Gauge Theory: from Falling Cats
to the Three-body problem.

... hello Illlinols |



Unifying Mathematical theme:
geometry of a principal G-bundie

G—>0Q—S

group a space on the quotient
which G space Q/G
acts
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To lift paths from the base S
up to the total space () use a connection :




gauge field =
connection =

choice of horizontals =

choice of “PERPINDICULARS’
to the fibers V



Lheary

group G

Lotal Space

C. N. Yany and Robert Nills, 19€9.

1!?1.‘“' space

properties

fiber Q S of gauge field A
= connection

F and M u(1) S U(1) space-Lime vector polential
: Sals {photon)
variable

electroweak  SU(2) x U(1) SxG space-time gauge potential

(W and 7Z)

variable

strong force SU(3) SxG space-time gauge potential

QCD

(glions |
variable




Gauge theory: basic variables are
connections on a fixed principal bundle Berkeley. 1980-85

| witnessed a revolution in the understanding of
4-manifolds. It was driven by ideas from gauge
theory.

Method: attach the moduli space of solutions to
the ""ASD Yang-Mills egns”
to a 4-manifold.

results: exotic RN’s : which intersection
forms can be realized ..
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Geometry of self-propulsion at low
Reynolds number

By ALFRED SHAPERET AND FRANK WILCZEK}
t Institute for Advanced Study, Princeton, NJ 08540, USA
1 Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, USA

(Received 15 April 1987 and in revised form 12 July 1988)

The problem of swimming at low Reynolds number is formulated in terms of a gauge
field on the space of shapes. Effective methods for computing this field, by solving
a linear boundary-value problem, are described. We employ conformal-mapping
techniques to calculate swimming motions for cylinders with a variety of cross-
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Nobel Prize
Frank Wilczek - Fact...



What is a shape?

Kinesthetics..

get up ..
freeze hands...



~ Initial ana Fihal shapes of cat are almost the same!

(from "Falling Cat * wiki page; a
copy of a photo taken in 1894)
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in shape space



a principal G-bundle

G—>0Q—S

gfrO,U% configuration shape
orrigl space of the cat; space Q/G
motions points are

‘located cats’



Utility of principal bundle picture for
understanding the strategies of the falling cat
for righting herself

A reorientation strategy
IS a loop in shape space

How does a loop in shape space
lift up to the total space Q?

I.e. what is the connection?



Connection defined by angular momentum = 0

sO horizontal motions = motions with total
angular momentum zero

Why can we think of "angular momentum’ a gauge field?

FACT: a curve qg(t) in Q is perpindicular to the vertical space V
if and only that curve has zero angular momentum.

V = infinitesimal rotations

Perpendicular relative to what metric ?

KINETIC ENERGY METRIC.



Horizontal motions =
paths perpindicular to the group orbits,
or perpindicular to the “vertical spaces”

where a "vertical vector ' is a vector tangent to a G-orbit

To show:

Horizontal motions =
motions with total angular momentum zero

Perpindicular relative to what metric on Q7



Model Q, the configuration space for

the located cat’ as a co
So:

q:(Q17QQ7°'°Mq

represents a point of Q. |

lection of point masses.

N)7Qa ERS

"hink of

the g_a’s as marker points. ('Foot’, head’, ..,)

They have masses m_a.

Define an inner product

on Q for which the squared length
of velocities v_a Is twice their kinetic energy

K: . 1

K(4) = 5Emalval®,va = do

1
—§<v
so that :

<q,q¢ >=%

V)

MaQa * @y Mass metric



O WOrk out
Hq — (Vq)L

we need V_q, the tangent space to the group orbit through q:

G(q) ={Rq:= (Rq1,...,Rqn) : R € SO(3) a rotation}

Infinitesimal rotations are given by cross products:

d
—R(€)gale=0 =W X G, W, € R*; R(0) = Id
€

SO:;
V, = {“w x g’ w ERS}
where
“w XC]//: (W X g1, W X q2,...,W XQN)



Suppose that v in Q is mass-metric
perpindicular to all these vertical vectors:

0=<wv “wxqg’ >

for all w e RS
This Is true iff an X MgV, = 0
But this says the total angular momentum is zero!

>.q, X myv, = the angular momentum associated to g, v



Summary: A deformation, or ‘motion’ g(t) of a located
shape g(0) is mass-metric perpindicular

to the group orbits if and only if its total angular
momentum IS zero.

This connects geometry to physics |
The algebra and notation of last few slides
works exactly as it stands for the N-body problem

Angular momentum |S the gauge-tield.
Ang. mom = 0 <—> horizontal.






What is the optimal reorientation
strategy for the falling cat?

What is the shortest loop (in S)
with a given holonomy (in G)??




On solving the Isoholonomic problem.

Theorem. The optimal paths — the shortest loops
with a given holonomy— are characterized by
their projection s(t) to S as follows.

Fither

(I) s(t) behaves like a ‘classical quark’

under the influence of the curvature F' = DA,

or

(IT) s(t) lies in a kernel of F' :

1 a nonvanishing curve £(t) € g* such that

£(t) - Fs)(5(t),-) = 0 holds along s(?)



(1)

If £(t) = 0 (“charge zero”) then eqns are V35 =0,
i.e. the geod eqns on §. This fact is <= to the fact that geodesics on §
are the projections of geodesics in S perpendicular to the fibersof 7 : @ — §.

0 = §a(t)FgM55



Proof. U(1) case. The horizontal constraint rel. connection A reads

60— Ayt =0

Introduce a Lagrange multiplier A to enforce horizontality of curves.
Minimizing length is equivalent to minimizing kinetic energy at fixed
time. THUS minimizers extremize

L= (2 + M6~ Y A4,)

Find: ).\.: 0. Think of A = e = ‘charge’.
Then A0 = exact time derivative. Ignore!

We have written the Lagrangian for a particle of mass one,
charge e moving under the influence of the magnetic field B = dA.

QED for case (1)



Case (IT) : almost all of us were taught a wrong version of
the method of Lagrange multipliers. You must also
account for the extremals of [(0 — > A, d")

Problem: Min. F subject to constraint G = 0.
We are taught to form F' + A\G...
This method can MISS minimizers that are critial points of &
Correct ‘Lagrange multipliers’ approach:
)\0F -+ AG where ()\0,/\) # (0,0)
Allows for (Ag, A) = (0, 1).

In the planar case of S = R?, G = S! these new extremals
are the curves defined by B = 0 where B is the

planar (scalar) magnetic field of F' = B(x,y)dx A dy.
leventually Led to “Hearing the zero locus of a magnetic field”. |






What is the optimal reorientation
strategy for the falling cat?

What is the shortest loop (in S)
with a given holonomy (in G)??

What are the subRiemannian geodesics
joining two given points of Q ?

(say the points g_0and q_1=9g q_0,
where g = desired holonomy)



Case (I): ‘normal’
Case (II): ‘abnormal’ or ‘singular’

Theorem. |[M-; 1989| There exist subRiemannian metrics
which admit strictly abnormal geodesics:

“oeodesics which do not satisty the

(Hamiltonian) geodesic equations”.



These Abnormal geodesics are difficult to understand.
Their existence re-opened a basic question:

Are all subRiemannian geodesics smooth?
Open from 1989 to 2025.
Solved!! Posted in January 2025. !!

arXiv:2501.18920 [pdf, other]

math.MG
Not all sub-Riemannian minimizing geodesics are
smooth

Authors: Yacine Chitour, Frédeéric Jean, Roberto
Monti, Ludovic Rifford, Ludovic Sacchelli, Mario
Sigalotti, Alessandro Socionovo



https://arxiv.org/abs/2501.18920
https://arxiv.org/pdf/2501.18920
https://arxiv.org/format/2501.18920
https://arxiv.org/search/math?searchtype=author&query=Chitour%2C+Y
https://arxiv.org/search/math?searchtype=author&query=Jean%2C+F
https://arxiv.org/search/math?searchtype=author&query=Monti%2C+R
https://arxiv.org/search/math?searchtype=author&query=Monti%2C+R
https://arxiv.org/search/math?searchtype=author&query=Rifford%2C+L
https://arxiv.org/search/math?searchtype=author&query=Sacchelli%2C+L
https://arxiv.org/search/math?searchtype=author&query=Sigalotti%2C+M
https://arxiv.org/search/math?searchtype=author&query=Sigalotti%2C+M
https://arxiv.org/search/math?searchtype=author&query=Socionovo%2C+A

Magnetic field = B(x,y) = (y° — x?)y

Distribution: Span(aam, aay F(y° — x?)% %)

03 T

02 T

01 T

-0.25 0

-0.1 .

_0.2 -

( my eg: Magnetic field = B(x,y) =y or (1 — (22 + 3?)

Distribution: Span(a%, 8% 4 ya%)



Can you have a non-smooth point of a sR geodesic as
and interior point of the geodesic arc?
1.e.
Can you find a minimizing sR geodesic ¢ : [—¢€,¢] — @
parameterized by ARC-LENGTH and having 0 as a NON-Smooth point?



On to the three-body problem

...Hands... to form moving triangle



d=2, N=3:

collinear
triangles

SHAPE SPHERE C SHAPE SPACE

Oriented similarity classes Oriented congruence classes
of triangles of triangles



100s by Suvakov & http://three-body.ipb.ac.rs/.


http://three-body.ipb.ac.rs/
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“Infinitely Many Syzygies’

Theorem. Every solution to the three-body problem
with zero angular momentum and negative energy
suffers collinearities EXCEPT for one family,

the Lagrange equilateral ‘dropped’ family.

If the time-domain of definition of the solution

is infinite then it suffers infinitely many collinearities.



cone point = total collision

TCs = total collision solutions
— solutions which end in total collision

eg. The Lagrange homothety solution




Galileo

1632; Dialogo ..” :
ne laws of physics are

[}
| )

variant under my group.

My group contains your group G.

G= group of rigid motions of space
=translations, rotations, retHections



o A

% 'RAAC NEW

Newton, Principia, 1687:

'he laws of physics can be
written as differential equations
iIch are invariant under

B Galileo’s group.

i — VU(q

U = GZ Ml where .5 = |qa — b

r
a<b ab



d=2, N=3:

Q _ (RQ)B _ CS
(now take G =
ja

Lagrange = Equilateral

translations and
rotations)

S =R’

collinear
triangles

Lagrange = Ea

SHAPE SPHERE C SHAPE SPACE

Oriented similarity classes Oriented congruence classes
of triangles of triangles



q = (Q17qQ7°°'77QN)7Qa GRS or RQ

as before.
Positions g_a. Masses m_a.

Mass inner product: < g, q’ >= 2Mgy(qq q;

dU(q)(v) = (VU(q),v)



q = (Q17qQ7°°'77QN)7Qa GRS or RQ

as before.
Positions g_a. Masses m_a.

Mass inner product: < g, q’ >= 2Mgy(qq q;

dU(q)(v) = (VU(q),v)



SUMMARY



A summary of
my career.




theory group G total space base space properties
fiber Q S of gauge field A
= connection
E and M U(1) SxU(1) space-time vector potential
R3*1 (photon)
variable
electroweak  SU(2) x U(1) SxG space-time gauge potential
(W and Z)
variable
strong force SU(3) Sx G space-time gauge potential
QCD (gluons )
variable
Falling Cat SO(3) config. space shape space angular momentum
of located of cat zero defines horizontal
cats FIXED!
Planar 3-body SE(2) config. space shape space = angular momentum
problem = SO(2) x R? (R?)3 = C3 = space of congruence  zero defines horizontal
classes of planar triangles FIXED!
R3 = Cone(S?)
Planar N-body SE(2) config. space shape space angular momentum
problem =S0@2)xR? (R®H)N =CV = space of congruence  zero defines horizontal
classes of planar N-gons FIXED!
= Cone(CPV?)
Berry phase U(l) =S! sphere in projective Hilbert induced by
in QM group of Hilbert space space Hilbert space inner
phases eg: SNl c VN cpN! product
FIXED!
eg: N =2 HOPF FIBRATION!



A Tour of Subriemagnian
Geometries, Their Geodesics
and Applications

Richard Montgomery

Four Open Questions
—— FOR THE ——

N-Body Problem

/)
f N\
f




OR..

my web site; esp
the Monthly article

END !


https://peopleweb.prd.web.aws.ucsc.edu/~rmont/

OVERFLOW ...



Unifying theme: G — () — S

G " Nisometric (Qv dsz) —7 S — Q/G

acting freely

Lie group and isometrically ~ ©N @ Riemannian base space
manifola = quotient space
= shape space,
N G- Inherits a Riem.
and describe i metric
the subRiemannian .H‘/
geometry’ here!

o a4 ‘/' ‘
- '. t/('J -
N ./:J .



commercial break!
advertisement from our sponsor!

G—>0Q—S

St - §° =+ §?



this talk is sponsored by
CIMAT and the
Hopf fibration
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THEOREM 11.8 (on '
Riemannian metric (()f Cog:.?tizstlcbs.)_'. — e Q — M be a prmcipal G-bundle with a
' . i-tnvariant type. Let H be the induced connection
with g-valued connection one-form A. Lel expgy be the Riemannian emponentia’l
map, S0 that vr(t) = expgr (tv) is the Riemannian geodesic through q with initial
velocity v € T,Q. Then any horizontal lift v of the projection wo YR 15 @ normal
e amdisgdenle

v(t) = expp(tv) expg(—tA(v))
reover, all normal subrieman-

where expg : § — G 1 the exponential map of G. Mo

nian geodesics can be obtained in this way.
— T8 1r _ far the anbriemad

(*) constant bi-invariant type ?

(*) normal vs abnormal sR geodesics?



ant?
_'T"?{slé

6453 c ncve



(*) constant bi-invariant type ?

metric on fibers is isometric /N G_
. . : hg(é)
to a fixed bi-invariant metric on GG L 2 Ut
L of ¢, connection:
/"’( / encodes horizontal
T space’s H
/ *—P/




OPEN QUESTION ( number 1 of book)

Are the CCs always isolated?



Regardless:

The only roads in to total collision are along central configurations:

Theorem |[Chazy 1922] Sundman [1906] Suppose a solution ¢(t) suffers a
total collision as t — t.. Let s(t) = q(t)/||¢(t)|| be its normalized configuration
curve. Then the set of accumulation points of s(t) ast — t.. is a closed connected
subset of the set of normalized central configurations.



s(t) € S = sphere of normalized, centered configurations,
— {q S Q . Zmaqa — O)Zma’qa‘Q — q} ~ SQN—S

HOPF FIBRATION! 7: S — CPN-1 .= S|

.



Assume we are in the case of the PLANAR N-body problem.

Assume, for the given mass distribution, that the CCs are

isolated, so form a finite number of circles in the sphere S.
Then:

No Infinite Spin:

Theorem |[Moeckel, Montgomery [2024] | Under these assumptions,
and letting ¢(%), s(t) be as above, then lim;_,;_ s(t) exists:

the limit set is a point NOT a circle, but rather a single point.



said a bit

differently by the . :
< iaaen The Infinite Spin Problem

As a TC solution approaches collision, it's conceivable that the
configuration spins or spirals so that its shape converges to a
whole circle of CCs rather than to a specific CC on the circle.
For nondegerate CCs, Chazy showed that this does not
happen, that is, infinite spin is impossible. Our main result is to
extend this to degenerate CCs, provided they are isolated.

Theorem 1. (with R. Montgomery) Suppose q(t) is a TC solution of the planar

n-body and suppose its shape [s(t)] € S = S/SO(2) converges to an isolated CC.
If 6(t) is an angular variable on the corresponding circle of CCs in S, then 6(t)
converges ast — T and so s(t) converges to a particular CC in the circle.

Nondegenerate critical points are isolated so this provides another proof of
Chazy’s result. We have seen that degenerate CCs exist, but all known examples
are isolated. In fact it is a well-known conjecture that the reduced potential
U([s]) always has a finite number of critical points which would certainly imply
that they are all isolated, even if degenerate.




Theorem 1 — Infinite Spin and Falling Cats

From a certain point of view, it seems intuitively clear that infinite spin can’t
occur simply because the angular momentum of any TC solution must
vanish. How is it possible for the configuration of the bodies to spin around
and around if there is no angular momentum 7 But the same reasoning applies
to the falling cat problem. How is it possible for a cat dropped with zero angular
momentum is able to rotate to land on its feet 7

The explanation involves the curvature of the circle bundle 7 : § — §/SO(2).

Normalized
SO(2) =~ St —p S configuration
space
Given a curve [s(t)] in shape space and an initial point sg with 7(sg) =
there is a unique horizontal lift curve s(t) in S with zero-angular momentum.
If [s(t)] returns to its initial shape at some later time, the lifted curve may not
return to the same point on the circle. Similarly, the cat can resume its original
shape but with a different spatial orientation.

S/Sv()(Q)

Shape space




Example with Configurations of Three-Bodies

Consider the possible motions of three points in the plane with zero angular
momentum. This will not be the gravitational three-body problem. Instead
imaging three people on a slippery surface who are joined together by some
imaginary stick. By pushing and pulling on the sticks, they can change the size
and shape of the triangle, but they will always have zero angular momentum.

Curve in Shape Space Correspoding zero angular momentum motion

Shape converges to an equilateral triangle Finite amount of rotation



Example with Configurations of Three-Bodies

Consider the possible motions of three points in the plane with zero angular
momentum. This will not be the gravitational three-body problem. Instead
imaging three people on a slippery surface who are joined together by some
imaginary stick. By pushing and pulling on the sticks, they can change the size
and shape of the triangle, but they will always have zero angular momentum.

Curve in Shape Space Correspoding zero angular momentum motion

Infinite Spin -- Can't
happen for the nbp

Shape converges to an equilateral triangle



Avoiding Infinite Spin - Finite Arclength

The difference between these two examples lies in the nature of the curve in
the shape space. Both converge to the same shape but one is too slow -- the
shape curve has infinite arclength.

For the planar n-body problem it’s possible to introduce local shape-cross-angle
coordinates near a give circle of CCs. Given a shape curve y(t) = [s(t)] from this
product neighborhood, the change in angle can be reconstructed by integration
of a one-form.

AH:/Q([s])d[s].

Then Theorem 1 follows from

Theorem 3. If v(t) = [s(t)] is the shape curve of a TC orbit converging to an
isolated CC then v has finite arclength (with respect to the mass metric).




Flow on the Center Manifold

If a T'C solution converges to a nondegenerate restpoint on the collision manifold,
the convergence will be exponential and the finiteness of the arclength follows
easily (Chazy’s result). For degenerate restpoints one needs to study the flow
on the center manifold. The crucial steps are:

e The dynamics on the center manifold is well approximated by a gradient
ODE: 2/ = - VW (x)

e An argument based on the Lojasiewicz gradient inequality proves finiteness
of arclength.

The gradient V is with respect to a Riemannian metric in local coordinates on
the center manifold induced by the mass norm.




Lojasiewicz Gradient Theorem

Theorem (Lojasiewicz). Consider a gradient ODE ' = —V F(x) where F(x)
is analytic in some open set in R¥ and let x(t) be a solution which has a limit
point xg € U. Then x(t) has finite arclength and converges to xg as t — oo.

The proof uses a gradient inequality

Theorem (Lojasiewicz). If F(x) is analytic near x = xo then there is some
0 < a<1 such that

VF(z)| 2 |[F(x) = F(zo)[*

in some neitghborhood of xg.

We have 2/ ~ —kVW (z) but W(z) = V(z, ¢(z)) need not be analytic. But we
can show that for some ¢ > 0

VW ()| > [VV (z,¢(x))| > [V (2, (x)) — V (20, §(w0))|

A lemma V is analytic
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Control Gauge Theory Deformable Body
control law equations of parallel | total angular
g = h(q)u transport momentum is zero
&+ A(z,g)dc =0
state space total space Q configuration space
variables g fiber 7=(s) all rotations of a
transverse to contr. given shape s
structure group G group of rigid
rotations
Lie algebra of G space of angular
velocities
directly controlled | base space S shape space
variables z
bundle projection to each config.
q assigns its shape
z = n(g)
local trivialization robot coordinates
or choice of gauge are one example
controls u tangent vectors to shape deformations
base space

u(t) steers from
go to qu

¢y is the parallel
translate of ¢p along
z(t) where z = u(t)

the map go +— ¢q; 1s

go — ¢ 1s the

called the holonomy | reorientation of
when zg = 7, the body
Chow’s control. Ambrose-Singer Thm. | What reorientations
criterion are possible?
Lie bracket curvature conditions

conditions on
contr. vector field

optimal control
for a quadratic
cost function

motions of a charged
particle in the master

| Yang-Mills field

most efficient shape
deformat. yield. a
| desired reorient.




A summary of
my career.




mag. field= (ang. mom. strength)*Dirac monopole

case of J = 0,
= const < 0)

Figure: Hill region for negative energy -h. That is, the part of

shape space S which is the image of {g: there exists a v such that
H(g,v) =-h}. Boundary: brake conditions’. Motions

happen here.



Kepler Cone;

all syz. seq
realized

McGehee blow-up+
Moeckel

Mechanical intuition |
conformal transt.
Albouy's dispositiones’
variational
plus discrete

“Infinitely many...’ figure 8:

(X0

inextendibility of minimizers
past collision.

regularize . &
play grav. billiards

>

Bestiary of
Danya Rose

Jacobi-Mauptertuis metric,
Riem geom: curvature
methods
symmetries

R

choreos "Hyperbolic Pants ...’



A Tour of Subriemagnian
Geometries, Their Geodesics
and Applications

Richard Montgomery

2000
thank you CIMAT!

Four Open Questions
—— FOR THE ——

N-Body Problem

AN
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