube which depends solely

on the Monge-Ampère solution || • || then the potential satisfying the ODE A.5.5 is

defined in the whole tube. By a theorem of Cheng-Yau, later specialized by Szöke to
13These are Sn, RP n, CP n, HP n, and the Cayley projective plane.
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tubes, we are assured the existence of a unique normalized Kähler-Einstein metric on

T rS2 (cf. [Sző01]). These two observations together form the content of Kan’s theorem

summarized below14:

Theorem A.5.1 ([Kan07], pp. 645) Let (gij) be the unique normalized complete Cheng-

Yau-Kähler-Einstein metric in T rS2. Then the metric has a unique globally defined real

analytic Kähler-Einstein potential solving A.5.5 and satisfying the boundary conditions

ψ(0) = ψ′(0) = 0, ψ′′(0) > 0 and ψ(r2) =∞.

Remark A.5.2 Back to Dan Burns’ initial question, according to another theorem of

Stenzel [Ste02] the “continued geodesics”

ĉ(z) = cos(z)v1 + sin(z)v2, ∀z ∈ C ⊂ Q2(= TS2),

where 〈v1, v1〉 = 1, 〈v1, v2〉 = 0, intersect the CR hypersurfaces ||v|| = r, r > 0 along

chains. It is natural to ask if every chain comes from a “Stenzel chain.”

The sphere bundle S(T ∗S2) is three dimensional, and the geodesic flow on

T ∗S2 defines a foliation F of S(T ∗S2) by one-dimensional leaves. Therefore the space

of geodesics S(T ∗S2)/F for (S2, can) is two-dimensional and by analytic continuation

there can be only a 2-parameter family of “continued” geodesics on any tube T rS2. On

the other hand, according to Jacobowitz’ theorem [Jac85] any two sufficiently nearby

points on a CR-manifold can be joined by a chain. But it is also known that on a Rie-

mannian manifold any two nearby points can be joined by a unique geodesic. Heuris-

tically speaking, there must be at least as many chains as there is geodesics on S3. It
14We thank Prof. Matthew Stenzel to provide us with this reference.
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not hard to convince ourselves that the “space of geodesics on S3” is a four parameter

space. This seems to suggest that not every chain comes from a Stenzel chain.

Remark A.5.3 It remains open the integrability question of the nonlinear implicit ODE

A.5.5.
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Appendix B

More Ancillary Stuff, This Time About

The Monster
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[Čap06] Andreas Čap. On left invariant CR structures on SU(2). Arch. Math. (Brno),

42(suppl.):185–195, 2006.
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