N-body scattering \& billiards

Richard Montgomery UC Santa Cruz (*)

remote AMS session on
Geometric Dynamics, organized by
Levi \& Tabachnikov, Oct 3, 2020

Description of works with
Jacques Fejoz \& Andreas Knauf
and with
Nathan Duignan, Rick Moeckel and Guowei Yu
many thanks to: Gil Bor, Rick Moeckel, Rafe Mazzeo, Maciej Zworski
$\left(^{*}\right)$:retired. Health care still working though...

Rutherford:

Dynamics?

$$
\ddot{q}=Z \frac{q}{|q|^{3}}
$$

$$
q(t) \in \mathbb{R}^{2}
$$

first movie: $\quad Z>0$; repulsive. orig. Rutherford.
second movie: $Z<0$; attractive. eg: parallel comets impinging on sun

Movies also for two-body scattering. Use $\quad q=q_{2}-q_{1}$
(c. of mass travels a straight line:

$$
\left.m_{1} q_{1}+m_{2} q_{2}=P t+Q_{0}\right)
$$

"Scattering map"

Main result of Rutherford Scattering

sugg. ref: Knauf, Mathematical Physics :Classical Mechanics, chapter 12

What about 3-body scattering?

QUESTIONS:

What is the analogue of the scattering map $\pi: \mathbb{R} \rightarrow S^{1}$?
What is its domain - the space of "impact parameters b's'?
What is its range - the space of `outgoing directions', theta's?
Is it smooth? open? invertible? almost onto?

Can we say anything quantitative or meaningful regarding its induced "differential cross-section" $\pi_{*}(L e b)=f(\Omega) d \Omega$

To begin to answer, return to ...

3-body scattering? It is anisotropic.

2-body scattering is isotropic: the scattering map is independent of the direction of the incoming beam. It only depends on θ, the angle between the beam and outgoing particle paths

3-body scattering is anisotropic. Different directions of incoming beams will lead to different outgoing scattering maps
'Direction'?
The config space of three bodies in the plane, center-of-mass fixed, is a 4 dimensional Euclidean vector space.
Its space of directions is a 3-sphere.

Modulo rotations, this 3-sphere becomes a 2-sphere -the `shape sphere'.
An incoming "'Lagrange beam " (equilateral triangles) will lead to a different scattering map then an incoming
"Euler beam" (a particular degenerate collinear triangle)

Shape space and shape sphere.

$$
\left(\mathbb{R}^{2}\right)^{3}=\mathbb{C}^{3} \rightarrow \mathbb{C}^{2} \rightarrow \mathbb{R}^{3}
$$

see eg:

The Three-Body Problem and the Shape Sphere
my web p., arXiv, or Amer Math Monthly, 2015

The shape sphere: the quotient of 3-body configuration space (minus triple collision)
by the group of
(orient. pres. isometries) \times (scaling)

The shape disc: the quotient of 3-body configuration space (minus triple collision) by (all isometries) \times (scaling) and equals the shape sphere modulo reflection about its collinear equator.
mod reflection

A picture Rick Moeckel made of the image of the scattering map for an incoming equilateral triangle (Lagrange) beam projected onto the shape disc

colors indicates how close the trajectories stays to infinity

"The equilateral shape is at the center and the collinear shapes are at the outer edge. The isosceles shapes form three diameters of the disk. The collision shapes are at the third roots of unity on the diameter.

The unstable manifold is a 3D disk whose boundary is a $\mathbf{2}$ sphere in the infinity manifold. The points to follow are chosen from other 2D spheres in this disk. Black points are near the infinity manifold and blue, green orange farther from infinity. Very crude experiment so far, but encouraging. How to prove? -- Rick"
Q. Unstable manifold? Of what?
A. Of an equilibrium point on the `infinity manifold" .

These points represent incoming (unstable) and outgoing (stable) asymptotic hyperbolic directions
Q. Who or what is the infinity manifold? A. Patience, patience...
Q. Why those black diameters of `near infinity points"? A. The image of `scattering orbits" that `stay near infinity'.
Q. Why are the diameters located as they are, arranged in a hexagon in the shape disc?
A. -That is where billiards come in. Explanation coming at the end...

McGenee's blow-up

Melrose's view of:

May as well do the N -body problem with bodies moving in d-dimensional Euclidean space
body positions: $q_{a} \in \mathbb{R}^{d}, a=1, \ldots, N$ interbody distances: $\quad r_{i j}=\left|q_{i}-q_{j}\right|$

DEF. Call the motion hyperbolic if
$r_{i j}(t) \rightarrow \infty$ at a linear rate as \mathbf{t} goes to infinity
forward hyperbolic:
backward hyperbolic
t goes to

$$
t \rightarrow+\infty
$$

Set-up and eqns N bodies in d-dimensional Euc. space:
Newton's eqns: $\Longleftrightarrow \ddot{q}=\nabla_{m} U(q)$

$$
q=\left(q_{1}, \ldots, q_{N}\right) \in \mathbb{E}:=\mathbb{R}^{N d} \quad q_{a} \in \mathbb{R}^{d}, a=1, \ldots, N
$$

Conserved energy

$$
\begin{aligned}
& E(q, \dot{q})=\frac{1}{2}\langle\dot{q}, \dot{q}\rangle_{m}-G \sum \frac{m_{a} m_{b}}{r_{a b}} \\
& \\
& =h . \\
& \\
& \\
& =K(\dot{q})-U(q) \\
& \quad \begin{array}{l}
\text { where } \\
\\
\quad 2 K(\dot{q})=\langle\dot{q}, \dot{q}\rangle_{m}=\sum m_{i}\left\|\dot{q}_{i}\right\|^{2}= \\
\end{array} \quad U(q)=G \sum \frac{m_{a} m_{b}}{r_{a b}}
\end{aligned}
$$

$\nabla_{m}=\nabla=\quad$ gradient relative to mass metric.

$$
\mathbf{q}=r \mathbf{s}
$$

`Spherical ' change of var's:

$$
s \in \mathbb{S} \cong S^{N d-1}
$$

$$
\begin{aligned}
r & =\|\mathbf{q}\|_{m} \\
\dot{\mathbf{q}} & =v \mathbf{s}+\mathbf{w}, \mathbf{s} \perp \mathbf{w} \\
\rho & =\frac{1}{r} \\
d \tau & =r d t
\end{aligned}
$$

$$
\text { ENERGY: } \quad \frac{1}{2} v^{2}+\frac{1}{2}\|w\|^{2}-\rho U(s)=h
$$

$$
\rho^{\prime}=-v \rho
$$

Newton's

$$
\Longleftrightarrow \quad \begin{aligned}
s^{\prime} & =w \\
v^{\prime} & =|w|^{2}-\rho U(s) \\
w^{\prime} & =\rho \tilde{\nabla} U(s)-v w-|w|^{2} s
\end{aligned}
$$

$$
\begin{aligned}
(\tilde{\nabla} U(s)= & \nabla U(s)+U(s) s= \\
& \text { tangential proj of }
\end{aligned}
$$

$\nabla U(s)$
by Euler's ident.)

Spatial Infinity: $\rho=0$, an invariant submanifold the infinity manifold.

$$
s^{\prime}=w
$$

Flow at infinity. Set $\quad \rho=0$.

$$
s \in \mathbb{S} \cong S^{d N-1}
$$

$$
\begin{aligned}
w^{\prime} & =-v w-\|w\|^{2} s \\
v^{\prime} & =\|w\|^{2}
\end{aligned}
$$

$$
\begin{gathered}
\qquad v \in \mathbb{R}, v \neq 0 \\
\text { Energy at infinity: } \quad \frac{1}{2} v^{2}+\frac{1}{2}\|w\|^{2}=h
\end{gathered}
$$

Flow at infinity is independent of U !

$$
\text { Equilibria! } \quad(\rho, s, v, w)=(0, s, v, 0)
$$

form a normally hyperbolic manifold of equilibria within the full phase space.

$$
\Sigma=\Sigma_{-} \cup \Sigma_{+}
$$

disjoint union of unstable ($\mathrm{v}>0$) and stable ($\mathrm{v}<0$) equilibria representing past and future end shapes

Flow at infinity is independent of U.
Set $\mathrm{U}=0$ to understand the dynamics at infinity.
Flow $=$ reparam. of free motion projected onto the sphere !:

s, -s become equilibria! ; flow is gradient like between them...

Fig. 11. Geodesic of a scattering neiric.
"time pi geodesic flow on the sphere"

Fig. 11. Geodesic of a scattering neiric.
"time pi geodesic flow on the sphere"

ASIDE: This picture becomes much more accurate when we go to the "Jacobi-Maupertuis" version of Newtonian dynamics.

Hang on ..

If this flow at infinitely accurately captured the near-infinity dynamics we would not see the three black diameters, but instead just a centered small black blob near the origin rep. (-)Lag.

We must modify `scattering flow' at infinity so that the binary collision loci at infinity act as `perfect codimension 2 ' reflectors.
rationale 1:

$$
\begin{aligned}
\rho^{\prime} & =-v \rho \\
s^{\prime} & =w \\
v^{\prime} & =|w|^{2}-\rho U(s) \\
w^{\prime} & =\rho \tilde{\nabla} U(s)-v w-|w|^{2} s
\end{aligned}
$$

rationales, 2 (Knauf) +3 (Vasy et al): modify so collisions at infinity act as "perfect reflectors' and the total path length continues to be π

`Broken’ geodesic flow: the collision loci on the sphere act as 'perfect reflectors'

Non-deterministic!
If a geodesic hits a point on the collision locus it bounces off in a random direction, continuing until either it hits another, continuing in this manner `flowing' for a total time $=$ spherical arclength of

$\frac{1}{2} \frac{\pi}{2}=\frac{\pi}{4}$

$$
\frac{\pi}{4}+x=\pi \Longrightarrow x=\frac{3 \pi}{4}=\frac{1}{2} \frac{3 \pi}{2}
$$

Scenario: Leave binary. Hit collision locus at a point B. Go $3 / 2$ away around the sphere in any direction and mark the resulting points:

Circle of radius $\frac{3 \pi}{2}$ about B on standard unit sphere ircle of radius
$=$ circle of radius $\frac{\pi}{2}=$ great circle midway between B and -B .

SUMMARY:

Q. What is the infinity manifold?
A. the invariant manifold $\quad \rho=0$

Its equilibria represent asymptotic states: limits $q(t) / t$ or $q(t) /|q(t)|$
as $t \rightarrow \pm \infty$

Q. What are those black diameters of `near infinity points"? A. The image of `scattering orbits" in the unstable manifold of the Lagrange state at infinity and which ‘stay near infinity' for all time ($\forall t \quad \rho(t)<\epsilon)$
Q. Why are these black diameters arranged as they are?
A. JUST explained. That is where the billiards (broken geod. flow) comes ir

How we think "time T broken geodesic nondeterminist. flow" arises.
lIst a simple model.

For a gives incoming ray, a cone's worth of outgary rays.
Rule:

1) $\quad\left|v_{-}\right|=\left|v_{+}\right|$
2) $\pi_{\text {wire }} V_{-}=\pi_{\text {wire }} V_{+ \text {. }}$

Now in N-body pruklan in d-dins
'space' $\longleftrightarrow\left(\mathbb{R}^{d}\right)^{N}:=\mathbb{E}$
"wire" \longleftrightarrow collision locus

$$
\begin{aligned}
& =\left\{q_{:} q_{a}=q_{b}, \text { some } a \neq b\right\} \\
& =\bigcup_{\text {pairs }} \Delta_{a b s} .
\end{aligned}
$$

1) \Longleftrightarrow conserv. of Kinetic energy
2) $\Leftrightarrow 1$ of linear mom.

Call resulting non-deterministic trajectories " linear point billiads" (Vnanf:i train tracks)

$$
\text { in } \mathbb{R}^{d}
$$

Prop the spherical proj

$$
\begin{aligned}
& \text { the spheical proj } d N-1 \\
& \mathbb{E}-0 \rightarrow S(\mathbb{E})=S^{d N-1}
\end{aligned}
$$

of any linear pt billiard traj is a brolen gerd, brove at $\leq \cap \Delta$. \& couversely.
Q becounes: how do lveer p^{t} billiarch arise oft Newton.

trajectory $q^{(t)} \quad-1$

$$
\begin{array}{ll}
& \rho(t)=\frac{1}{r(t)}<\varepsilon \\
\text { so } & r(t):=|q(t)| \geq \varepsilon \\
& \forall t .
\end{array}
$$

Scaling: $q_{\varepsilon}(t)=\varepsilon q(t / \varepsilon)$
Verify: $\quad \quad_{q u}^{q}=F(q)$

$$
\Leftrightarrow \ddot{q}_{\varepsilon}=\varepsilon F\left(q_{\varepsilon}\right) .
$$

where $F=\nabla U$.

$$
\& \underbrace{\frac{1}{2}\left|\dot{q}_{\varepsilon}\right|^{2}-\varepsilon U\left(q_{\varepsilon}\right)=\underbrace{\frac{1}{2}|\dot{q}|^{2}-U(q)}_{\text {tine }+1}}_{\text {so } H_{\varepsilon}=H^{\prime r}}
$$

Now $\quad U=\sum \frac{G-m_{a} m_{b}}{r_{a} h}$.
tais process is equiraled to $G — \varepsilon G$.
"weak coupling"
weak curly limit: let $\varepsilon \rightarrow 0$.
For such limits
$\ddot{q}=0$ ontsial Δ.
what mappers © Δ ?
We say: any tajo sat
$\&(2)$ can occur.
No prone writhe yet.

EITHER: DONE,

or to OPEN PROBLEMS

or to Chazy
Maderna-Venturelli
JM metric then OPEN PROBLEMS
depending on time

Thm: [Chazy, 1922]: any hyperbolic solution $q(t)$ satisfies

$$
q(t)=a t+\left(\nabla_{m} U(a)\right) \log t+c+f(t) \quad \text { as } t \rightarrow \infty
$$

with $f(t)=O(\log (t) / t)$, and $f(t)=g(1 / t, \log (t))$, g analytic in its two variables.
and $\quad a \in \mathbb{R}^{N d} \backslash\{$ collisions $\}$
a = asymptotic position at infinity = element of
$a \in \Sigma_{-} \subset$ unstable equilibria $=\mathbb{S}^{d N-1} \subset$ infinity manifold
Question: Given a, q_0 in $\mathbb{R}^{N d}$ with a not a collision configuration. Does there exist a hyperbolic solution connecting q_0 at time 0 to a at time ∞ ?

Thm [Maderna-Venturelli; 2019]. YES. Moreover this solution is a metric ray for the JM metric with energy $\mathrm{h}=\mathrm{K}(\mathrm{a})=(1 / 2)|\mathrm{a}|^{\wedge} 2$.

Thm: [Chazy, 1922]: any hyperbolic solution $q(t)$ satisfies

$$
q(t)=a t+\left(\nabla_{m} U(a)\right) \log t+c+f(t) \quad \text { as } t \rightarrow \infty
$$

with $f(t)=O(\log (t) / t)$, and $f(t)=g(1 / t, \log (t))$, g analytic in its two variables. and $\quad a \in \mathbb{R}^{N d} \backslash\{$ collisions $\}$

Energy of $\mathbf{q}(\mathbf{t})$ must be $\quad \frac{1}{2}\|a\|^{2}$

Our re-interpretation of Chazy:
$a \in \Sigma_{-} \subset$ unstable equilibria $=\mathbb{S}^{d N-1} \subset$ infinity manifold c = `impact parameter’ = affine coord on `projectivized’ tangent space to unstable manifold of unstable eq. point a

Question: Given a, q_{0} in $\mathbb{R}^{N d}$ with a not a collision configuration.
Does there exist a hyperbolic solution connecting a at time
$-\infty$ to $q_{0} \quad$ at time $t=0 \quad$? (and having energy $\frac{1}{2}\|a\|^{2}$)

Thm [Maderna-Venturelli; 2019]. YES!

Moreover this solution is a metric ray
for the JM metric with the given energy $\frac{1}{2}\|a\|^{2}$

> Method of proof "‘weak KAM" a la Fathi
for the Jacobi-Maupertuis metric associated to Newton's eqs and this energy
relevant PDE: $\mathrm{H}(\mathrm{q}, \mathrm{dS}(\mathrm{q}))=\mathrm{h}$
tools: calculus of variations + some PDE + some metric geometry
Metric input: Buseman, Buseman functions as solutions to the (weak) Hamilton-Jacobi eqns some Gromov ideas re the boundary at infinity

Jacobi-Maupertuis reformulation of Newtonian mechanics:

Newton's eqns: $\Longleftrightarrow \ddot{q}=\nabla_{m} U(q)$

$$
\text { where } \quad\left\langle\nabla_{m} U(q), w\right\rangle_{m}=d U(q)(w)
$$

Solutions for fixed $\mathrm{E}=\mathrm{h}$ are reparam's of geodesics for the JM -metric:

$$
d s_{h}^{2}=2(h+U(q))|d q|_{m}^{2} \quad \text { on } \quad \Omega_{h}=\{q: h+U(q) \geq 0\}
$$

is closer in spirit to how Melrose and co. look at things than the standard Newton formulation we started with

p. 80. Geometric Scattering Theory -Melrose.

Fig. 11. Geodesic of a scattering nieiric.

REMARK.

Ω_{h} is a complete metric space.
Riemannian except at the Hill boundary $h+U(q)=0$ and at the collision locus $h+U(q)=+\infty$

Solutions to Newton at energy h are metric geodesics up until they hit the Hill boundary or the collision locus
beyond which instant they cannot be continued as geodesics.

$$
h \geq 0 \Longrightarrow \Omega_{h}=\mathbb{R}^{N d}
$$

Open problems ...

What about 3-body scattering?

QUESTIONS:

What is the analogue of the scattering map $\pi: \mathbb{R} \rightarrow S^{1}$?
What is its domain - the space of "impact parameters b's'?
What is its range - the space of `outgoing directions', theta's?
Is it smooth? open? invertible? almost onto?

Can we say anything quantitative or meaningful regarding its induced "differential cross-section" $\pi_{*}(L e b)=f(\Omega) d \Omega$

To begin to answer, return to ...

notations

Σ_{-}and Σ_{+}are the unstable/ stable equilibria, both identified with $S^{M-1} \backslash$ (collisions). Scattering map :

$$
S c: T^{*} \Sigma_{-} \rightarrow T^{*} \Sigma_{+}
$$

where the broken arrow means the domain is not all of the space, but rather an open subset thereof. The fiber

$$
T_{b}^{*} \Sigma_{-} \cong D^{M-1}(b)
$$

Fix an 'incoming beam direction" $b \in \Sigma_{-}$
Project the restriction map $w \mapsto S c(b, w)$ onto Σ_{+}. Call this map

$$
\pi_{b}: D^{M-1}(b)-\rightarrow S^{M-1}
$$

EG: Rutherford: ' $N=2, d=2 . M-1=1$

$$
\pi_{b}: D^{1} \cong \mathbb{R} \rightarrow S^{1}
$$

EG: $M=4$, the planar 3-body problem:

$$
\pi_{b}: D^{3}-\rightarrow S^{3}
$$

Theorem. π_{b} is analytic on its domain and its image has nonempty interior.

$$
\text { Q1. Is } \pi_{b} \text { onto? }
$$

No.
So.

Modified Q1s.

Is the image of π_{b} open ? dense?
What is the complement of its range?
Is it one-to-one? If 'no', one-to-one on an open dense set?

By Maderna and Venturelli, there is a backward hyperbolic orbit flowing from any noncollision a to total collision $q_{0}=0$

This orbit is represented by flowing from a certain `impact parameter’ \mathbf{c} in $\mathrm{D}(\mathbf{a})$.

Q2. Is this point \mathbf{c} unique, or, does more than one orbit leave a and end in total collision?

If it is not unique then...

some pictures...

End.
thank you for your attention and

QUESTIONS

Figure 1. A scattering path and a nearby orbit of the scat-
tering map.
A. Delshams, Tere Seara, R de la Llave, M Gidea,

Our scattering map is the same as their `scattering map' ! except that their stable/unstable intersections are (1) typically homoclinic and (2) they have a center manifold with a slow dynamics in place of our manifold of equilibria

