A Magnetic Playground for SubRiemannian Geodesics

Richard Montgomery UC Santa Cruz (*)

Enrico's Int'I sR seminar

via Zoom, April 29, 2020

(*) : am retiring, July 1, 2020:
so - keep me in mind for post
C-virus longish term invites, eg, for 2021..

Two-plane fields in 3-space: $\left\{d z-A_{1}(x, y) d x-A_{2}(x, y) d y=0\right\}$ ‘distribution’, D
one-form, θ
(here: $A_{1} d x+A_{2} d y=y d x$)

D can be put in this form, provided: the two-planes don't go vertical: $\frac{\partial}{\partial z} \notin D(x, y, z)$
and they are invariant under z-translations

Getting there:
PROBLEM : to join (x_0, y_0, z_0) to (x_1, y_1, z_1) by a horizontal path. `horizontal' $=$ tangent to D .

Write horiz. paths as control system:

$$
\begin{aligned}
& \dot{x}=u_{1} \\
& \dot{y}=u_{2} \\
& \dot{z}=u_{1}(t) A_{1}(x, y)+u_{2}(t) A_{2}(x, y) .
\end{aligned}
$$

or:

$$
\dot{q}=u_{1}(t) X(q(t))+u_{2}(t) Y(q(t))
$$

with:

$$
X=\frac{\partial}{\partial x}+A_{1}(x, y) \frac{\partial}{\partial z}
$$

$$
Y=\frac{\partial}{\partial y}+A_{2}(x, y) \frac{\partial}{\partial z}
$$

Strategy:

1. Line up x and y coordinates, using a line segment
2. Fiddle around at the final ($\mathrm{x}_{-} 1, \mathrm{y}_{-} 1$) using planar loops c .

Step 1. $u_{-} 1(t)=x _1-x _0=$ const ;

$$
u_{-} 2(t)=y_{-} 1-y_{-} 0,
$$

$0<t<1$.
with i.c.: $x(0)=x _0, y(0)=y _0, z(0)=z _0$.
yields: $x(1)=x _1, y(1)=y _1$ but

$$
z(1)=\int_{\ell} A_{1} d x+A_{2} d y \neq z_{1}
$$

Step 2. Try moving around ina planar loop c based at (x_1, y_1). Then our height z changes according to:

$$
\dot{z}=A_{1}(x, y) \dot{x}+A_{2}(x, y) \dot{y}
$$

or...

$$
\begin{gathered}
\Delta z=\int_{c} A_{1} d x+A_{2} d y=\iint_{D} B(x, y) d x d y=\begin{array}{l}
\text { Flux of } \\
\text { Magnetic Field }
\end{array} \\
B(x, y)=\frac{\partial A_{2}}{\partial x}-\frac{\partial A_{1}}{\partial y} \\
=\text { Magnetic Field }
\end{gathered}
$$

So, choose c so that flux $=z_{-} 1-z(1)$.

DONE!

(via Lie brackets: $[\mathrm{X}, \mathrm{Y}]=\mathrm{B}(\mathrm{x}, \mathrm{y}) \mathrm{Z} ; \quad Z=\frac{\partial}{\partial z}$

Next. Getting there optimally:

Join (x_0, y_0, z_0) to (x_1, y_1, z_1)
by the shortest horizontal path connecting them.
'Shortest?": Let the length of a horiz. path = length of its proj. to xy plane.
(we need that D does not go vertical for this def. to work)

$$
\begin{gathered}
\Longleftrightarrow \ell_{s R}(\gamma)=\ell_{\mathbb{R}^{2}}(c) ; c=\pi \circ \gamma, \pi(x, y, z)=(x, y) \\
\Longleftrightarrow s R \text { struc. is }: D=\left\{d z-A_{1} d x-A_{2} d y=0\right\} \\
\text { and }:\langle\cdot, \cdot\rangle=\left.\left(d x^{2}+d y^{2}\right)\right|_{D} \\
\Longleftrightarrow X=\frac{\partial}{\partial x}+A_{1} \frac{\partial}{\partial z} \quad \text { form an orthonormal frame } \\
, Y=\frac{\partial}{\partial y}+A_{2} \frac{\partial}{\partial z} \quad \text { for D }
\end{gathered}
$$

complete this frame:

$$
Z=\frac{\partial}{\partial z}
$$

Deriving sR geodesics. Use $\theta=d z-A_{1}(x, y) d x-A_{2}(x, y) d y$

Riem. structure ('penalty metric) tending to

$$
d s_{\epsilon}^{2}=d x^{2}+d y^{2}+\frac{1}{\epsilon^{2}} \theta^{2} \quad \rightarrow_{\epsilon \rightarrow 0} \quad \text { our sR structure; }
$$

$$
d x, d y, \theta \quad \leftrightarrow_{d u a l} \quad X, Y, Z
$$

so dually:

$$
\begin{aligned}
& X^{2}+Y^{2}+\epsilon^{2} Z^{2} \rightarrow X^{2}+Y^{2} \quad \text { encodes sR structure. } \\
& \text { viewed as: } \\
& \text {-2nd order diff'। operators } \\
& \text {-co-metric [symm. bilinear form on } T^{\star} \text {] } \\
& \text {-fiber-quadratic f'n ('Hamiltonian'!) on cotangent bundle }
\end{aligned}
$$

Symbol of $\mathrm{X}:=\mathrm{X}$, thought of as a fiber-linear Hamiltonian on T^{*}

$$
\begin{gathered}
X=\frac{\partial}{\partial x}+A_{1}(x, y) \frac{\partial}{\partial z} \longrightarrow P_{X}=p_{x}+A_{1}(x, y) p_{z} \\
Y=\frac{\partial}{\partial y}+A_{2}(x, y) \frac{\partial}{\partial z} \longrightarrow P_{Y}=p_{y}+A_{2}(x, y) p_{z} \\
Z=\frac{\partial}{\partial z} \quad \longrightarrow P_{Z}=p_{z} \\
\left(x, y, z, p_{x}, p_{y}, p_{z}\right) \text { coord. on } T^{*} \mathbb{R}^{3} \\
\quad p=p_{x} d x+p_{y} d y+p_{z} d z \in T_{(x, y, z)}^{*} \mathbb{R}^{3} \\
H_{\epsilon}=\frac{1}{2}\left(P_{X}^{2}+P_{Y}^{2}+\epsilon^{2} P_{Z}^{2}\right) \rightarrow \frac{1}{2}\left(P_{X}^{2}+P_{Y}^{2}\right) \\
\text { governs (normal) geodesics. }
\end{gathered}
$$

Full disclosure:
__up till now, right out of a review of the book
'A Comprehensive Guide to subRiemannian Geometry'

- by Agrachev, Barilari, and Boscain
which I wrote for the Bulletin of the AMS.
out in a year?

Geod eqns $=$ Ham'ns eqns $=$

$$
\dot{f}=\{f, H\}^{\text {Poisson bracket of fns }}
$$

fruns over fns on $T^{*} ; f=x, y, z, P _X, P_{-} Y, P _Z=p _z$, good enough

$$
\begin{aligned}
\dot{x} & =P_{X} \\
\dot{y} & =P_{Y} \\
\dot{z} & =A_{1} P_{X}+A_{2} P_{Y}+\epsilon \underline{P_{Z}} \\
\dot{P}_{X} & =-\left(B(x, y) \underline{P_{Z}}\right) P_{Y} \\
\dot{P}_{Y} & =+\left(B(x, y) \underline{P_{Z}}\right) P_{X} \quad P_{Z}=\text { const. }=\text { 'charge' } \\
\dot{P}_{Z} & =0
\end{aligned}
$$

Details of computation:

$$
\begin{gathered}
\{f, g h\}=g\{f, h\}+h\{f, g\} \\
\Longrightarrow\left\{f, H_{\epsilon}\right\}=P_{X}\left\{f, P_{X}\right\}+P_{Y}\left\{f, P_{Y}\right\}+\epsilon^{2}\left\{f, P_{Z}\right\} \\
\left\{x, p_{x}\right\}=\left\{y, p_{y}\right\}=\left\{z, p_{z}\right\}=1 ; \quad\{x, y\}=\ldots=0=\left\{p_{x}, p_{y}\right\}=\ldots=0 \\
\Longrightarrow \\
\text { for } f=f(x, y, z),\left\{f, P_{X}\right\}=X[f]:=d f(X) ;\left\{f, P_{Y}\right\}=Y[f] ; . . \\
\Longrightarrow\{f(x, y, z), H\}=P_{X} X[f]+P_{Y} Y[f] \Longrightarrow u_{1}(t)=P_{X}(t), u_{2}(t)=P_{Y}(t) \\
\quad \text { of } \dot{q}=u_{1}(t) X(q(t))+u_{2}(t) Y(q(t))
\end{gathered}
$$

Finally:

$$
\left\{P_{Z}, P_{X}\right\}=\left\{P_{Z}, P_{Y}\right\}=0 ;\left\{P_{X}, P_{Y}\right\}=-B(x, y) P_{Z}
$$

The $x, y, P _X, P _Y$ eqns decouple from $z ; P_{_} Z=\ l a m b d a$, parameter:

$$
\begin{aligned}
& \frac{d}{d t}(x, y)=\left(P_{X}, P_{Y}\right) \\
& \frac{d}{d t}\left(P_{X}, P_{Y}\right)=\lambda B(x, y) \mathbb{J}\left(P_{X}, P_{Y}\right)
\end{aligned}
$$

regardless of \epsilon!
where $\mathbb{J}\left(P_{X}, P_{Y}\right)=\left(-P_{Y}, P_{X}\right)=90$ deg. rotation of (P_X, P_Y)

These planar ODES

are the eqns of charged particle traveling in the plane under the influence of a magnetic field of strength $B(x, y)$ `pointing out of the plane'

WLOG: $H=1 / 2$, so $\left(P_{-} X\right)^{\wedge} 2+\left(P_{-} Y\right)^{\wedge} 2=1$, which says that the plane curve is parameterizes by arc length s , i.e. $\mathrm{t}=\mathrm{s}$.
Riem case: $P_{X}^{2}+P_{Y}^{2}+\epsilon^{2} P_{Z}^{2}=1 ; P_{Z}=\lambda$
which in turn are equivalent to the geometric eqns:

$$
\kappa(s)=\lambda B(x(s), y(s))
$$

where: $\kappa=$ plane curvature of curve $(x(s), y(s))$
Recall κ

$$
\vec{q}(s)=(x(s), y(s)), \frac{d}{d s} \vec{q}(s)=\vec{T}(s) ; \frac{d}{d s} \vec{T}(s)=\kappa(s) \mathbb{J} \vec{T}(s)
$$

Heisenberg Group Case

$B(x, y)=$ const. $=1$
Projected geodesic eqs: $\quad \kappa(s)=\lambda$
Solutions: circles and lines

Geodesics: (rough) helices, and lines
for the circles : rate of climbing

$$
\Delta z / \text { cycle }=(\text { signed }) \text { area of circle }
$$

GEOMETRIC PHASES

 IN PHYSICS

Alfred Shapere
Frank Wilczek

A nice surprise:

The set of planar curves arising as projections to the xy plane of geodesics is the same for all the Riemannian [penalty] metrics

$$
H_{\epsilon}
$$

and for the sR case

$$
H=\lim _{\epsilon \rightarrow 0} H_{\epsilon}
$$

as charge (\lambda) $->$ infinity normal geod $\mathrm{C}^{\wedge} 0$-converge to abnormal geod

FLAT MARTINET CASE:.

$$
B=x .
$$

Straighten out zero locus:
$B(x, y)=x$;
Martinet model for $\mathrm{D}(\mathrm{x}, \mathrm{y}, \mathrm{z})$: $d z-\left(x^{\wedge} 2\right) d y=0$

Abnormal geod is also Normal $\lambda_{0} \kappa(s)=\lambda B(x(s), y(s))$ reads ` $0=0$ ' for all choices of multipliers

Other geodesics:
Euler elastica, given by elliptic fns
thank you Levien ; Ardentov

BRANCHING GEODESICS.

(Meitton-Rizzi, 2019)

$$
B=\left\{\begin{array}{l}
x, y<0 \\
1, y>1
\end{array}\right.
$$

interpolates between
flat Martinet and Heisenberg

A simpler model (for me)

$$
\begin{aligned}
& \quad B=x, y<0 \\
& \text { and } \\
& \quad B(0, y)>0, y>0
\end{aligned}
$$

sR exponential map

'explanation' of branching

Big open problem:
Are all sR geodesics smooth?

Idea for counterexamples:
look at situations where the zero-locus of $B(x, y)$ is not smooth.

Eg: a) $B(x, y)=x y$ ['normal crossing']

Eero Hakavouri \& Enrico Le Donne shoot down this example. with their "No corners theorem" [2016]
try order 2 contact:

Eg (b): Tacnode

$$
B=y^{2}-x^{4}
$$

1994. Minnesota. Winter. ICM.

Sussmann. Yacine Chitour.
a certain warm crowded cafe across the railroad tracks. Crossing the frozen
Mississippi, with hexagonal patterns of ice;
(youngest daughter, heart problem appears..)
Agrachev... looking looking looking for counterexamples...

Richard Montgomery rmont@ucsc.edu
Wed, Apr 22, 9:15 PM (7 days ago)
to sussmann, Andrei...
[..] I hope you are well [...]
I have been thinking about old things, and realize that you two have likely already pursued these things and with high likelihood to the bitter end - and found it a dead end. ... Hence this letter, so either I do not repeat your dead end, or you give me some nuggets of hope. [....]

Take a magnetic field B whose zero locus is a tacnode or its higher degree generalizations:
$B(x, y)=y^{\wedge} 2-x^{\wedge}\{2 k\}$; Its zero locus -[...] consists of two branches $y=x^{\wedge} k$, and $y=-x^{\wedge} k$
with order $k-1$ of contact at the origin.
[...] Either branch, following until the origin will be a locally minimizing geodesic of Martinet type. So, follow the + branch to the origin, then switch to the other branch.. [to get] a horizontal curve which is $\left.C^{\wedge} \wedge k-1\right\}$ but not $C \wedge k$.

QUESTION: is this concatenation a minimizer for any positive integer k ?

Sat, Apr 25, 2020 at 3:32 AM Andrei Agrachev wrote:
Dear Richard,
I am fine, thank you very much.
I do not know the answer but may be there is a way to reduce this case to the Hakavuori - Le Donne theorem by taking a jet prolongation in the spirit of your and Misha Monster?

What do you think?
With kindest regards, Andrei

MEMOIRS
 of the
 American Mathematical Society

Number 956

Points and Curves in the Monster Tower

Richard Montgomery Michail Zhitomirskii

January. 2010 • Volume 203 • Number 956 (end of volume) • ISSN 0065-9266

Thm: [Agrachev-M-;][2020]
The tacnode example does not minimize.
More generally any piecewise smooth
(or piecewise $C \wedge k$)
$s R$ minimizer is smooth $(C \wedge k)$

Pf. By induction ,starting w Hakavouri-LeDonne's $k=1$.

Tool: Prolongation of distributions AND their curves.
Key facts:

1) the sR struc. also prolongs,
2) the prolongation of a geod is a geod.

Prolonging a distribution

and its horizontal curves
old space: sR manifold Q, w distribution D , inner prod on...
new space: points are rays in D downstairs.

$$
\tilde{Q}=\mathbb{P} D
$$

so: points in new space:
(pt, line): $\quad(q, \ell), \ell \subset D(q), q \in Q$
new distribution:
def a): $\tilde{D}(q, \ell)=d \pi_{q}^{-1}(\ell)$
def b): horiz. curves are curves s.t. $(q(t), \ell(t)): d q / d t \in \ell(t)$

Prolonging horizontal curves

$$
q(t) \rightsquigarrow(q(t), \ell(t))=(q(t), \operatorname{span}(d q / d t))
$$

Tacnode case: $\quad x=t, y= \pm t^{2}, z=0 ;$

Prolong: introduce fiber variable u
θ for fiber

$$
\begin{aligned}
{[d x, d y] } & =[1, u]=[\cos (\theta), \sin (\theta)] \\
u & =\tan (\theta)=d y / d x \\
x=t ; u & =\left\{\begin{array}{l}
2 t, t<0 \\
-2 t, t>0
\end{array} \quad\right. \text { NOW A CORNER! }
\end{aligned}
$$

want to invoke Hakavouri-LeDonne...

Prolonging sR struc.:
use that fiber inherits metric from inner prod on D. Eg: rank 2 case: identify proj line w unit circle [doubled]

X, Y o.n. for D,
o.n. for prolongation of $\mathrm{D} \quad X_{\theta}=\cos (\theta) X+\sin (\theta) Y ; \frac{\partial}{\partial \theta}$

Exer: The proj. map $\pi: \tilde{Q} \rightarrow Q \quad$ is distance decreasing (actually "non-increasing")

Exer: The prolongation of a geodesic is a geodesic.

Proof of theorem: $k=2$:
Say a geodesic is p.w. $\mathrm{C} \wedge 2$.
Prolong it, and its sR struc.:
Result: a $\mathrm{C}^{\wedge} 1$ geod in the prolongation
WITH corners!
Contradicts `no corners’ theorem of H-LeD.
So the original curve must have been $\mathrm{C} \wedge 2$

General k. Similar. Use induction on k.

fini. Thank you all , esp. Enrico, for the opportunity to talk and inspiration to prove a theorem

in base
circle radius $r=1 /$ lambda
in space:
roughly, helices:
lie on cylinder of radius,
in sR case: they climb area of circle/ revolution
in Riem case: increase height from sR case by \eps*\lambda per rev.

