Find $\&$ describe interesting integrable $s R$ geodesic flows.

Does the Monster tower admit an integrable $S R$ geodesic flow?
Do K-trailer systems.
warm-up:
Geodesic flows on

Surfaces:

Integrable:

plane

sphere

4
surface of revolution.

(Jacubils ellipsoids.

Non -integrable

$$
\ll \sum_{\text {compact. }} g>1
$$

- con any curvature

$$
K<0
$$

Typical generic metric
sub Riemannian geometry.

- $D \subset T Q$ tinear subbundle

$$
\cdot\langle,\rangle \text { on } D .
$$

- Horizontal path

$$
\begin{gathered}
\gamma: I \subset \mathbb{R} \rightarrow Q \\
\dot{\gamma}(t) \in D_{\gamma(t)} \\
\cdot h(\gamma)=\int_{I} \sqrt{\langle\dot{\gamma}(t), \dot{\gamma}(t)\rangle} d t
\end{gathered}
$$

\rightarrow Allows us to define \odot distance - geodesics

Geodesic equs
suppose, far simplicity
D has $\operatorname{rank} 2$
$\xrightarrow[x_{2}]{x_{x}} \quad x_{1}, x_{2}$ on. Frame

$$
\begin{aligned}
& \text { by duality } P_{1, P_{2}}^{P_{1}} T_{\text {fiber linear }}^{*} \rightarrow \mathbb{R} \\
& \begin{aligned}
& P_{a}(q, p)= p\left(X_{a}(q)\right) \\
& a=1,2
\end{aligned} \\
& = \\
& \sum_{\mu} p_{\mu} X_{a}^{\mu}\left(q^{\prime}, q^{2}, \ldots, q^{n}\right)
\end{aligned}
$$

Define

$$
H=\frac{1}{2}\left(P_{1}^{2}+P_{2}^{2}\right) .
$$

the SR "Kinetic energy" H's Hamilton's equs generate the "SR geodesic flow".

$$
\begin{gathered}
\Phi_{t}: T^{*} Q \rightarrow T^{*} Q \\
\frac{d f}{d t}=\left\{f_{,} H\right\}_{\mathfrak{V}_{\text {Poisson brackets }}} \text { where } f_{t}=\phi_{t}^{*} f
\end{gathered}
$$

Prop. The projections to Q of solutions to these Hamilton's equations are sR geodesics.

Heisencheg group

Heis geodesice...

Heis, geodesics given in terms af trig. functions; cosine, sine, \& linear:

Project to

$$
\begin{aligned}
\text { via } \quad \begin{aligned}
\mathbb{R}^{3} & \rightarrow \mathbb{R}^{2} \\
(x, y, z) & \rightarrow(x, y)
\end{aligned},=(x)
\end{aligned}
$$

After the trig/ exponential f ns, the next simplest transcendental frs we the elliptic fans
\rightarrow Euler's elostica.

Modulo isometries \& scaling a 1-pasameter family.

SubRiemannian geometries whose solutions are lifts of elastica

71 。
space: \mathbb{R}^{3} Martinet:
distribution: $\underbrace{d z-y^{2} d x=0}$ metric: $d x^{2}+d y^{2}, ~ r o s$

$$
\begin{gathered}
(x, y, z) \\
\downarrow_{(x, y)}^{\downarrow}
\end{gathered}
$$

$$
\left.d \pi\right|_{D_{(x, y, z)}}: D_{(x, y, z)} \stackrel{\text { som. }}{\sim} \mathbb{R}^{2}
$$

$1=$ Figure 15
curve : $t \cdot>(x(t), y(t))$

Figure 16
A. AGRACHEV, B. BONNARD, M. CHYBA, AND I. KUPKA

$$
(1997)
$$

21. (Mastinet)
curve: $(x(s), y(s))$ arclength
$5 \sqrt{2} \theta$

$$
\mathcal{L}(s)=\frac{d \theta}{d s}= \pm \frac{1}{r(s)}
$$

ELASTICA ODE:

$$
K(s)=a+b y(s)
$$

(More ghernall)

$$
=\underset{x(s), y(s)}{\operatorname{affine}},
$$

ξ

$$
\begin{aligned}
s R \text { length }= & \text { length of front } \\
& \text { path } q_{f}
\end{aligned}
$$

$$
\Rightarrow
$$

a
straight
line

All adonit a $s R$ subnersion

$$
\pi: Q \longrightarrow \mathbb{R}^{2}
$$

the
$\frac{\text { antor Euclidean plane }}{\left.d \pi\right|_{D_{2}}: D_{z} \underset{\text { ismely }}{\sim} T_{T(2)]}} \mathbb{R}^{2}=\mathbb{R}^{2}$

Corollaries

- a horizontal curve \& its plane projection have the same length
-the horizontal lifts "h" of a straight line are , R geodesics

$$
x_{1}=h \frac{\partial}{\partial x}, x_{2}=h \frac{\partial}{\partial y}
$$

frame D.
If $(x / s), y(s))$ is the plane projection of a $s R$ geod. then $\dot{x}=P_{1}(s)$

$$
\dot{y}=P_{2}^{\prime}(s)
$$

8 the curvature $X(s)$ of this plane curve sat. $\mathcal{y}=\left\{P_{1}, P_{2}\right\}$.

Integrable Geodesic flows "
Flows you can "solve"
Formal def: Arnolid-Liousville $n=\operatorname{dim} Q .=\frac{1}{2} \operatorname{dim} T^{+} Q$ $\left.\exists f_{1}, \ldots, f_{n-1} \in \mathcal{G} \dot{Q}\right)$. st.

1) $\left\{f_{i}, f_{j}\right\}=0=\left\{f_{i}, H\right\}$
2) $d f_{1} \wedge d f_{2} \wedge \ldots \wedge d H \neq 0$ are.
$F=$ Algebraic, ar Meromorphe or Analytic as C^{∞}.

Some
Integrable $s R$ geometries whose space of projected geodesics is larger than the space of elustica

integrable via hypergeometric fus

integrable via
$2^{\text {nd }}$ level of the filament nierarchy \downarrow

$$
\mathbb{R}^{2} \times \pi^{2}
$$

tricycling '
Dodddi: 2021-2 *
Perez-Mariray 1997-8.
\&Anzablo-Menteses

* Perline-Tabachnition 2023
$J^{\prime} \simeq$ Heisenberg
$J^{2} \simeq$ Engel, on list
J^{k} : integrable by wyperelliptic

$$
\left(\begin{array}{c}
\text { - annctions: }\left(\frac{d x}{d t}\right)^{2}=P_{2 k}(x) \\
d \log 2 k
\end{array}\right.
$$

Felipe Perez.Monroy \&
Alfonso Anzaldo-Meneses, 2003
see also
Alejandre Braso. Doddul: : 2021

* From

$$
\frac{1}{2} \dot{x}^{2}+\frac{1}{2} F_{k}(x)^{2}=\frac{1}{2}
$$

$\operatorname{deg} k$
Ham'n 1-deg of freedom.

Geometry of Integrable Linkages

Ron Perline * Serge Tabachnikov ${ }^{\dagger}$

July 27, 2023
-・ー - •
we have observed is that the presence of elastica in a geometrical context often indicates that there is an integrable system floating around in the background.

No-slip imposed at midpoints m_{i}

$$
\begin{aligned}
& Q=\mathbb{R}^{2} \times S^{1} \times S^{\prime} \\
& (x, y) \theta_{1}, \theta_{2} \\
& X_{1}=\frac{\partial}{\partial x}-\frac{\sin \theta_{1}}{l_{1}} \frac{\partial}{\partial \theta_{1}}-\frac{\sin \theta_{2}}{l_{2}} \frac{\partial}{\partial \theta_{2}} \\
& X_{2}=\frac{\partial}{\partial y}+\frac{\cos \theta_{1}}{l_{1}} \frac{\partial}{\partial \theta_{1}}+\frac{\cos \theta_{2}}{l_{2}} \frac{\partial}{\partial \theta_{2}}
\end{aligned}
$$

No-slip imposed at midpoints m_{i} !

Figure 4. On the left, the trajectories of points x, y_{1}, and y_{2} are shown, and on the right, the respective motion of the 2-linkage whose two links are colored red and blue. The values of k are 0.1 and 0.707 , respectively.

$$
\gamma_{t}=\frac{\kappa^{2}}{2} T+\kappa_{s} N
$$

$$
\gamma=\gamma(t, s)
$$

$$
\kappa_{t}=\kappa_{s s s}+\frac{3}{2} \kappa^{2} \kappa_{s}
$$

$$
\begin{aligned}
& I_{0}=\int_{\gamma} 1 d s, \quad E_{0}=\kappa(s) \\
& I_{2}=\int_{\gamma} \kappa^{2} d s, \quad E_{2}=\kappa^{\prime \prime}+\frac{\kappa^{3}}{2} \\
& I_{4}=\int_{\gamma}\left(\kappa^{\prime}\right)^{2}-\frac{1}{4} \kappa^{4} d s, \quad E_{4}=\frac{5}{2} \kappa^{2} \kappa^{\prime \prime}+\frac{5}{2} \kappa \kappa^{\prime 2}+\frac{3}{8} \kappa^{5}+\kappa^{\prime \prime \prime \prime}
\end{aligned}
$$

will refer to critical points of linear combinations of these functional on curves; for example, a curve satisfying $a E_{0}+E_{2}=0$ is a 1 -soliton, a re satisfying $a E_{0}+b E_{2}+E_{4}=0$ is a 2 -soliton.

$$
\begin{gathered}
a E_{0}(\gamma)=0 \Leftrightarrow \quad \text { lines, circles } \\
a E_{0}(\gamma)+b E_{2}(\gamma)=0 \quad(b \neq 0) \\
\Leftrightarrow \text { elastica } \quad(1-\text { solitoas } \\
a E_{0}(\gamma)+b E_{2}(\gamma)+c E_{4}(\gamma)=0 \\
(c \neq 0)
\end{gathered}
$$

\Leftrightarrow tricycle 2 -soltion cusves.

Dous the Perline-Tab. 'tricycle' integrabilly La 2-chain) extend to

almost certain.

$$
E_{0}, E_{2}, E_{4}, E_{6} .
$$

Perline; numerical evidence K-chains, any K.?
or

seems to be
integsable

\& next ... ??

Figure 8: A train, made up of a truck pulling 5 trailers.

	Monster-	
Jet	semple	K-trailer
space	tower	spaces

= Different distributions?
almost certainly butt not checked =
Q. Is there an inner product o the k-trailer distribution for which the corresponding s R geodesic flow Λ is in tegrable? (on $T^{+} T_{k}$)

- same Q, but on M_{k} ? (so flow on $T^{4} M_{K}$)

Overflow

Classify rank 2 integrable 6 arnot flows

$$
\begin{gathered}
o y=V_{1} \oplus V_{2} \oplus \cdots \oplus V_{k} \\
{\left[V_{i,} V_{j}\right] \subseteq V_{i+j}} \\
V_{s}=0, s>k
\end{gathered}
$$

$V_{1} \simeq \mathbb{R}^{2}$ Lie generates
curve: $(x(s), y(s))$ arclength
$5 \sqrt{2} 0$

$$
\mathcal{L}(s)=\frac{d \theta}{d s}= \pm \frac{1}{r(s)}
$$

ELASTICA ODE:

$$
K(s)=a+b y(s)
$$

(More ghernall)

$$
=\underset{x(s), y(s)}{=\operatorname{affine}},
$$

$$
\begin{aligned}
& Q \simeq o g \simeq \mathbb{R}^{N}=G, N_{i} l p . \\
& \downarrow^{2} R \text { submn. } \\
& V_{2}= \mathbb{R}^{2} \simeq G /[G, G] \\
& N=2+d_{2}+ d_{3}+\cdots+d_{k} \\
& d_{j}=\operatorname{dim}_{j}
\end{aligned}
$$

$\left(2, d_{1} \ldots, d_{k}\right)$ graded dimin
$(2,1)$: Heisenberg
($2,1,1)$ Engel.
$(2,1,2)$ Free 3-step.

$$
(2, \underbrace{1,1, \ldots .1}_{k}) \quad J^{k}(\mathbb{R}, \mathbb{R})
$$

all integrable
$(2,1,2,3)$ Free 4 -step.
[gronth 2,3,5,8] Non-integabl otws.

Classify the
Carnot groups
admitting arlgebraicully
integrable
sub Riemannian structures.

$$
\begin{aligned}
{ }^{*} f_{i} & \in P_{0} l_{y n}\left(T^{+} G\right) \\
& \simeq \mathbb{R}_{\infty} l_{n}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)
\end{aligned}
$$

