We next place points $P_{x_1}, P_{x_2}, \ldots, P_{x_n}$, corresponding to our variables, on the x-axis. The x-coordinate of point P_{x_i} will be the value of the corresponding variable x_i. To perform an addition we introduce the set of points in Figure 15, and to perform a multiplication we introduce the set of points in Figure 16. The y-coordinate of point B in Figures 15 and 16 will be different for each equation; we will denote these points by B_1, B_2, \ldots, in the order that we place these equations in the point configuration. Performing additions and multiplications in a similar manner is an old technique; Mnëv’s contribution was to realize that if the multiplications and additions are done in this manner, and point B_i in Figures 15 and 16 is placed sufficiently closer to y_∞ than points $B_1, B_2, \ldots, B_{i-1}$, then the resulting line arrangement has a unique combinatorial structure, and thus the realizability