Some words on the loose end: collisions $\,\Delta\,$ and ...

yesterday's theorem re connecting two config pts by an action minimizer

...ON BOARD:

Oscillating about the degeneration locus

 $\Sigma = degeneration \ locus \supset \Delta := \bigcup \Delta_{ab} = collision \ locus$

methods:

Riemannian geometry and quotient spaces by Lie group actions

3-body problem (in the plane)

motivating case

M-; 2002, ``Infinitely many syzygies"

THM: Every zero angular momentum *, bounded* solution defined on an unbounded time interval suffers infinitely many collinearities (:= `syzygies').

collinear locus = degeneration locus

* on board: recall def of `bounded', `angular momentum'

BOUNDED: there exists a $\delta > 0$ such that $r_{ab}(t) \leq \delta$ for all a, b, t

picture of theorems in shape space,

J= 0 dynamics on shape space. the U in shape space Mark Levi's intuition

ON BOARD

How might this theorem generalize to more bodies (N>3)? Or to the spatial problem? (d > 2)?

key insight after 13 years

Well, you know Rich, the **shape space** for the 4 body problem in 3 space is \mathbb{R}^6

Robert Littlejohn, Physics, Berkeley, question period after his talk at his 2018 retirement conference

4-body problem (in 3-space)

within a month of that:

M-2019 ``Oscillating about coplanarity"

THM: Every zero angular momentum, bounded solution to the 4-body problem defined on an unbounded time interval suffers infinitely many *coplanar* instants.

coplanar locus = degeneration locus

I knew Robert's remark would be the key to finding a d = 3, N = 4 version of ``infinitely many syzygies"

I did not understand why his remark was true

Once I saw the ``why" I could see that what I had done in `infinitely many syzygies' was the d =2 versions of a theorem that must work for the d+1 body problem in d dimensions..

Generically, d+1 points span (`determine') an affine d-plane. Degenerate = nongeneric =configs (or d+1 -gons) lying in a subspace of dimension d-1 or less. Set of degenerate configurations = Degeneration locus

of ``Oscillating about the degeneration locus"

Strategy for proof

Step 1. Push Newton's Eqns down to

Shape space= Configuration space/ Symmetries

Observe that degeneration locus sits as a hypersurface in shape space. Deg. locus = Collinear plane for planar 3 body problem, Deg locus = Coplanar configurations for spatial 4 body problem.

Step 2. Let S be the signed distance of a shape from the degeneration locus. Derive a `nice' differential equation of harmonic oscillator type for S's evolution:

$$\frac{d^2}{dt^2}S = -Sg, g > 0$$

Here S = S(q(t)) = S evaluated along a sol'n to Newton's eqns.

Show bdd implies g > const. > 0. End by a Sturm comparision to a harmonic osc

S has a zero in any interval of time of size π/ω implying theorem. For all d, N, with N =d+1

ON to BOARD

how to understand shape space and the dynamics on it. answer:

Riemannian submersions and reduction

quotient of a manifold by a compact group G

Natural mechanical systems with symmetry (G) and their quotients...

Onward to Step 1.

Shape space= Configuration space/ Symmetries

Config. sp for N-body problem in d-space: = $(\mathbb{R}^d)^N = d \times N$ matrices. elements: $\mathbf{q} = [q_1, q_2, \dots, q_N]$

> Symmetry group = Isometries of d-space = translations + rotations. g

acts by: $[q_1, q_2, \dots, q_N] \mapsto [g(q_1 + b), g(q_2 + b), \dots, g(q_N + b)]$

/translations $\cong \mathbb{R}^{dN}/\mathbb{R}^d = \mathbb{R}^{d(N-1)} = d \times N-1$ matrices = M(d, N-1)

/rotations ??

Rotations act by q ->g q

action preserves deg. locus, and potential.

Shape space:= M(d, N-1)/G

two versions of shape space! depending on if g in SO(d) or g in O(d)

``oriented' and `unoriented' shape space

The magic of N = d+1

Configuration space/ Translations =M(d, N-1)

=M(d, d)

square matrices if N-1 = d

 $\Sigma = -$ degeneration locus = q's whose vertices lie in an affine d-1-space

- = simplices with zero volume
- = square matrices with determinant zero

Shape space:= M(d, d)/G

action preserves degeneration locus, potential, we denote their projections to Shape space by same symbol...

two versions again of shape space .depending on if g in SO(d) or g in O(d)

they are...

Call the two versions the `oriented' and `unoriented' shape spaces

 $O(d)/SO(d) = \mathbb{Z}_2$

map of forgetting orientation is a 2:1 branched cover, branched over degeneracy locus which is a hyperplane

Intuition behind proof [M. Levi; N=3].

Shape space is a Euclidean space endowed with a somewhat strange metric (`shape metric' induced by mass metric on config. space)

The *reduced eqns* are Newton's eqns AGAIN on this space, provided J = 0.

The potential is due to a `gravitational attraction' to the binary collision locus.

This locus lies within the degeneration locus.

I told this to Mark Levi, for the case N=3, d=2, in 2002.

Mark: ``then the particle [=shape] must oscillate back and forth across that plane [=deg. locus]. "

Proof now consists of implementing Mark's intuition.

Important to intuition and implementation:

 \mathbb{Z}_2 - reflection about the degeneration locus, leaves the strange metric and the potential invariant.

reduced eqns:

 $\nabla_{\dot{\sigma}}\dot{\sigma} = -\nabla\bar{V}(\sigma)$

Step 2. Derive a `nice' differential equation of harmonic oscillator type

$$\frac{d^2}{dt^2}S = -Sg, g > 0$$

for the ``distance'' **S** from the degeneration locus Σ

Here S = S(q(t)) = S evaluated along a sol'n to Newton's eqns.

M-; 2002, d=2, N=3. S = oriented area of triangle

guess: generalization is S = signed volume of simplex = det(q)

I spent a month trying to differentiate this S and derive such a differential inequality. NEVER COULD...

Instead! $S(q) = d_{Sh}(q, \Sigma) =$ signed distance between q and the degeneration locus

`Distance' measured via `mass metric' (kinetic energy) on configuration space

Fact: |S(q)| = smallest principal value of principal value decomp. of q

important: S is SO(d)-invariant so descends to a fn on Shape space.

Step 2. Derive a `nice' differential equation of harmonic oscillator type

$$\frac{d^2}{dt^2}S = -Sg, g > 0$$

for the ``distance'' **S** from the degeneration locus Σ

Here S = S(q(t)) = S evaluated along a sol'n to Newton's eqns.

M-; 2002, d=2, N=3. S = oriented area of triangle

guess: generalization is S = signed volume of simplex = det(q)

I spent a month trying to differentiate this S and derive such a differential inequality. NEVER COULD...

Instead! $S(q) = d_{Sh}(q, \Sigma) =$ signed distance between q and the degeneration locus

`Distance' measured via `mass metric' (kinetic energy) on configuration space

Fact: |S(q)| = smallest principal value of principal value decomp. of q

important: S is SO(d)-invariant so descends to a fn on Shape space.

Deriving the needed eqn. for S.
$$\sigma(t) = \pi(q(t)); \pi : M(d, d) \rightarrow Sh(d, d + 1)$$

shape curve $\nabla_{\dot{\sigma}}\dot{\sigma} = -\nabla \overline{V}(\sigma)$ having zero ang. mom. (J=0)
 $\dot{S} = \langle \nabla S, \dot{\sigma} \rangle$ simple form of eq requires
 $J = 0$ along q(t)
 $\ddot{S} = \langle \nabla S, \ddot{\sigma} \rangle + \langle \nabla_v \nabla S, v \rangle$ standard computation
in Riem. geom.
 $\ddot{S} = \langle \nabla S(q), -\nabla V(q) \rangle + II_S(v, v)$
 $= I + II$ q solves Newt. 2nd f.f. of level sets of
 $S = \text{equidistants from}$
deg. locus
PROP. $I = -S$ g, $g > 0$, and
 $g > \omega^2, \omega = GM/(\delta^3), M = \Sigma m_a$, assuming bound $r_{ab}(t) \leq \delta$
PROP. $II = -S$ h, $h > 0$.
Pf I: Hamilton-Jacobi or `weak KAM' + $||\nabla S|| = 1$

+ property of potential f(r) = -1/r, where $V = G \Sigma m_a m_b f(r_{ab})$ $(f' > 0, f'' < 0, f'(r)/r \rightarrow 0)$

Pf II: curv. shape space ≥ 0 , + Σ is tot. good. + `Sign & The Meaning of Curvature.'

REST ON THE BOARD

...odds & ends of talk in two slides to follow:

S has a zero in any interval of time of size π/ω implying theorem. For all d, N, with N =d+1