Geodesics in Jet Space.

- Alejandro Doddoli, UC Santa Cruz

and R. Montgomery
who is sorry he is not there in Paris with you

with big thanks to Felipe Monroy-Perez

$$
J^{k}=J^{k}(\mathbb{R}, \mathbb{R})=\underset{\text { space of } k \text {-jets of }}{\text { functions } y=f(x)}
$$

coordinates $x, y, u_{1}, u_{2}, \ldots, u_{k}$

$$
u_{j} \text { represents } \frac{d^{j} y}{d x^{j}}
$$

rank 2 distribution
defined by vanishing of the system of k one-forms

$$
\begin{aligned}
d y-u_{1} d x & =0 & u_{1} & =\frac{d y}{d x} \\
d u_{1}-u_{2} d x & =0 & \text { so } & \text { again: } \\
\vdots & = & u_{2} & =\frac{d u_{1}}{d x} \\
d u_{k-1}-u_{k} d x & =0 & & \\
& = & & \\
& & &
\end{aligned}
$$

admitting the global frame:

$$
\begin{aligned}
& X_{1}=\frac{\partial}{\partial x}+u_{1} \frac{\partial}{\partial y}+u_{2} \frac{\partial}{\partial u_{1}}+\ldots+u_{k} \frac{\partial}{\partial u_{k-1}} \\
& X_{2}=\frac{\partial}{\partial u_{k}}
\end{aligned}
$$

which generates a nilpotent Lie algebra:

$$
\begin{aligned}
& {\left[X_{2}, X_{1}\right]=\frac{\partial}{\partial u_{k-1}} } \\
& \left(a d_{-X_{1}}\right)^{j} X_{2}=\frac{\partial}{\partial u_{k-j}}, i=1, \ldots, k \quad\left(u_{0}=y \quad\right) \\
\Longrightarrow & J^{k} \quad \begin{array}{l}
\text { has the structure of a Carnot group } \\
\text { of `Goursat' type: growth }(2,3,4, \ldots, \mathrm{k}+1, \mathrm{k}+2)
\end{array}
\end{aligned}
$$

Declare X_{1}, X_{2} to be an orthonormal frame for Δ_{k}
to get a subRiemannian structure on this Carnot group

Q1: ¿What are its geodesics?

Q2: ¿What are its globally minimizing geodesics $\gamma: \mathbb{R} \rightarrow J^{k}$?

Q1 fully answered in 2002-3 by

Alfonso Anzaldo-Meneses and Felipe Monroy-Perez

available through Research Gate:
Goursat distribution and sub-Riemannian structures, December 2003 Journal of Mathematical Physics

Integrability of nilpotent sub-Riemannian structures (preprint; INRIA, 2003; inria-00071749]

Optimal Control on Nilpotent Lie Groups
October 2002 Journal of Dynamical and Control Systems
and their results form $\sim 75 \%$ of my talk

$\mathrm{k}=1$: Heisenberg:

$$
d y-u_{1} d x=0
$$

Geodesics: consider the projection

$$
J^{1} \rightarrow \mathbb{R}^{2} ; \pi\left(x, y, u_{1}\right)=\left(x, u_{1}\right)
$$

geodesics project to lines
or circles

in the $\left(x, u_{1}\right)$-plane
i.e. those plane curves with curvature

$$
\kappa=\kappa(s)=\mathrm{constant}
$$

Among these geodesics, only those corresponding to lines are global minimizers

Remark on geodesics for general Carnot groups G.

$$
\begin{aligned}
\exp : & \mathfrak{g} \simeq G \\
\mathfrak{g}= & V_{1} \oplus V_{1} \oplus \ldots V_{s} \\
& V_{1} \text { Lie generates, corresponds to distribution } \\
\pi: & G \rightarrow G /[G, G] \simeq V_{1} \simeq \mathbb{R}^{r}
\end{aligned}
$$

Lines in the Euclidean space V_{1} horizontally lift to global minimizers (=metric lines) in G.

¿Are there any other global minimizers?

For s=2 (two-step, like Heis.) no. [Thm: Eero Hakavouri] but, for $\mathrm{s}=3 \ldots$
($\mathbf{k}=2$) $\quad \mathrm{k}=2$: Engel:

$$
\begin{gathered}
d y-u_{1} d x=0 \\
d u_{1}-u_{2} d x=0
\end{gathered}
$$

coords: $\quad\left(x, y, u_{1}, u_{2}\right)$

$$
X_{2}=\frac{\partial}{\partial u_{2}}
$$

$\pi: J^{2} \rightarrow \mathbb{R}_{x, u_{2}}^{2} \quad \pi\left(x, y, u_{1}, u_{2}\right)=\left(x, u_{2}\right)$
¿ What plane curves arise as projections of geodesics?
(Any horizontal lift of such a plane curve is then a geodesic)
Thm[Ardentov-Sachkov] Besides the lines and circles, we get
Euler elastica whose directrices are `vertical' (= parallel to u_{2} - axis)

These elastica are the plane curves param. by arclength s whose curvature satisfies:

$$
\kappa(s)=a+b x(s)
$$

i.e. the curvature is a linear polynomial in the coordinate x

Thm, ct'd [Ardentov-Sachkov] among these, only the lines and the Euler solitons correspond to globally minimizing geodesics.

General \mathbf{k}

$$
\pi: J^{k} \rightarrow \mathbb{R}_{x, u_{k}}^{2} ; \pi\left(x, y, u_{1}, \ldots, u_{k}\right)=\left(x, u_{k}\right)
$$

is $\pi: G \rightarrow V_{1}$ and, as such, is a subRiemannian submersion.
Def. a subRiemannian submersion between two sR mfds whose distributions have the same rank r is a submersion whose differential, upon restriction to each distribution r-plane, is a linear isometry
Us: $d \pi: \Delta_{k} \rightarrow \mathbb{R}^{2}$
is a linear isometry since $d s^{2}=d x^{2}+d u_{k}^{2}$ restricted to Δ_{k}
here Δ_{k} denotes the distribution on J^{k}

Q1': ¿ What are the planar projections of geodesics in J^{k} ?

Write $\mathrm{c}(\mathrm{s})=\left(x(s), u_{k}(s)\right)$ for such a planar projection, with $\mathrm{s}=\operatorname{arc}$-length.

Answer:

Thm A. [Anzaldo-Meneses \& Monroy-Peréz; 2002] The curvature $\kappa(s)$ of $\mathrm{C}(\mathrm{s})$ is given by a degree $\mathrm{k}-1$ polynomial K in x :

$$
\begin{equation*}
\kappa(s)=K(x(s)) \tag{*}
\end{equation*}
$$

Conversely, for any degree k -1 polynomial $\mathrm{K}(\mathrm{x})$, any horizontal lift to J^{k} of any plane curve whose curvature satisfies (*) is
a geodesic.
Moreover, $\quad \dot{u}_{k}(s)=F(x(s))$
for some anti-derivative $F(x)$ of $K(x)$,
i.e. $F(x)$ is a degree k polynomial such that

$$
\mathrm{dF}(\mathrm{x}) / \mathrm{dx}=\mathrm{K}(\mathrm{x}),
$$

To understand $x(s)$, use F to form the (1-deg-of-freedom) Ham. sys:

$$
H(x, p)=\frac{1}{2} p^{2}+\frac{1}{2}(F(x))^{2} \quad \text { so potential is } V(x)=\frac{1}{2}(F(x))^{2}
$$

Thm B [A-M, M-P 2002, ctd] $(x(s), \dot{x}(s))$ solves Hamilton's eqns
for this H :

$$
\begin{aligned}
\dot{x} & =\frac{\partial H}{\partial p}=p \\
\dot{p} & =-\frac{\partial H}{\partial x}=-F(x) F^{\prime}(x)
\end{aligned}
$$

and obeys the energy constraint:

$$
H(x(s), \dot{x}(s))=\frac{1}{2}
$$

We call such a curve $x(s)$ an " F - curve".

The geodesic flow is completely determined by the F-curves.

The F-curve associated to any deg. k poly $\mathrm{F}(\mathrm{x})$ arise as the x -projection of some geodesic on the jet space

Will give a `magnetic field’ proof of these theorems below

Level curves of

$$
H(x, p)=\frac{1}{2} p^{2}+\frac{1}{2}(F(x))^{2}
$$

Level set $H=1 / 2$

projects onto the Hill region: $\left\{x: \frac{1}{2} F(x)^{2} \leq \frac{1}{2}\right\}$ or:
$\{|F(x)| \leq 1\}=\left[x_{1}, x_{2}\right] \cup\left[x_{3}, x_{4}\right] \cup \ldots \cup\left[x_{2 i-1}, x_{2 i}\right], i \leq k$
and is the union of at most k closed bounded intervals whose endpoints x_{i} satisfy $F\left(x_{i}\right)= \pm 1$
Each interval is swept out by an F-curve.

$x(s)$ periodic.
Traverses interval once in time L/2, there and back in period L

$x(s)$ critical.
Of homoclinic type.
Takes infinite time to reach \times _0, bouncing off x_1
$x(s)$ critical .
Heteroclinic from x_0 to x_1. Takes infinite time to traverse interval once

Remark : ¿ Why is the vertical $\left(u_{k}\right)$ direction special ?
Answer: The singular curves in J^{k} are precisely the u_{k} lines.

MAIN RESULTS

Conjecture [Doddoli, M-] Geodesics whose F-curves are critical and not of 'turn-around type’ are global minimizers.

For $\mathrm{k}=2$ this is the theorem of Ardentov-Sachkov above. Up to scale there is just one such curve, the one for $F(x)=x^{2}-1$

Theorem. [Doddoli, M-]

(i) For $\mathrm{k}>2$, the geodesic whose x coordinate $\mathrm{x}(\mathrm{s})$ is an F-curve for

$$
F(x)=x^{k}-1 \text { is a global minimizer. }
$$

(ii) Geodesics whose F-curves are periodic are not global mins.

Indeed, they fail to minimize past one period L .
specifically: if $x(0)=x(L)$ is an endpoint of for the F-curve's interval then
$s=L$ is conjugate to $s=0$ along the corresponding geodesic in $J \wedge k$

Plan of attack for an eventual proof for the full conjecture:
Two ideas:

1) Build an intermediate $s R$ manifold \mathbb{R}_{F}^{3} depending on F

$$
\begin{gathered}
J^{k} \xrightarrow{\pi_{F}} \mathbb{R}_{F}^{3} \xrightarrow{p r_{F}} \mathbb{R}^{2} \\
p r_{F} \circ \pi_{F}=\pi: J^{k} \rightarrow \mathbb{R}^{2}
\end{gathered}
$$

All projections are sR submersions between sR manifolds

> The intermediate space will be of "magnetic type':

Characterize its geodesics and global minimizers
Use: the horiz lifts of global mins are global mins.
2): Use the method of Hamilton-Jacobi to find calibrations S on the intermediate space, thus generating (quasi-) global mins

The solution S will be associated to $a+b F$-curves

Step 1. i) A polynomial change of coordinates :

$$
\begin{gathered}
\left(x, u_{0}=y, u_{1}, \ldots, u_{k}\right) \mapsto\left(x, \theta_{0}, \theta_{1}, \ldots, \theta_{k}\right) \\
\theta_{0}=u_{k}, \quad \theta_{1}=-u_{k-1}+x u_{k} \quad, \quad \ldots
\end{gathered}
$$

yields an alternate expression for our frame:

$$
\begin{aligned}
X_{1} & =\frac{\partial}{\partial x} \\
X_{2} & =\frac{\partial}{\partial \theta_{0}}+\Sigma_{j=1}^{k} \frac{x^{j}}{j!} \frac{\partial}{\partial \theta_{j}}
\end{aligned}
$$

ii) Suppose given

$$
F=a_{0}+a_{1} x+a_{2} \frac{x^{2}}{2!}+\ldots+a_{k} \frac{x^{k}}{k!}
$$

Define the projection π_{F} to 3 -space, with coords $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ by

$$
\begin{aligned}
& X=x \\
& Y=\theta_{0}:=u_{k} \\
& Z=a_{0} \theta_{0}+a_{1} \theta_{1}+\ldots+a_{k} \theta_{k}
\end{aligned}
$$

The projection π_{F} is linear in these coordinates so its differential easy to compute. Get:

$$
\begin{aligned}
& \pi_{F *} X_{1}=\frac{\partial}{\partial X}=\frac{\partial}{\partial x} \\
&=E_{1} \\
& \pi_{F *} X_{2}=\frac{\partial}{\partial Y}+F(x) \frac{\partial}{\partial Z}
\end{aligned}=E_{2}
$$

which is an o.n. frame for the sR structure of magnetic type:
Distribution: $\quad d Z-F(x) d Y=0$
metric:

$$
\frac{d X^{2}+d Y^{2}}{\text { restricted }}
$$

magnetic analogy: vector potential: $F(X) d Y$
magnetic field: $\quad F^{\prime}(X) d X \wedge d Y=K(X) d X \wedge d Y$

Example: Martinet case. $\mathrm{F}(\mathrm{x})=x^{2}$

General F, ct'd. The geodesics for \mathbb{R}_{F}^{3} are generated by:

$$
H=\frac{1}{2} p_{X}^{2}+\frac{1}{2}\left(p_{Y}+F(X) p_{Z}\right)^{2}
$$

Since:

$$
\dot{p}_{Y}=\dot{p}_{Z}=0
$$

we can view $p_{Y}=a, p_{Z}=b$ as constant parameters.
Then $\quad H=\frac{1}{2} p_{x}^{2}+\frac{1}{2}(a+b F(x))^{2} \quad(X=x)$
generates a family of F -curves $\mathrm{x}(\mathrm{s})$, not just for F , but for the pencil of polynomials $a+b F(x)$.

Step 2. Hamilton-Jacobi method
solve $H(q, d S(q))=\frac{1}{2} \quad$ for S
eqn is equiv to $\left\|\nabla_{h o r} S(q)\right\|=1$
Integral curves $\mathrm{q}(\mathrm{t})$ for $\dot{q}=\nabla_{\text {hor }} S(q)$
are minimizing geodesics.
Our case of \mathbb{R}_{F}^{3}

$$
\nabla_{h o r} S=\frac{\partial S}{\partial x} E_{1}+\left(\frac{\partial S}{\partial Y}+\frac{\partial S}{\partial Z} F(x)\right) E_{2} \quad \mathbb{R}_{F}^{3}
$$

Hamilton-Jacobi eqn:

$$
\left(\frac{\partial S}{\partial x}\right)^{2}+\left(\left(\frac{\partial S}{\partial Y}+\frac{\partial S}{\partial Z} F(x)\right)^{2}=1\right.
$$

Ansatz: $S(x, Y, Z)=b Z+a Y+f(x)$
yields

$$
f^{\prime}(x)^{2}+(a+b F(x))^{2}=1
$$

Compare with the energy $\mathrm{H}=1 / 2$ eq implied by the geodesic equations:

$$
\begin{aligned}
& \quad(\dot{x})^{2}+(a+b F(x))^{2}=1 \\
& \dot{x}=p_{x}, a=p_{Y}, b=p_{Z_{\&}} \quad \dot{Y}:=\dot{u}_{k}=\left(p_{Y}+P_{Z} F(x)\right)
\end{aligned}
$$

Suggests:

$$
\dot{x}=f^{\prime}(x), \dot{u}_{k}=a+b F(x)
$$

which are the first two components of the ODE:

$$
\dot{q}=\nabla_{h o r} S(q)
$$

The last (Z) component arises by horiz lift: $\quad \dot{Z}=F(x) \dot{u}_{k}=F(x)(a+b F(x))$

Solve the boxed eq by taking a square root and integrating:

$$
f(x)= \pm \int_{x(0)}^{x} \sqrt{1-(a+b F(\xi))^{2}} d \xi
$$

Must have $\quad 1-(a+b F(\xi))^{2} \geq 0$
which means that $\mathrm{x} \& \mathrm{x}(0)$ must lie within a single interval $\left[x_{i}, x_{i+1}\right]$ of the Hill region (*) associated to the 1 -deg of freedom Hamiltonian

$$
H=\frac{1}{2} p_{x}^{2}+\frac{1}{2}(a+b F(x))^{2}
$$

at energy level $1 / 2$.

The criticality or regularity of $a+b F(x)$ at the endpoints of the interval of def, $\left[x_{i}, x_{i+1}\right]$
govern whether or not the horizontal gradient flow of S is complete or not on the slab

$$
\begin{aligned}
& \left.\{x, Y, Z): x \in\left[x_{i}, x_{i+1}\right]\right\} \subset \mathbb{R}_{F}^{3} \\
& \dot{x}= \pm \sqrt{1-(a+b F(x))}^{2} \\
& \dot{Y}=a+b F(x) \\
& \dot{Z} \quad \text { by horizontally lifting the } x, Y \text { curve } \ldots
\end{aligned}
$$

EXAMPLE:

Heteroclinic case, no 'turn-back': $a+b F(x)=1$ at endpoints $x_{-} i, x_{-}\{i+1\}$

Result: the geodesic corresponding to this heteroclinic F-curve is a global minimum within the larger slab within which S is defined.

END

perhaps... but if ...
...time permitting - a bit of blather on
-Buseman,
-being bi-asymptotic to two singular lines,
-dim count ons space of pairs of singular lines...

END

