Some words on the loose end: collisions Δ and ..
yesterday's theorem re connecting two config pts by an action minimizer
...ON BOARD:

Today

Oscillating about the degeneration locus

$$
\Sigma=\text { degeneration locus } \supset \Delta:=\bigcup \Delta_{a b}=\text { collision locus }
$$

methods:

Riemannian geometry and quotient spaces by Lie group actions

THM: Every zero angular momentum *, bounded* solution defined on an unbounded time interval suffers infinitely many collinearities (:= `syzygies').

collinear locus = degeneration locus

* on board: recall def of `bounded', `angular momentum’
picture of theorems in shape space,
$J=0$ dynamics on shape space. the U in shape space
Mark Levi's intuition

ON BOARD

How might this theorem generalize to more bodies ($\mathrm{N}>3$)? Or to the spatial problem? (d>2)?

key insight after 13 years

Robert Littlejohn, Physics, Berkeley, question period after his talk at his 2018 retirement conference

within a month of that:

M-2019 "Oscillating about coplanarity"
THM: Every zero angular momentum, bounded solution to the 4-body problem defined on an unbounded time interval suffers infinitely many coplanar instants.

coplanar locus $=$ degeneration locus

> I knew Robert's remark would be the key to finding a $d=3, N=4$ version of "infinitely many syzygies"

I did not understand why his remark was true

Once I saw the "why"I could see that what I had done in 'infinitely many syzygies' was the $d=2$ versions of a theorem that must work for the d+1 body problem in d dimensions..

Generically, d+1 points span ('determine') an affine d-plane.
Degenerate $=$ nongeneric =configs (or d+1-gons)
lying in a subspace of dimension d-1 or less.
Set of degenerate configurations $=$ Degeneration locus
of "Oscillating about the degeneration locus"

Strategy for proof

Step 1. Push Newton's Eqns down to

Shape space $=$ Configuration space/Symmetries

Observe that degeneration locus sits as a hypersurface in shape space.
Deg. locus = Collinear plane for planar 3 body problem,
Deg locus $=$ Coplanar configurations for spatial 4 body problem.

Step 2. Let S be the signed distance of a shape from the degeneration locus.
Derive a `nice' differential equation of harmonic oscillator type for S's evolution:

$$
\frac{d^{2}}{d t^{2}} S=-S g, g>0
$$

Here $S=S(q(t))=S$ evaluated along a sol'n to Newton's eqns.
Show bdd implies g > const. >0.
End by a Sturm comparision to a harmonic osc
"Sturm comparison" with

$$
\ddot{S}=-S \omega^{2}
$$

S has a zero in any interval of time of size

$$
\pi / \omega
$$

implying theorem. For all d, N, with $\mathrm{N}=\mathrm{d}+1$

ON to BOARD

how to understand shape space and the dynamics on it. answer:

Riemannian submersions and reduction
quotient of a manifold by a compact group G

Natural mechanical systems with symmetry (G) and their quotients...

Onward to Step 1.

Shape space $=$ Configuration space/ Symmetries

Config. sp for N-body problem in d-space: $=\left(\mathbb{R}^{d}\right)^{N}=\mathrm{d} \times \mathrm{N}$ matrices.

$$
\text { elements: } \mathbf{q}=\left[q_{1}, q_{2}, \ldots, q_{N}\right]
$$

Symmetry group $=$ Isometries of d-space $=\underset{\mathrm{b}}{\text { translations }}+\underset{\mathrm{g}}{\text { rotations }}$.
acts by: $\quad\left[q_{1}, q_{2}, \ldots, q_{N}\right] \mapsto\left[g\left(q_{1}+b\right), g\left(q_{2}+b\right), \ldots g\left(q_{N}+b\right)\right]$

$$
\begin{aligned}
\text { /translations } \cong \mathbb{R}^{d N} / \mathbb{R}^{d}=\mathbb{R}^{d(N-1)}= & \mathrm{d} \times \mathrm{N}-1 \text { matrices } \\
& =\mathrm{M}(\mathrm{~d}, \mathrm{~N}-1)
\end{aligned}
$$

/rotations ??
Rotations act by q->g q
action preserves deg. locus, and potential.

Shape space:= M(d, N-1)/G
two versions of shape space! depending on
if g in $\mathrm{SO}(\mathrm{d})$

$$
\text { or } g \text { in } O(d)
$$

``oriented’ and `unoriented’ shape space

The magic of $N=d+1$

Configuration space/ Translations $=M(d, N-1)$

$$
=M(d, d)
$$

square matrices if $\mathbf{N - 1}=\mathbf{d}$

$$
\begin{aligned}
\Sigma=\text { degeneration locus } & =\text { q's whose vertices lie in an affine d-1-space } \\
& =\text { simplices with zero volume } \\
& =\text { square matrices with determinant zero }
\end{aligned}
$$

Shape space:= $M(d, d) / G$
action preserves degeneration locus, potential, we denote their projections to Shape space by same symbol...
two versions again of shape space .depending on if g in $\mathrm{SO}(\mathrm{d})$

$$
\text { or } \mathrm{g} \text { in } \mathrm{O}(\mathrm{~d})
$$

they are...

Call the two versions the `oriented' and 'unoriented' shape spaces
oriented
(d, N)
$(1,2)$
$(2,3)$

$$
\Sigma \subset \mathbb{R}^{6}
$$

$(3,4)$

$$
\rightarrow_{\mathbb{Z}_{2}}
$$

$(\mathbf{d}, \mathbf{N}=\mathbf{d}+\mathbf{1}) \quad \Sigma \subset \mathbb{R}^{\binom{d}{2}}$
unoriented

Cone of pos. semidefinite symmetric 3×3 matrices;

Cone of pos. semidefinite symmetric d x d matrices;
$O(d) / S O(d)=\mathbb{Z}_{2}$ map of forgetting orientation is a 2:1 branched cover, branched over degeneracy locus which is a hyperplane

IntUItIOn behind proof [M. Levi; N=3].
Shape space is a Euclidean space endowed with a somewhat strange metric ('shape metric' induced by mass metric on config. space)

The reduced eqns are Newton's eqns AGAIN on this space, provided $\mathrm{J}=0$.

The potential is due to a
reduced eqns:
$\nabla_{\dot{\sigma}} \dot{\sigma}=-\nabla \bar{V}(\sigma)$ `gravitational attraction' to the binary collision locus.

This locus lies within the degeneration locus.
I told this to Mark Levi,
for the case $N=3, d=2$, in 2002.

Mark: `'then the particle [=shape] must oscillate back and forth across that plane [=deg. locus]. '

Proof now consists of implementing Mark's intuition.
Important to intuition and implementation:
\mathbb{Z}_{2} - - reflection about the degeneration locus, leaves the strange metric and the potential invariant.

Step 2. Derive a `nice’ differential equation of harmonic oscillator type

$$
\frac{d^{2}}{d t^{2}} S=-S g, g>0
$$

for the "distance" S from the degeneration locus Σ
Here $S=S(q(t))=S$ evaluated along a sol'n to Newton's eqns.
M-; 2002, $d=2, N=3 . S=$ oriented area of triangle
guess: generalization is $S=$ signed volume of simplex $=\operatorname{det}(\mathrm{q})$
I spent a month trying to differentiate this S and derive such a differential inequality. NEVER COULD...

$$
\text { Instead! } \quad S(q)=d_{S h}(q, \Sigma)=\begin{aligned}
& \text { signed distance between } \\
& \mathbf{q} \text { and the degeneration locus }
\end{aligned}
$$

`Distance’ measured via `mass metric’ (kinetic energy)
on configuration space
Fact: $|S(q)|=$ smallest principal value of principal value decomp. of q
important: S is SO(d)-invariant so descends to a fn on Shape space.

Step 2. Derive a `nice’ differential equation of harmonic oscillator type

$$
\frac{d^{2}}{d t^{2}} S=-S g, g>0
$$

for the "distance" S from the degeneration locus Σ
Here $S=S(q(t))=S$ evaluated along a sol'n to Newton's eqns.
M-; 2002, $d=2, N=3 . S=$ oriented area of triangle
guess: generalization is $S=$ signed volume of simplex $=\operatorname{det}(\mathrm{q})$
I spent a month trying to differentiate this S and derive such a differential inequality. NEVER COULD...

$$
\text { Instead! } \quad S(q)=d_{S h}(q, \Sigma)=\begin{aligned}
& \text { signed distance between } \\
& \mathbf{q} \text { and the degeneration locus }
\end{aligned}
$$

`Distance’ measured via `mass metric’ (kinetic energy)
on configuration space
Fact: $|S(q)|=$ smallest principal value of principal value decomp. of q
important: S is SO(d)-invariant so descends to a fn on Shape space.

Deriving the needed eqn. for $\mathrm{S} . \quad \sigma(t)=\pi(q(t)) ; \pi: M(d, d) \rightarrow S h(d, d+1)$

$$
\begin{aligned}
& \begin{array}{c}
\text { shape curve } \begin{array}{l}
\nabla_{\dot{\sigma}} \dot{\sigma}=-\nabla \bar{V}(\sigma) \\
\dot{S}=\langle\nabla S, \dot{\sigma}\rangle \\
\text { sol'n to Newton's eqns } \\
\text { having zero ang. mom. (J=0) }
\end{array} \\
\begin{array}{l}
\text { simple form of eq requires } \\
\mathrm{J}=0 \text { along q(t) }
\end{array}
\end{array} \\
& \ddot{S}=\langle\nabla S, \ddot{\sigma}\rangle+\left\langle\nabla_{v} \nabla S, v\right\rangle \longleftarrow \text { standard computation } \\
& \text { in Riem. geom. } \\
& \ddot{S}=\langle\nabla S(q),-\nabla V(q)\rangle+I I_{S}(v, v) \\
& =I+I I
\end{aligned}
$$

PROP. $\mathrm{I}=-\mathrm{Sg}, \quad \mathrm{g}>0$, and

$$
g>\omega^{2}, \omega=G M /\left(\delta^{3}\right), M=\Sigma m_{a}, \text { assuming bound } r_{a b}(t) \leq \delta
$$

PROP. II $=-\mathrm{Sh} \mathrm{h}, \mathrm{h}>0$.
Pf I: Hamilton-Jacobi or `weak KAM' $+\|\nabla S\|=1$

$$
\begin{aligned}
& \text { + property of potential } f(r)=-1 / r \text {, where } V=G \Sigma m_{a} m_{b} f\left(r_{a b}\right) \\
& \left(f^{\prime}>0, f^{\prime \prime}<0, f^{\prime}(r) / r \rightarrow 0\right)
\end{aligned}
$$

Pf II: curv. shape space $\geq 0,+\Sigma$ is tot. good. $+`$ Sign \& The Meaning of Curvature.'

REST ON THE BOARD ...

...odds \& ends of talk in two slides to follow:
"Sturm comparison" with

$$
\ddot{S}=-S \omega^{2}
$$

S has a zero in any interval of time of size

$$
\pi / \omega
$$

implying theorem. For all d, N, with $\mathrm{N}=\mathrm{d}+1$

A metric submersion:

$$
\begin{aligned}
& \text { metric submersion: } \\
& \operatorname{dist}_{s_{n}}\left(s_{1}, s_{2}\right)=\operatorname{dist}_{M}\left(\pi^{-1}\left(s_{1}\right), \pi^{-1}\left(s_{2}\right)\right) .
\end{aligned}
$$

uses that G acts by isometries
Prop Far $s(t)=\pi(q(t))$, missing 'bad points'

$$
\begin{aligned}
& \text { Prop Far } s(t)=\pi(q) \&(q, \dot{q})=0 \\
& \left.\ddot{q}=-\nabla V(q) \& \nabla_{\dot{s}} \dot{s}=-\nabla_{s} V_{s}(s)\right) \\
& \left.\Leftrightarrow{ }^{2}\right)
\end{aligned}
$$

induced Rem metric on Sh.
Prop: [O'neill fun in] π is curvature non decreasing:
$K(\vee \wedge w)=K(\pi \vee \wedge \pi w) T$ pos term. if V, w are "harizartal" $\therefore M$.

