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Preface

In 1978 Walter Thirring wrote in his multivolume series on theoretical
The best and latest mathematical methods to a.ppea.r

on the market have been used whenever possible. In doing

this many an old and trusted favorite of the older generation

as been forsaken, as I deemed it best not to hand dull and
worn-out tools down to the next generation.

It is now 1993, and we are still teaching and using the old clumsy tools.
As much as I would like to, I am not trying to bury vector calculus.
Vector calculus will be longer lived than the typewriter keyboard or
Fortran. My goal is to provide support for those students who want
to learn the modern methods, but whose textbooks and teachers can
provide no help. _

In teaching graduate-level mechanics or electrodynamics, I have
found that spending two weeks on differential forms speeds up the
treatment enough to easily pay back the two weeks of investment.
This book started out as a short set of notes for that purpose, and
chapters three, four, and five read alone should still serve that pur-
pose. I have struggled to keep this short. In Mathematical TeX by
Example, Arvin Borde writes about his “original plan for a slim math-
ematical companion.” His book ended up at 352 pages. My original
goal was to keep this below 80 pages, keeping the treatment of the
tools for manipulating differential forms complete, but including only
tempting glimpses of the applications. These glimpses are intended
to counter any impression that this is math for maths sake.

physics:

The immediate motivation for writing this came from reading

Icons and Symmetries by Simon Altmann. There he shows how us-

ing a representation with the wrong symmetry seriously impeded the
discovery of the laws of magnetism. I realized that differential forms

carried his program even further. The electromagnetic theory given
here has no right-hand rules in it at all. Electromagnetic theory is,
after all, a right-left symmetric theory.

A proper regard for the symmetry of objects leads to a strat-
ification of the various three-degree geometric objects into vectors,
1-forms, 2-forms, twisted 1-forms, and twisted 2-forms. Relations
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between objects in different strata require operators with additional
geometric structure. To relate E and D in electrodynamics requires
the metric structure of either Eucidean space or a crystal lattice. A
relation between E and H would also require an operator that distin-
guished between left and right handedness.

The two goals of this book are thus: provide the generalization
of vector calculus that works in any dimension and with any metric,
and secondly, develop representations of geometric objects with the
correct symmetries.

Lets be frank. This is a polemic, arguing for the inclusion of the
mathematics of the last three decades into traditional vector calcu-
lus. There is, quite correctly, considerable opposition to this, based
on the idea:“If it ain’t broke, don’t fix it.” Were this a mere change
in notation, it would make no sense to change things. It is not a mere
change in notation, however, but a basic change in the fundamental
concepts. The new concepts are better for unarguable reasons: they
correctly represent a larger symmetry group, and therefore correctly
represent more features of the real world. We have an intuitive appre-
ciation of symmetry, even before we have formalized the concept. A
representation that violates the symmetry leaves a bad taste in your
mouth. I would argue that mechanics, for example, is unnecessar-
ily difficult precisely because the basic symmetries are not properly
represented. This appears in the notoriously unintuitive distinction
between centrifugal and centripetal force.

The present work is written for students who have had tradi-
tional calculus and vector calculus courses. Most of my examples are
from physics, and a basic knowledge of mechanics, electrodynamics,
and optics is assumed. Most junior science majors would meet these
requirements if they are taking classical mechanics and electrodynam-
ics at the same time. Originally I thought of this as the “Differential
Forms Samizdat.” With the publication of the excellent books by
Edwards, Bressoud, and Bamberg and Sternberg, it is clear that dif-.
ferential forms have become mainstream. This should be a painless
way to jump into that stream.

Version 2.* is still only a rough draft, but the organization has
now been pretty much fixed. My original goal of keeping this at
around 80 pages has been abandoned, both because of the realities of
the material, and the realities of the publishing world.
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Introduction

There are two main ideas that we will cover. One is the evolution
in calculus away from the concept of a derivative toward the concept
of the differential. This makes single-variable and multi—variable cal-
culus fit smoothly together, and also paves the way for the ideas of
catastrophe theory.

The second idea is to use both vectors and their duals, the dif-
ferential forms. This allows calculus to be applied in spaces with no
natural Euclidean metric, such as thermodynamics or relativity, and
without the need to be in three dimensions. Remarkably, such a gen-
eralization turns out to be, even in three dimensions, computationally

convenient.
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CHAPTER ZERO. PROLEGOMENA

Here is some preliminary material that will be of interest to som
readers. .
I believe that some of the advantages of the differential forms ap-
proach come from the alignment of the notation, the concepts, and in
particular the rendering with the natural symmetries of the objects.
This natural alignment I feel makes them easy to think about. As
an experiment, I include a section at the start in which purely ab-
stract pattern puzzles are presented, somewhat in the spirit of those
“apple:orange::five:x” problems on old 1.Q. tests. Most people will
be able to solve the puzzles without any understanding of what the
puzzles are about. This, I claim, makes my point that the renderings
are natural. _
Note that I am going to continually distinguish between the con-
cepts, their representation, and their rendering. For example, theit — gl L(J‘K
@ are abstract vectors, their representation with triplets of numbers,
and their rendering as arrows in space.
After the right-brain exercise, I am going to include some basic
facts on linear algebra, multilinear algebra, affine algebra, and multi-
affine algebra. Actually I would rather call these linear geometry, etc.
but I follow the historical usage here. You may have taken a course
on linear algebra. This is to repair the omissions of such a course,
which now is typically only a course on matrix manipulation. The
necessity for this has only slowly dawned on me, as the result of email
with local mathematicians along the lines of:
When do you guys treat dual spaces in linear algebra?
We don’t.
What! How can that be?
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1. Patterns

One of the reasons why the use of differential forms is so easy is that
the patterns involved are natural, and accord with the basic symmetry
of the problem involved. Just for fun I have collected up some of the
geometric patterns here, without any explanation. Just by looking at
the examples you should be able to scope out the answers to many of
these puzzles. After you have read the material, you might want to

return to these puzzles. .
In all of these puzzles you are looking for a rule that will be

invariant under general linear transformations. You can use parallel
lines in your constructions, and you can subdivide a line or stretch
it by some factor. One thing you cannot do is to make any use of
perpendicularity. Also, the signs of the results must follow from some
natural rule from the signs given; you are not allowed to use any
right-hand rule.

Addition

The most basic feature of all of these differential forms and their
related vector objects is that they have a linear structure: you can

scale them and add them together.
Consider the addition of vectors. Instead of looking at

c=a+b,
let us look for ¢ such that
a+b+c=0,

and expect the resulting pattern to be symmetric in the three vectors.
The usual picture of this is, I claim, the only picture that you can draw

that has the correct symmetries.

One of our geometric objects will have an icon in two dimensions
consisting of a pair of parallel lines. These lines have no definite
length, which makes them a bit unusual to think about, and makes it
rather tricky to program a computer to make a reasonably aesthetic

rendering.
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Figure 1-1. The pattern for the ad-
ditlon of vectors.

One of the lines is spécial, and changing the sign is the same as

changing the special line. Again I will claim that the addition pattern

is uniquely determined by the symmetries of the above icons, and has
to be that shown in the second figure.

Puzzles

You should be able to use the symmetries to guess the answers to
these puzzles.

The addition rules that have been used above of course fix the
scaling behavior of the objects. .

These 1-forms and twisted 1-forms act on vectors and a twisted
version of vectors. The basic pattern (again, this is all you can do
given the invariances) is shown in the next figure.

1.2
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igure 1-2. The pattern for the ad-
dition of 1-forms. Note that the
second line in each icon is rather
short, to avoid cluttering up the
pattern.

Figure 1-3. Add these two 1-forms.
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P
Figure 1-4. Figure out an addition >—
rule for these things which are like
1-forms but with a different parity.
The parallel lines are all of indef-
inite length. I call these twisted

1-forms.

v

Figure 1-5. Puzzles requiring you
to scale 1-forms and twisted 1-forms.
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Figure 1-6. A 1-form acting on a
vector, with one for you below it.

Figure 1-7. You should be able to
guess the action of a twisted 1-form
on the equivalent of a twisted vec-
tor.




2. Linear Algebra

Any set of objects that can be multiplied by numbers and added to
each other is said to form a linear space. Real numbers themselves are
an example as are the usual vectors. Less familiar examples would be
apples and oranges (with a sharp knife) and the continuous functions
on the unit interval. Row vectors, column vectors, and matrices are
also all linear spaces.

Associated with any linear space is another linear space called its
dual. Elements of the dual space are operators which map elements of
the given linear space into the real numbers in a fashion that preserves
the linear structure. That is, the map of the sum of two vectors is
the sum of the maps. The most familiar duality is that between
row vectors and column vectors, with the map provided by matrix
multiplication. If your linear space is a shopping cart full of groceries,
then the check-out clerk is a linear operator on that space. For the
continuous functions on the unit interval, the map

f(z) — /01 zf(z)dz,

" would be a linear operator on the f’s.

Surprisingly, the duals to the ordinary vectors are rarely pictured.
If we render the vectors by the usual little arrows, line segments with
arrows on one end, these correspond to displacements if we line up
the tails of the vectors all at a single point which we call the origin.
Linear operators on the vectors are the linear functions on the space.
The value of the linear operator is just the value of the linear function
at the head of the arrow. )

We can make a drawing (which we will call a rendering) of these
linear maps of vectors in two dimensions by drawing the contour lines
corresponding to unit function value. If we wish to ignore the partic-
ular location of the origin, then we will also have to draw the contour
line associated with the value zero. This then is the icon for these
duals to vectors: pairs of parallel lines, with one of them singled out
as the unit line, as opposed to the zero line. We do that by putting
an arrowhead transversely on the unit line. In the preceeding section
on patterns there were many uses of this icon.
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In three dimensions we can still render the dual space to vectors
without undue mental strain. We just require a pair of parallel planes,
with one of them singled out with a tick mark of some kind.

The most important fact about linear spaces is that they have a
number called the dimension. The dual to a linear space has the same
dimension.
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3. Affine Algebra

Given a linear space, think of it as three dimensional vector space
for concreteness, then the planes through the origin are subspaces
that themselves have a linear structure. The planes that do not pass
through the origin do not have a linear structure. For example, they
do not have an origin. The weaker structure that they have is called
affine structure.

What is defined on an affine space, as these are called, are sums
of elements such that the sum of the coefficients is unity. If a and b

are in an affine space, then
at+bd
2
is defined. We would call it the midpoint between a and 6. You can

easily see that the planes in a linear space that do not pass through

the origin are closed under the above operation.
Many of the linear objects that one talks about are really affine

objects. We routinely call a function linear even though f(0) doesn’t
vanish.

c=

Computer Graphics

Affine structure plays a very important role in computer graphics.
How, you might wonder, do we represent curves so that computers can
deal with them. One approach would be to refer to the familiar catalog
of lines, circles, ellipses, and so on. There is a better scheme, though.
It was invented initially to describe automobile fenders; fortunately

some enlightened auto companies had some mathematicians on their -

staffs. Here is the scheme to describe non-linear curves using nothing
but affine structure. The PostScript type faces used to print these

notes are all defined in this manner.
First we need to describe two different approaches to curves. Both
have merits and faults. You can describe a circle in the plane by an

equation

or by a map
0 — (cos6,sin 6).
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The first form is called implicit, the second parametrized. Over the
early decades of this century it was finally realized that the behavior of
parametrized curves was more orderly and formed a better basis for an
extension of calculus. This extension is called calculus on manifolds.

- Affine structure allows us to describe straight lines parametrically
using just two points, called control points. Call them a and b. The
rule is A

u+— (1 —u)a+ ub.

Because the coefficients in the sum add up to one, this is well defined
in an affine space. '

To describe a quadratic curve, use three control points, call them
aa, ab, and bb. The rule is

u — (1 —u)((1 — u)aa + uad) + u((1 — u)ad + ubd).

This uses three repeats of the basic affine operation.

All of this is easily generalized to higher powers, more dimensions,
and from curves to surfaces. Behind it all is the idea of a symmetric,
multiaffine function, a function which takes several arguments and is
affine in each one. For a quadratic curve we need a biaffine map, ¥.
In terms of two numbers, a and b, the control points are

aa = &(a,a)
ab = &(a,b)
bb = &(d,b)

and the curve is the map

u — ®((1 — u)a + ub, (1 — u)a + ubd).
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4. Computer Algebra Systems

I consider the aid of a computer algebra system essential to the work
of any modern scientist. To be without one is like a carpenter without
a Skill saw: underpowered.

The most obvious need for computer algebraic manipulation is
the presence of antisymmetric multiplication in differential forms cal-
culations. This is really the last blow to one’s hopes of getting the
signs right. Couple this with the expansion of intermediate steps in
calculations to include sums of many terms, and you see that this is
much more than just the need to correct the sign of the final answer.

There is a much deeper use of a CAS, however. The best way
to learn a subject is to explain the subject to a naive listener. There
is no possible listener more patient, more thorough, and more naive,
than a computer algebra system. I continually am amazed at what
more advanced pattern recognizing brain passes over without notice,
but which stops a computer algebra system cold. When setting up the
system that I use, I finally noticed the independence of much of the
formalism over any specification of what the independent variables
were. This is a creative sloppiness, I think, although I have not yet
fully digested the idea. I just mention it here to show that you can
get some high-level ideas from a CAS.

I personally find Mathematica the most congenial system to use.
Any CAS will be the most complicated computer program that you
run on your system. The learning curve is steep, and you will cer-
tainly have to put in your thousand hours on the road to wizard.
Shortchanging your system to save a few dollars is not a good idea.
The differential forms system that I use is available on my homepage.

http://www.ucolick.org/ burke/home.html |

It is discussed in an appendix here.
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CHAPTER ONE. CALCULUS

The calculus of differential forms is a replacement and improvement of
vector calculus. We start by looking over. differential calculus, trying
to get the Big Picture. This requires us to take the modern viewpoint
that concentrates on the differential, the local linear approximation,
rather than the derivative, which is how most of you learned calculus.
The derivative is a useful shorthand only for the differential in the case
of maps R — R. In general we will find conceptual simplification in
the shift from an emphasis on the representation of objects to an
emphasis on the intrinsic properties of the objects themselves. The
differential of a function of several variables is the entire array of
partial derivatives. While each partial derivative is easy to compute,
their meaning is a collective property of the ensemble of them.

CHAPTER ONE




5. Vectors

One object that we can all agree on is the displacement vector. To
represent operations like: go north three feet and then west for five
feet, the vector and its icon, the line segment with an arrowhead are
useful and incorporate the correct symmetries.

An example of a symmetry properly represented here is the re-
flection of a vector in a line containing the vector. The arrow icon is
invariant under this operation. So too the most primitive notion of
a displacement. Refinements of the displacement concept will break
this symmetry. You might be driving from point A to point B, and
in which case you had better drive on the correct side of the road.
Driving is not invariant under such reflections.

Now I will argue that our thinking and iconography should prop-
erly reflect the symmetries of the situation. But there are significant
contrary examples to keep in mind. We use a pencil line both to rep-
resent a line like a path across a field, or a crack in pottery, which
has the above reflection symmetry, and also to represent an edge, like
the boundary of a plank or the edge of a cliff. There are famous vi-
sual puns that exploit this ambiguity, and every mechanical drawing
student has to laboriously learn how to disambiguate representations
into proper concrete objects. We will say more about this question of
orienting boundaries when we discuss the divergence theorem.

The representation of positions and displacements on a map has
more symmetry than the real world. We are all familiar with the dis-
tortions inevitable on large-scale maps of the earth. Right angles on
the map need not represent right~angles on the ground. The maps are
distorted. In a small region we can describe this distortion as a shear:
what happens when you push a deck of cards sideways. Qur represen-
tation of displacement vectors works perfectly well on a sheared map.
Just as on a Euclidean map, if displacements A and B add up to C,
then they also add that way on any sheared version of the map.

Your first reaction might be that this is a bad thing. A represen-
tation with too much invariance could be misleading. In fact, we will
do just the opposite, and ensure that all of our representations have
this more general symmetry: invariance under general linear trans-
formations. Why? It comes down to calculus, and the central role of
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linear transformations in calculus.
This invariance under general linear transformations will show up

in our icons through the elimination of the concept of perpendicular-
ity. Parallelism is ok, but not perpendicularity. Of course one never
follows a principle too closely. The arrowheads on our vector icons
involve perpendicularity in their construction. To be general-linear-
transformation correct, we should use a more general arrowhead, sub-
jecting the Euclidean special case to a different general linear trans-
formation each time we draw one.

In the context of vectors there is an important relation known as
duality. Given a set of vectors, that is, objects which can be scaled
and added, one naturally comes to think about linear operators. The
simplest linear operators are functions which take in a vector and
produce & number.

Example: Let us think of shopping carts full of groceries as
vectors. The addition operation is to dump everything from
two carts into one. To scale by a factor of two, just double
the quantities of everything. A linear operator on these
vectors would be, for example, the check out clerk. Every

vector (shopping cart) is assigned a price.

For reasons that escape me duality is considered too difficult to
introduce, and linear algebra classes instead start with the idea of
matrices. These are linear operators whose values are not numbers,
but other vector spaces. Elementary linear algebra in the United
States usually means beginning matrix algebra.

5.2
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6. Calculus of Curves

The calculus of curves is the process by which we assign an instan-
taneous velocity vector to a particle moving nonuniformly through
space. Geometrically, the velocity vector describes the path the par-
ticle would have taken if it had continued on with uniform motion.

The tangent vector is defined by the following limit process. This
limit process should do two things: isolate the behavior of the particle
in the immediate neighborhood of the point in question, and find a
finite representation of that behavior. If we are given the motion of
the particle the (z,y) plane by two functions z(t) and y(t), and if we
want the velocity vector at ¢ = ¢y, then we isolate the behavior at the
point ¢y by successively considering the piece of the curve between ¢
and ¢o+ 1, then between tp and ¢p+ 1/2, then between 9 and to+1/4,
and so on. To get a finite representation, at each stage we expand our
map of the (z,y) plane by a factor of two, and draw the straight line
connecting the endpoints of the segment of the curve.

Figure 6-1. A few steps in the con-
struction of the tangent vector to
a curve.

This process can be done at 'any point on the path of the particle.
6.1




The result of doing it everywhere is too messy to really draw, but the
next figure shows the idea.

Figure 6-2. The collection of local approximations to a curve.

A practical example of this comes up in mechanics, where a par-
ticle free from external forces moves in uniform motion. I had just
built a buffing wheel, a cloth disc covered with polishing compound
rotating at high speed. As I was finishing building this I thought,
“Oh no, the polishing compound is going to fly off an hit me in the
face.”

Of course that doesn’t happen. Compound that frees itself from
the wheel flies off in whatever direction it was going. This is exactly
the velocity vector construction given above.
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Figure 6-3. Unphysical but intu-
itive behaviour of a buffing wheel.

Figure 6-4. Correct physical be-
haviour of a buffing wheel.

With a PhD in physics, I was a bit embarassd by this wrong
intuition.
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Figure 7-1. The differential of the function y = z? at y = 1.

Only for single-variable calculus is it possible to package up all of the
differential behavior in an object of the same type, here a function
of one variable. This makes single-variable calculus misleading, and

why I started with vector calculus.
Once we have the notion of the differential of a function, we can

use it, usually in the form of the Taylor’s series
f(2) = f(z0) + (z — zo) f'(z0) + ..

to find representations of other differentials.
The differential of the parametrized curve

s - (2(5), u(s))
is the vector with components
z'(s), v'(s),
7.2




which we write
2(s) o +4'(6) o

Oz dy «
Let me carefully parse the above mathematical sentence. The expres-
sion z'(s) is a function

z'(s): R—= R;s %(a),

and for any value of s this is a number. The symbol (8/3z) denotes
the z-basis vector. At the point (z9,y0) this is the tangent to the
parametrized curve

S (s + xo,yo),

and since this is already a linear map, the tangent to the curve is the
curve itself.

What does it mean to multiply & linear curve by some number?
We have to answer this question if we are to claim that the linear
. curves have linear structure. The answer: you take the same curve
and just travel faster along it. Thus

g )
ros =5+ (rs + zo,90)-

And what does it mean to add two curves? Again this is straightfor-
ward: '

s(as+zo,Bs+yo0) + s+ (vs+ 20,68 +w) =
s ((a+7)s + 20, (B + 6)s + 10),

and in pictures
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Figure 7-2. Addition of two linear parametrized curves.
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8. Linear Transformations

The structures discussed in this chapter, two dual linear spaces, have
an important invariance. The operations of addition, scaling, and
evaluation all commute with linear transformations. In this section, I
will discuss linear transformations more carefully.

Linear transformations can be represented by matrices acting on
a vector space by the usual multiplication law. Closely related trans-
formations are the affine transformations, which also allow you to
translate the spaces, and projective transformations, which preserve
the straight lines but not the linear structure. Projective transforma-
tions are familiar from photography. They do not preserve parallel

lines, for example.

In the plane there are three basic types of linear transformations.
Dilations expand the space uniformly in both directions. This is the
only rotationally symmetric linear transformation.
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Figure 8-1. Dilations and rotations of the plane.

P AP A A e ™ )

By Gy, S - -

!

- e e i P o

i
i
{
!

!

SN v e =~

- L &~ e e »

NN N N

N

-« o v v

\

YN N N NN
YN NN NN
VY N N NN
VOV NN
VOV VNN

\
\

— —>

'
|
!

>

!
4

v /1

S
N~ N
™\
NN N\
VNN NN

«“ 7 7y
v £ LS

////’//v__»_,s\

PALIITIIIIIINN
/'//"/'//-,.__,_’\\\\;\\
///‘//,-,._,‘\\\\\\
fff///.-...,\\\\\\
ff/‘//;,_‘\\\\\\
tttr . _‘\““\
111'1: "llll
“\\\\\ ‘IJJIl
\\\\\\\__,IIJJI
\'\'\\\x..‘_’////ll
\.\'\\\\\._'_/////l
’\'\‘\\\-\.,,_’//////

Next in complexity are the rotations. A pure rotation would be
represented by an antisymmetric matrix. Finally there are the shears.
A pure shear expands one direction and contracts an orthogonal di-
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rection so as to preserve the area. There are two independent shears
separated by a 45° rotation. See figure 2.
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Figure 8-2. Two pure shears in the plane.

I will often refer to a shear which is a mixture of these pure types,
in which a vector is transformed according to
z§+y%H(z+w)§+y5y-. |
The z-axis is invariant and all other vectors are slid horizontally an
amount depending upon their vertical position. This is what happens
when a deck of playing cards is pushed sideways. It is a combination
of a pure shear and a rotation.

One thing that does not commute with linear transformations is
the concept of orthogonality. Since I used orthogonality above in my
description of the types of shears, that description is in fact not in-
variant under linear transformations. It presuppose a given Euclidean
geometry framework. Even the concept of a symmetric matrix is not
invariant.

We are going to separate the operations that are not invariant
under linear transformations, like Euclidean geometry, and put them
in with explicit operators. Thus, while we will not be able to talk of
just perpendicular, we will be able to say that using the metric £, two
lines are perpendicular. It is by no means obvious at this point that
it is worth all the bother of doing this. Trust me.
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Figure 8-3. A purely horizontal shear.
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9. The Differential in Optics

Sometimes an idea can be appreciated better when it is seen in a
more realistic, complex situation. You might find the application of
the idea of a differential to optics useful. If not, then this section can
be skipped without loss. ,

Figure 9-1. A simple optical situa-
tion. :

In the above figure I show an optical set up consisting of light
rays coming from a point source, passing through a lens with spherical
surfaces, bouncing off of a spherical mirror, going through the lens
again, and finally forming an imperfect image of the source. The
image is imperfect because a simple lens is not able to form a perfect
image for light rays making finite angles with the axis. We can define
a limit process for this situation that will isolate from this nonlinear
situation, the special behaviour of light rays that are close to the axis
and nearly parallel to it. The limit process will replace the original
rays with rays from a source half as far away from the axis, and reduce
all of the slope of the rays by the same factor. Finally, we rescale the

9.1



drawing by magnifying the transverse direction by a factor of two.
If this process goes to a well defined limit, then we have the analog
of the differential in calculus. Here it does, and the limit is called
Gaussian optics, or the paraxial approximation.

2\

Figure 9-2. Two steps in the paraxial limit.

In the above figure I show the original rays and two steps in the
paraxial limit all drawn on the same figure. In the next figure I show
the second stage in the process appropriately rescaled. Next I show
the limit itself. In the limit, the rays do form a perfect image of the
source. Note how the lens surfaces appear flat in the limit. You might
think about why the reflection does not make equal angles with the

surface normal.
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gure 9-3. The second stTge in t*e paraxial *mit, and the limit itself.
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CHAPTER TWO. GRADIENTS AND FLOW

Here we cover some examples of differential forms. The presentation
is primarily graphical. I want you to get the ideas down before we get
swamped in a lot of unfamiliar, but necessary, notation. The basis for
all of the calculus of differential forms is the idea of the gradient of a
function. The point to be made here is that this is not, as you were
taught in vector calculus, a vector. That assumption restricts you to
working with Euclidean geometry. Here we remove that restriction,
and find in the process that things become not just more general, but
simpler. We end up with examples of more complicated differential
forms that come up in the discussion of the flow of something. This
will be essential when we come to discuss conservation laws.
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10. The Differential of a Function

Suppose we have a function of several variables. I use two vari-
ables here just so I can draw the results. We can represent its dif-
ferential as follows.. We want to keep expanding the view in order to
zoom in on the local behavior of the function. And we need to find an
icon to represent the differential that maintains its size and shape as
we expand. This differential and its icon will represent the gradient
of the function, and it is called a 1-form.

If we represent functions by their contour maps, then we can rep-
resent the differential by drawing contour lines, not with unit spacing,
but with a spacing of € when the map has been blown up by a factor

of 1/e.

2 2f
1 ‘ 1
0 0
-1 -1
-2 J -2
-2 -1 0 1 2 -2 -1 0

Figure 10-1. Contour maps of the function y?+(z—1)?, and its affine
approximation at 0,0, 1 — 2x.

If the function is smooth, then in this process the contour lines

straighten out and their spacing becomes uniform. This is the contour
map of a plane. Just as the differential of a function of one variable
was the best fitting tangent line on its graph, the differential of a
function of several variables is a plane tangent to the graph of the

function.

To represent the gradient it is sufficient to just draw two of the
contour lines, and to indicate somehow which line is uphill. The icon

in common use is shown in the next figure.

10.1

Fig 10-2. The icon for the
above gradient.




From a Taylor’s series expansion we can write a function locally

£(223) = F(20,30) + (= = 20) 22 (70, 30) + (U = Yo) 2 (30, 30) + -

and the partial derivatives represent the information in the differen-
tial. The differential is just the collection of all of partial derivatives
assembled into a coherent geometric whole.

The coordinates themselves are functions, and we can take their
gradients as a basis. If we call the differential of the z coordinate dz,
then the differential of a function looks just like the chain rule

-?idz+ %y’f-dy.

Note here that dz and dy are not infinitesimals, but perfectly finite
objects, the gradients of the functions z and y.

An example of the physical measurement of a gradient came up
when I wanted to survey the surface of my pool table (the home team
advantage). I borrowed an accurate level from the machine shop and
using a shim of standard thickness, I could construct the local gradient

at any point.

Figure 10-3. A mechanical equiva-
lent of a 1-form. /J—J\
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Figure 10-4. Drawing the gradient
~ 1-form.

I just moved the shim out along the level until the bubble was
centered. If I did this in two different directions, then I would de-
termine the position and direction of the contour line, and thus the
gradient. ’

A mental picture of this field of 1-forms easily let me visualize
the force that would disturb the straight line motion of slow shots.
Straight pool anyone?
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11. The Algebra of 1-forms

The 1-forms that we developed in the last section represent the gra-

dient of a function. They have the algebraic properties of a linear

vector space. ,

: A 1-form that is doubled, that is, multiplied by two, represents
a steeper gradient and has its contour lines closer together. 1-forms

ghrink as they increase in magnitude.- The zero 1-form has it contour

lines infinitely far apart, and with uncertain direction.

Figure 11-1. Doubling a 1~form.

AN

The addition of 1-forms is just like the addition of functions. In
terms of our icons addition is given by the rule in the next figures.

I prefer the symmetrical view of it given in the second figure.

Taking the negative of a 1-form just means putting the tick on

the other contour line.
The linear vector space of 1-forms is dual to the linear vector

space of vectors. Given a vector and a 1-form, this means that we
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Figure 11.2. Addition of two 1-
forms to give a third: a+b=c.

Figure 11-3. Addition in the sym-
metrical form a+ b+ c=0.

can find a number, their inner product. For our icons we just count
the net number of contour lines crossed by the vector.

Our basis for vectors and our basis for 1-forms are related so that
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Figure 11-4. Duality between vec- | . \
to;s and 1-forms: v-a =2,w-b= b \\\w

we have . :
-dz =1,

- dy =0,
-dz =0,

-dy =1.

Djo@|oFloP|o

So far we have been talking only about local linear approxima-
tions, and everything so far is invariant under general linear trans-
formations. If you shear, for example, the law of addition, you get
another valid picture of the addition law.

Similarly, the basis vectors and 1-forms in oblique coordinates
also satisfy the above duality relations.
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Figure 11-5. Basis vectors and 1—
forms.

Figure 11-6. A ﬁ-a.naformation of
the addition law.

18
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Figure 11-7. Basis vectors and 1-
forms in oblique coordinates.
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12. 1-forms in Mechanics

We now come to the first surprise. Force is not a vector, but a 1-form.
The most direct way to see this is to think of the work done by a force.
Force is the operator that takes in a displacement, a vector, and tells
you how much work was done. This makes forces dual to vectors, i.e.
1-forms. ,

There is a temptation here to bring in Euclidean geometry. Our
gradient 1-form could be turned into a gradient vector. In rectangular
coordinates just replace dz by 8/8z, and so on. When dealing with
the motion of a particle, the Euclidean geometry comes in with the
isotropic behavior of mass. Only experience shows that it is more
convenient and useful {o resist this and to stay with the less familiar
but more general representation.

. 0 1 2 3 4
Figure 12-1., Measuring a general-
ized coordinate.

The notion that is free of Euclidean geometry comes into its own
in situations involving generalized coordinates that are not necessarily
Eucidean. Let me describe one such application, the reciprocity re-
lations that apply when a situation of static equilibrium is disturbed
by small forces. Consider any Rube Goldberg arrangment of springs
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and rods. Focus your attention on two parts of the system that are
free to move. The position of any part can be described by a general-
ized coordinate, and you should imagine that a measurement of this
generalized coordinate is done by locating a point on the part and see
where it falls on a grid of parallel lines.

The part may have several degrees of freedom, and need several
such coordinates to fully determine its posxtxon Here we may only be
measuring one such coordinate.

Now you can also apply forces to these parts, and when you do
the system will come to a new equilibrium. The reciprocity theorem is
nothing more than the expansion of the potential energy surface about
its minimum, and the equality of the two mixed partial derivatives,
yet it is still a surprising and little used theorem. The reciprocity
theorem states that if a force Q is applied to one degree of freedom,
and it produces a displacement d in some other degree of freedom, then
that same force @ applied to the second degree of freedom, produces
the same displacement d in the first. This despite the fact that the
rest of the system might be disposed quite differently in the two cases,
as will show up in the example below.

What does it mean to apply a force to a degree of freedom?
Why, just align the force 1-form with the coordinate lines. And how
to measure the strength of the force? Again, just use the coordinate
lines. This is precisely the definition of generalized force that is used
in Lagrange’s equations.

Look at a double pendulum with equal weights and equal length
rods. The same horizontal force is applied first at the top joint, and
then at the bottom joint. The deflection of the top joint when the
force is applied to the bottom mass will equal the deflection of the
bottom mass when the force is applied to the top joint. To see that
this follows from the reciprocity theorem, use generalized coord.ma.tes

as sketched in the next figure.

I have given them equal linear spacing. When the force is applied
to the top joint, both joints have the same displacement. When the
force is applied to the bottom joint, it deflects through twice the
angle and three times the displacement, but the top joint deflects
the same as before. It does this since, by the reciprocity theorem,
its displacement when the force is applied below is the same as the
deflection of the lower point when the force is applied above, and in

“that case the deflections were equal.
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Figure 12-2. A double pendulum
as an example.

Figure 12-3. Generalized coordi-
nates for the double pendulum.

After all these years, I still find this theorem remarkable. Here,
however, note how natural its statement and application is when the
force is treated as a 1-form.

Just as we can have a function, a rule which assigns a different
number to every point, so too we can have a 1-form field, a rule
which tells us how to construct a different 1-form at every point. The
gravitational force field on my pool table is an example of this.
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Given such a force field, one can ask how much work is done
moving along a particular path. We want to calculate a line integral.
Now 1-forms were set up precisely for this, and sometimes they are
even defined as those geometric objects that can be integrated along
oriented paths.

To define the value of a line integral, imagine breaking it up into
little pieces. Treat the pieces as vectors, and use the 1-form field
to turn the vectors into numbers. Then add up all the numbers.
Do this with finer and finer pieces until the answer doesn’t éhange.
In practice, you do the usual integral calculus manipulations, which
amount to the same thing. |

From now on you should view the integrand of a line integral as
a l1-form. No surprise to you, I bet, that 2-forms will be integrated

over surfaces, and so on.
Not every 1-form field is the gradient of a function. Look at

w=(1+z)dy.

Figure 12-4. Typical line integral.

If we integrate around the edge of the unit square, we find a net
value of +1, not the zero that we would get integrating the gradient
of a function. We will later find out how to decide whether a given
1-form is the gradient of a function or not. This will give us the
replacement for the usual curl operator.
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13. Flow in Two Dimensions

Now turn to the construction of a proper geometric representation
for flow. In this section I will work only in the plane. Suppose we
have something measurable flowing in the plane. To describe this
flow locally we want an operator that will answer the question: given
a little piece of a line o, how much of the measurable stuff flows across
it? In the calculus limit, of course; thus we expect this to be a linear
operator. '

Your first guess for the little piece of a line is to represent it
as a vector. But wait. A vector is invariant under reflection, and
this little piece of a boundary has an inside and an outside, and is
not invariant under reflection. An icon with the proper reflection
symmetry is shown in the next figure.

The icon has a definite length, but the arrowhead is across the
line rather than along it. ’

Can we construct a vector space of such objects? Scaling is obvi-
ous. What about addition? We can model a definition on the addition
of vectors, but with the natural sign convention of the next figure.

What about dual objects, the operators on such icons? You can
guess that they will be like 1-forms, but the tick marks will be placed
in some other manner. This is shown in the next figure.

Such an object represents the flux of measurable stuff according
to the following story. The lines of the icon are aligned so that none of
the stuff flows across the lines. The spacing of the lines is such that a

unit amount of the stuff is flowing between the lines. The arrowheads

are located along the direction of flow of the stuff.

Contrast this with the picture of a gradient in Figure 9-5.

The only problem, really, is what to call these variations on the
1-form theme. There is no agreement among mathematicians. Some
call them W-forms, after Hermann Weyl, whose keen appreciation of
symmetry led him to these objects. Some call them forms of odd type,

13.1

Fig 13-1. Icon for edge
line.

Fig 13-3. The representa-
tion of flux.



Figure 13-2. The picture of ¢ =
a+b. | b

Figure 13-4, The picture of the
spacing condition.

but an odd 2—-form is apt to confuse. The most commonly used name
is twisted 1-form. This is derogatory in exactly the same way that
saying Mrs. John Smith relegates the poor woman to second class
status. The twisted forms are just as fundamental as the untwisted
ones. But “twisted” is as good as we can do, in my opinion.
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Figure 13-5. The representation of
a gradient,
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14. Density

Related to the idea of flow, and apparently simpler, is the idea of
density. We pursue the now familiar theme: find a pair of linear spaces

dual to each other to represent the idea. We need to represent both the o

idea of density, and also tiny pieces of surface. The density operator
will take a tiny piece of surface and tell you how much measurable
stuff is on that piece of surface.

A reasonable guess for the representation of a tiny piece of sur-
face would be to use a pair of vectors, one along each edge of the
surface. You might slip into Euclidean thinking at this point, and say
orthogonal vectors, but remember that is a no-no. The density will
be a linear operator on the pair of vectors.

To use this representation we need an important property of area.
This property is what makes the area idea really area. If you shear
a parallelogram, the area does not change. We need not know how
to measure area. That requires metric notions. We can compare two
areas, however, just using linearity and the shear invariance.

Figure 14-1. Equal areas under shear.
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Figure 14-2. Scaling of areas.

To compare two areas, use shears to line up the sides of the two
parallelograms. Then just compare the relative lengths of the side
and multiply the numbers. This uses the linearity that comes from
the calculus limit. '

The same manipu]ations involved in the comparison of two areas
allow us to add two areas of different shapes.

To picture density, one can draw a parallelogram of a size to
include a unit amount of material. The usual calculus limit is going
on here, of course. The shape of the parallelogram doesn’t matter,
only the area that it encloses.

Now that we know how to compare areas we can define the action
of a density on a piece of surface. Merely compare the given area with
that enclosing unit amount of stuff. )

The density parallelograms must include a sign to tell whether it
contains positive or negative stuff. This allows us to find the laws for
scaling and adding densities. Just as with 1-forms, these behave in a
manner opposite to the scaling and addition of areas.

It is also possible to have densities with a different handedness..
These would change sign under a reflection. These densities operate
on areas which have either a clockwise or counterclockwise orientation
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Shear

1

Figure 14-3. Comparing two areas. The ratio here is 1/2.

specified. These might seem to be wierd and unnecessary objects, but
that is not so. In fact these densities are the natural extensions of the
1-forms, and are called 2-forms. The other densities are twisted 2~
forms. This flies in the face of nearly everybodies intuitive sense of
twisted, which is one reason that a better name for them would be

desirable.

Even though it will be easier to define twisted 2-forms, and they
relate more naturally to 1-forms, in practice most of the densities
that you will meet will be twisted. Not all, however, say two thirds
of them.

If you think of the density as an operator on pairs of vectors,
then scaling and linearity demand that it be a linear operator on each
vector. The invariance under shears gives us a further requirement.
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Figure 14-4. Addition of two areas.

We must have the area spanned by two vectors a and b to be the
same as that spanned by a + Ab and b for all values of the number
A. Using linearity, this says that the area of b and b vanishes, which
makes sense. Apply this to the area spanned by a + b with itself, and
you conclude that the area spanned by a and b is the negative of that
spanned by b and a. The invariance under shears makes the bilinear
operator antisymmetricin its two arguments. Thus the operator needs
to know not just the two vectors, but also which one comes first and
which second. Thus the area must have a handedness specified, a
little arrow if you like, going from the first vector to the second. This
handed area is operated on by 2-forms. Most area is not handed.
That is why we will need to define twisted 2—forms to operate on
these.

We capture this algebraic structure by defining an antisymmetric
multiplication on 1-forms. This is similar to the cross product in
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Figure 14-5. A density and an area Density : Area = Number
composing to give a number, the ‘

amount of stuff in the area.

ordinary vector analysis. Unlike the vector cross product, it does not
depend on any metric, and works as well in spacetime as in Euclidean
geometry. Everyone uses the wedge A for this multiplication, when
they bother to include a specific symbol for it,

aAB=—BAa.

This object is defined to be the operator which acts on pairs of vectors
according to

aAp-(abd)=(a-a)p b)~ (a-b)p-a)

Since (a - a) and (B - b) are numbers, the multiplicaton on the right
hand side is well defined. Because a and B are required to be 1-forms
it has the required linearity on a and b. Note that we have explicity

made it antisymmetric,
aAf=-fAa.

When the 1-forms are basis forms it is customary to leave out the
wedge and write dr dy rather than dz A dy. This makes integrals of

2-forms look familiar.
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Figure 14-6. Scaling and addition of densities.
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Figure 14-7. Addition of densities with clocksense signs.
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15. Flow in Three Dimensions

The descriptions using differential forms are very similar in different
dimensions. Often you can describe the two dimensional case, which
is easy to draw, and then just reinterpret the symbols to cover three
or higher dimensions. This smooth march through the dimensions is
a valuable feature of differential forms. You do have to get past some
pecularities of low dimensions, such as the accident that n—1=1in

two dimensions. :

Gradient

The gradient in three dimensions is easy to render. A function has
not contour lines but contour surfaces. A linear function has parallel,
equidistant contour planes. We can pick two of these to render the
gradient. We can represent a gradient by using the gradients of the
three coordinate functions as a basis. -

Figure 15-1. A gradient in three
dimensions.
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Figure 156-2. A coordinate-derived set of basis forms in three dimen-
sions.

Flux

To study flow in three dimensions one needs the idea of a shapeless
area covered in the last section. Renderings of forms are difficult to
interpret at first because they involve lines and planes of indefinite
extent, second because the figures often have no definite shape. The
geometric figure for rendering flow is a prism with a parallelogram for
a cross section. The length of the prism is indefinite, as is the shape
of the cross section. Three equivalent renderings are sketched in the

next figure.

The prism is chosen so that nothing flows through the walls, and
a unit amount of stuff flows through the prism. Given a definite piece
of surface, the flux prism answers the question: how much stuff flows
through the surface. Think of the prism as a cookie cutter. You want
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Figure 15-3. Three equivalent flux renderings.

to know how many cookies you can cut out of a given piece of dough.
Of course here we are thinking of reshaping the cookie cutter rather
than the dough as you finish up the fragments.

The prism needs an arrow directed along it to indicate the direc-
tion of flow, and the surface that the prism acts on needs an inside
and an outside indicated. We want the signed flux across the surface.

This flux prism is one type of differential form, called a 2-form be-
cause it acts on two dimensional surfaces. In general, in n dimensions
flux will be represented by an (n — 1) form.
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16. Drawing Vectors: The Eight Icons

Drawing vectors? How can there be anything to say about this? What
is there beyond drawing a line with an arrowhead on one end?

Well, vectors come in eight different geometric types, and each
one has a different rendering, a different icon if you will. Only one
of these is the line with an arrowhead on it. All of these come up in

electrodynamics.

0 + —

P00 091

Figure 16-1. The eight icons for vectors. All of these would be con-
ventionally denoted by 2. The electrodynamic fields B, H, E, and D
would be represented by the icons in the bottom row, in that order.

The objects in all eight classes have three degrees of freedom,
and these three components transform in the same way under proper
rotations. This justifies calling them all vectors. These objects are
stratified into classes by their behavior under other transformations,
inversions and dilations. You are probably already familiar with the
stratification of vectors and pseudovectors under inversion. By ignor-
ing dilations that stratification missed much of the geometry of the
situation, but it was a start.

A reflection about the center line in figure one exchanges an ob-
ject with one of opposite behavior under inversions. A reflection about
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a horizontal line connects objects with opposite behavior under dila-
tions. These objects are connected by the usual vector space duality.
For example, a field intensity can be integrated along a line. Small

pieces of lines look like displacement vectors. Flux densities can be.

integrated over surfaces, and the dual object looks like a little piece
of surface, with a direction through the surface specified. Objects
within the right-hand and left-hand squares are connected by the op-

eration called Hodge-duality. Unlike the other two operations, this

one involves the metric. In electrodynamics, this is signalled by the
presence of the operators € and u.

Two Dimensional Flow

Let us start by studying the geometrically simpler case of the flow of
some conserved stuff (you might think of water) in two dimensions.
How would you measure the flow rate? You could find the flux by
lowering a container into the flow, and collecting the stuff for some
standard time interval.

If the flow were smoothly varying, then over a small enough re-
gion, the amount collected would be linear in the length of the region
over which the stuff was collected. If you measure the flux for two re-
gions which have different directions, then you can figure out the flux
across any other region as well. Just construct a triangular region,
with one side the region in question, and the other two parallel to the
two measured lines. Using linearity we can find out how much flows
in each of these two sides, and use conservation to find out how much
flows out the other side. In practice we would take the two regions of
measurement parallel to the coordinate lines.

The usual vector representation of this flux comes from a rep-
resentation of the line across which the flow is to be measured by a
vector perpendicular to the line, pointed across the surface in the di-
rection of measurement, and with a length proportional to the length
of the line. Call this vector S. The flux vector is the vector J such
that the flux through a surface is given by the dot product J - S.

Now I show how to draw a picture of this flux vector that we will
see is more geometrically correct. The icon will be a pair of parallel
lines forming a rectangle, with a direction specified along the lines.
Such a picture can be specified by two perpendicular vectors, a and b.
These vectors must be related to J by the following equations. The

16.2




I +3
A
+2
I A
r )

Figutre 16-2. Calculating flux across a line in terms of two measure-
ments.

Figure 16-3. Drawing the flux vec- +3

tor corresponding to two orthogo-

nal flow measurements across unit

intervals. +2

vector b does not have a unique length.

a-b =0,
a-J=0,
b-J >0,
|allJ|=1.
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Figure 16-4. The geometrically cor-

rect icon for the flux vector, and «

its representation by two ordinary b
vectors.

)

Why do I consider this icon more geometrically natural? Look at
the next figure, which shows two representations of a flow question.
In the first case, you can immediately see that there are two units
flowing across the given line. In the second, you can’t do anything
until I also tell you what a unit length vector is. Now we are going to
do the same geometrical constructions for three dimensions.

Three Dimensional Vector Icons

The most familiar objects are in the class containing dispacement
vectors and velocities. Under an inversion, taking

T —2z,
y= -y
ZH— —2.

these dispacement vectors change sign. Under a dilation

I —axz,

y —ay,

Z —Qz,
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Figure 16-5. Two representations
of the flux vector used to compute
the flux across a line segment. ‘ :

the magnitude of the vector scales by the same factor of . This is
the same scaling behavior as the arrow icon.

The next class of vectors are what I call field intensity vectors,
such as the electric field in electrodynamics, and gradients in general.
Under the above dilation the magnitude of a gradient scales like 1/a.
Stretching a function decreases it gradient. The icon for a field inten-
sity vector that has this scaling behavior is to take a pair of parallel
planes. The shape and extent of the planes is irrelevant. Only the
spacing matters. Furthermore, there is a mark on one of the planes
to denote the “uphill” direction.

 If we describe the icon by three ordinary vectors, a, b, ¢, then the
icon is related to the usual gradient vector w by the relations

w-c=1,
.w X (a x b) =0.

The lengths of a and b are irrelevant, as are changes of shape

such as
ar— a-+ Ab.

The next class of vectors are what I call flux density vectors.
The prototypes in electrodynamics are the D field and the current
density. These measure how much of a given stuff passes through
some particular surface. If we dilate by a factor of a, the flux changes
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Figure 16-6. The field intensity icon.

by 1/a?. The icon with this invariance is a rectangular prism of
indefinite length and shape, but with a specific direction and cross-
sectional area. If we represent the icon by three vectors, the the
relation between the usual vector w and the icon is given by

w - (a x b) =sgn(a-b x c),
w X ¢ =0.

The term involving the sign of the triple product is there to make the
direction of ¢ agree with the direction of w, and to make it indepen-
dent of an interchange of a and b.

If we leave out the factor involving the sign of the triple product,
then we have a similar icon, but with a direction of circulation speci-
fied around the prism, rather than a direction along the prism. This
is the class of vector fields that the magnetic field B belongs to.

Finally, if we add a sign term to the field intensity vector, we find
the icon for the H field in electrodynamics. I call this a twisted field
intensity, and the B field a twisted flux density. These are shown in

figure one.
Discussion

There are five reasons to use the calculus of differential forms rather
than the usual vector calculus: ease of computations, need to go to
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Figure 16-7. The flux density icon.

dimension other than three, need to use a metric other than Euclidean,
need to use oblique coordinates, and desire to draw geometrically

correct pictures. By geometrically correct, I mean that the pictures

have the same invariances as the concepts themselves. This work here

has addressed only the last point.
'Mathematicians call field intensity vectors 1-forms, and twisted

flux density vectors 2-forms. The flux density vectors are called
twisted 2-forms, and the twisted field intensities are called twisted
1-forms. If you want to work in a manner that is not specific to three
dimensions, it makes more sense to call something twisted when it as
the sign of the triple product in its definition.
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CHAPTER THREE. DIFFERENTIAL FORMS

The preceeding two chapters were motivational and heuristic. Here
we get down to the actual rules for manipulating differential forms.
The following three chapters can be read on their own for those with
less interest in the pictorial rendering of differential forms.

In this chapter we cover the basic algebraic operations. Here
we will find the replacement for the cross product that is superior
on several counts. It will work in any number of dimensions. It is
not dependent upon Euclidean geometry, and so can be used also in
special relativity. Finally, it is associative, and so we can dispense
with a lot of parentheses and special rules. In the next chapter we
cover the analysis of forms, how we replace the operations div, grad,
and curl with a single more general operation.
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17. Ordinary Differential Forms

Differential forms are polynomials in the algebra that one gets by
defining an antisymmetric multiplication between 1-forms. This mul-
tiplication is denoted by the A operator, read “wedge”. Often A is
omitted between basis forms, and we will write

dzdy tomean dz Ady.
‘This multiplication is associative
dz(dy dz) = (dz dy)dz = dz dy dz,
and distributes over addition
d:c(dyA+ dz) = dz dy + dz d=.

We will define our basic operations on monomials of basis forms and
use this linearity to pass to the general case.

In what follows the following shorthand will be convenient. I
will write the general basis 1-form as dg, and use greek, da, for the
monomial which is the product of any number of basis 1-forms.

Contraction

Differential forms are operators which act on ordered sets of vectors.
That is, the operator on (a,b,c) may not be the same as on (b,a,c).
For differential forms it will be antisymmetric in its arguments.

If we have any function of n arguments, then we can supply it
with one argument, and consider the result as a function still waiting
for now (n—1) arguments. In computer science this is called a curried -
function. Here we call this operation “contraction.” In old tensor it
would be called “summing over the repeated index.” We write the

operation with the symbol I, read “angle”:
w-(g,...)=alw-(...).

Mathematicians often write the contraction a_lw as {,(w).
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Everywhere in this book that I use the centered dot it means
evaluation, and will only be used for linear operators. Thus we write
f+z to mean f(z), and save on parentheses.

In terms of monomials the rule for contraction is, in our short-
hand, 5

3q Jdgdo = da.
If there is no dg anywhere in the differential form then the contraction
is zero. If the dg factor is not in front, then you must use the anti-
symmetry to move it to the front, keeping track of the sign changes.

Example: 5
Eszdy = dy,
a—%.]dzdy = —ds,
-a%_ldzdy =0.

Example: A 2-form in three dimensions acts on pairs of
vectors as follows. Suppose we want to compute

8 8 & o8
dzdy-(a+a,-5x-—-{,—y-).
This is equivalent to
8 8 8 8
(- E-y)—'(gx' + gy‘)-'dz dy,
with the missing parentheses implied so that  is right as-
sociative:

0 tZ/ tZ/ 8
(3~ g-y)—'((g + 5,19 dy).
Contracting with the 2-form gives us
0 8 0 8
— 4 — = — ldz — ldzd
(8x+6y)"|dxdy 8::_' dy+8y"| Y,
= dy — dz.
Contracting further gives us
tZ/ o 0 8
— - —dz) = — —dz)— —J(dy—d
(57 =~ 5y) (dy — &&) = 5 M(dy — dz) — 5 I(dy — dz)
= -2,
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The contraction of a 1-form and a vector uses the usual duality
relationship discussed before.

Rendering Forms

We know what differential forms do as operators: they act on ordered
sets of vectors in an antisymmetric fashion yielding numbers. We also
know how to represent them: as homogenous polynomials of basis 1-
forms. Now I discuss how to draw pictures of them. One nice feature
of differential forms is that it is easy to draw honest pictures of them

in one, two, and three dimensions.
To render a 1-form w we will draw the pair of hyperplanes, the

gets of all vectors v such that

and place some some kind of distinguishi.ng‘_ mark on the w.-v =1

hyperplane.
To draw those r-forms which can be written as a single monomial,

not necessarily in a given basis,

aABA...,

draw the “eggcrate” picture you get by superimposing the drawings
for a and B,... separately, and add some indication of the order. In
one, two, and three dimensions, all differential forms can be writ-
ten as monomials in some basis. This is not true for four or higher

dimensions.
Example:

dz dy + dydz + dzdz = (dz — dz)dy — (dz — dz)dz
= (dz — dz) A (dy — dz).

Example:
dzdy + dzdw.

Example:

17.3

[In old tensor they would be
called antisymmetric covariant
tensors.)

[A hyperplane in n dimensions js
a surface of dimension (n-1))

|
j




We can render dzdy by the unit square with a counter-
clockwise arrow.

Example: The linear operations for the contraction
8 @
(25; + o )ddz dy

are as follows.
(i) shear the figure, preserving its area, so that one side lines
up with the vector.

(ii) rescale the figure so that the side parallel to the vector |
is the same length as the vector.

(iii) use the two sides parallel to the vector as a rendering
of the result of the contraction, which is a 1-form. Use the
counterclockwise arrow to decide which line to put the tick
on. '

What we have done here is to use linear transformations

which do not change the value of dzdy to reduce the problem
to a linear transformation of the canonical problem

[]
— dy = dy.
&de Yy =dy
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18. Twisted Differential Forms

Twisted differential forms differ from ordinary differential forms in
their behavior under reflection. Here is & notation that I use to
denote the symmetry behavior of an object. For a given object T,
I denote by {T'} the equivalence class of objects having the same
behavior under reflections. ‘

Example:
{dz} = {5},

since they both change sign under a reflection along the x
axis, and don’t change sign under y or z reflections.

I will use differential forms to represent the simplest elements of
these equivalence classes, with the rule

{kda} ={da} ¥ k>0

and

{~da} = ~{da).

We will represent twisted objects by multiplying or pairing them
with one of these orientations for the whole space, that is, a {da}
with do having n factors in n dimensions.

Example: The density 2-form in the plane is a twisted 2-
form. It should be invariant under x or y reflections. The
ordinary 2-form dzdy does not have that property, but it
will if we multiply it by an orientation:

{dz dy}dz dy.

This has the correct behavior under scaling and addition,
since it is a 2-form, and the orientation gives it the correct
behavior under reflections.

Example: The flow 1-forms in the plane are
{dydz}dz and {dzdy}dy.

18.1
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Both have the correct symmetry.

We need a convention to connect this representation of twisted
forms to the constructions and renderings given earlier. A consistent
convention is the following. If {8} is the orientation of the twisted

form

{8} ={{Q} e},

then

{8Aa}={Q}.
Q is an n-form. Be careful with the double brackets. The outer set of
curly brackets means that we are discussion the orientation of what is
inside, which, because of the second set of curly brackets, is a twisted
form.

Example: Applied to the flux in the x direction, we let
{6} = {{dzdy} dy},

then.
{BAdy} = {df dy}

and so

{8} = {d=}.

This gives the flow in the direction of dx, which we would
call positive flux, and put the arrow on it pointing in the
direction of the x-axis.

Example: Flow in the y direction follows the symmetrical

pattern:
{dydz}dz.

Other books on differential forms get around the issue of twisted
forms by picking a standard orientation and using it automatically
with all twisted forms. This leads to some rather ugly results: the x
flux above is given by dy, while the y-flux is given by —dz.

I simplify the above notation by adopting the following short-
hand:

(1) denote all of the missing basis forms by writing them in with
a hat over them;

(2) arrange the factors, changing the sign if necessary, so that
they are in the same order as the factors in the orientation;
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(3) since the orientation information is now redundant, leave it

out;
(4) use the hat notation only for twisted forms;
(5) the twisted n-form has nothing left out, write it with a hat

over the space in front of it.

Example: The x and y fluxes in two dimensions are:
dz dy and ?l;da:

In three dimensions the x, y, and z fluxes are:
dz dy dz = dz dz dy,

dy dz dz = dy dz dz,
dz dz dy = dz dy dz.

Note how this notation is symmetric on the explicit factors, and
antisymmetric on the missing factors. This leads to the final rule in

our shorthand notation for twisted tensors: .
(6) leave out the explicit factors. Their order doesn’t matter.

Example: In two dimensions the flux in the x—direction is

dz

d’; -
dy
= {dz dy} dz dy = {dz dy} dy.

Example: In three dimensions the flux in the x-direction

18

dz = {dz dy dz} dy dz.

Example: In three dimensions
1 ="dz dy dz = {dz dy dz}dz dy d=.

Example: Look at a constant magnetic field. This can be
_ produced by currents circulating in the z = 0 plane. The

| symmetry of this is the following;:
18.3
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(1) unchanged by a reflection z +— —z;
(2) reversed by reflections z +— —z and y — —y;
(3) reversed by the interchange z +— y and y — z.

These are satisfied by the orientation {B} = {dzdy}. This
is the symmetry of an untwisted 2-form, B, or a twisted .
1-form, H. See Figure 13-1.

- &

N

Figure 18-1. The sources that generate a magnetic field in the 2
direction, and a 2-form and a twisted 1-form with the same symmetry.
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Wedge Products

The rules for the wedge product with twisted forms are:

a A{Q}={YaAp,
= {Q}(« A B),
{QUaA{Q}f=« A:ﬂ.

where {2} is an orientation. In terms of the hat notation:

do A (dydodp) = dyda dp,
or in maximally compressed notation
da A (dvda) = dy.
Wedging two twisted forms leads to an untwisted result
(@y dB der) A (dy dadf) = df da,
(note the reversal) or in compressed notation

(@ 3B) A (@ &) = df de-
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- 19. Maps and Pullback

One can generalize the idea of a function so that the source space can
have any dimension and the target space any other dimension. These
more generalized relations are called maps.

Example: A parametrized curve in three dimensions is a
map from the reals to three dimensional space.

We denote maps by any symbol we wish, and display the action
of the map with a statement: M : S — T, read “M maps the S to
T.” This may be followed by a statement of the specific rules for the
map.

Example: The map
7v:R>R%s— (cos s,8in 8, 8),
describes a helix in three space as a parametrized curve.

" If we have a set of points in the source space, that set can be
mapped to the target set, point by point. If we have a parametrized
curve in the source space, then this generates a parametrized curve in
the target space.

Example: If we have
M :R? = R%;(u,v) = (X(y,v),Y (u,v), Z(u,v)),
then given a parametrized curve
7:R = R*% s (U(s),V(s))
we are lead to a parametrized curve in R3
M.y :R— R s (X(U(s), V() Y(U(s), V(5)), Z(U(s), V ()))-
The curve M, is called the pushforward of the curve 1.

Since the tangents to curves are themselves linear curves, these
too can be pushed forward. The rule looks remarkably like the chain
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rule, which is indeed used in the derivation. This motivated our
strange looking notation for tangent vectors. The basis vectors are
pushed forward according to the rules:

7] oYy @8
— H — ———
oz oz 8y
where there is a summation if there are several y coordinates, and

several equations if there are several z coordinates. Derive this using
a Taylor’s Series expansion and the chain rule.

Example: The basis vectors in the above example push
forward according to

0 8X o 8Y &8 82'8
' moz Ty T Bz
o 8x & 8Y & 067 8
' oz oy ooz

A dual situation exists with functions. If we have a function on

the target space

[:T—-R,
then this leads to a function on the source space. To compute the
function at a point in the source space, follow the map to a point in
the target space and then evaluate the function there. This rela.ted
function is called the pullback of the original function.

Likewise the gradients of functions, being linear functions, can
also be pulled back. See figure 19-1. for the situation where the map
is being used as in the above examples to define a two dimensional
subspace of three dimensional space.

There you can see why pullback is sometimes called sectioning.
The subspace cuts out a section of the 1-form, and defines a 1-form
on the subspace.

Example: In the above example the basis 1-forms pullback
according to the rules

dX -a—]—(-du + —azdv,

dY -a—}:du + gzdv,

dZ diu + -azdv,
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Figure 19-2. A one form being pulled
back onto a subspace. )

which indeed looks just like the chain rule.

Be warned that it makes no sense to try to pushforward a 1-form
or to pull back a tangent vector.

To pullback a twisted form the subspace must be given a trans-
verse orientation. Look at a subspace defined such that each term of
a monomial de pulls back to zero. It is said to have a transverse ori-
entation if we pick out either {df8} or —{df}, where df is a monomial
containing all of the remaining forms.

Example: If a hypersurface is specified by a coordinate
¢ =constant, and a basis for the whole space is given by
dq da, then the usual (inner) orientation for the hypersurface
would be a choice of either {da} or —{da}. A transverse
orientation is a choice of either {dgq} or —{dg}.

If the transverse orientation of a subspace defined by the pull-
backs of all the 1-forms in a monomial do vanishing is given by {df},
then the pullback rule is

d’a@d*yr—) &Ed'y.

Example: In three-space, let us pull back the twisted 1-
form (—dy, ) onto the z = 0 surface from above. Treating

19.3
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z = 0 as the boundary of the upper volume, we have z de-
creasing to the outside, so the orientation —{dz} corresponds

to {da} above.
The pullback is

-—-dyaa = a;dya; - -—dya = d?dy.

The z-flux, recall is Tzdy, so this is a flux in the negative
z—direction. '

Figure 19-3. Pull back —dydz dz

from above.
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CHAPTER FOUR. CALCULUS OF FORMS

This chapter continues the basic rules for the manipulation of differ-
ential forms. It covers the rules for differentiation and integration. |
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22. Stokes’ Theorem

Integrating a differential form around the boundary of a region gives
the same result as integrating its exterior derivative over the region
itself. This statement includes both the fundamental theorem of calcu-
lus and Stokes’ Theorem in vector calculus. It also covers the analogs
of these theorems in higher dimensions. There is a version that ap-
plies to twisted forms and that one includes the divergence theorem
and its analogs in other dimensions. __

I will not prove Stokes’ Theorem here. The most reasonable
course of action is to use Stokes’ Theorem to define the exterior deriva-
tive operator d. Then one finds the rule for calculating it given earlier.
On a lattice there is no other way to calculate d except as the operator
that makes Stokes’ theorem work.

Example: Let us infegrate the 1-form
w=zdy

. around the unit square in the right upper quadrant. Go
around the square in the counter-clockwise direction. Only

the right edge contributes to the integral, along the line z =

1. There we have
1
/ w =] dy = 1.
or ()

Now the exterior derivative is
dw = dz dy.

This is the unit density 2-form, and so

/rdw=/ol(/oldy)dz=1.

These agree, as I claimed.

We will use the partial derivative sign to denote the boundary of
a region. Stokes’ Theorem says that always

Jao= [ o
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To complete this we need to know how to orient the boundary of
a region. I will only give the rule for the simple case where everything
is lined up with the coordinates. If the boundary of the region T is
given by g = constant, with g increasing to the outside of the region,
then we must orient the boundary daI" so that

{dg A {or}} = {r}.

Example: For our preceeding example, the boundary on
the right is given by z = 1, and z > 1 lies outside the region. |
Hence we must satify

dz A {8T'} = {T).

If we give I' the usual orientation {dz dy}, then this is satis-

fied with
{or} = {dy}.

Since we are integrating upward on this leg, the answer is
indeed positive.

Stokes’ Theorem requires that both the space and its boundary
be oriented consistently. Don’t apply Stokes’ Theorem to a space that
cannot be oriented.

Example: Take a Mobius strip. Its boundary is a closed
curve. You cannot use Stokes’ Theorem to relate a line inte-
gral along the edge to the integral of its exterior derivative
over the Mobius strip. If you run an electric current through
the edge, it looks just like a coil with two turns. The mag-
netic field will hardly penerate the Mobius strip, however. To
apply Maxwell’s equations you need to use the less smooth
and certainly less obvious orientable surface that spans the
curve. This is a tricky surface to visualize. I sketch it below.
You may want to cut a model out of cardboard and verify
that it is orientable and that the Mobius strip is not.

Divergence Theorem

Stokes’s Theorem also applies to twisted tensors integrated over re-
gions with transverse orientations. I call this case the divergence
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Figure 22-1. Simglicial picture of a two-turn current loop and the
oriented surface that it bounds in addition to bounding the Mobius
strip. Here line CF is vertical. The four simplicial faces are ABC,
CDE, EFC, and FAC.

theorem. It states that

/(r L= [ @

Here Q is an n-form giving the orientation. For the case of transverse
orientations, the orientation of the boundary must satisfy

{(ara 0)} = {{(P’ Q)} Adg}.
Example: Suppose that a flux 2-form in three dimensions
is given by the twisted 2-form
j= u@dydz +v@dzda: + wa;dzdy,
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Then ou v ow

d7=(5;+5y-+_3;) dz dy dz.

The flux through the faces of a unit cube would be computed
like this: for the z = 1 face the transverse orientation is {dz}.
To pull j back onto this surface we use

da df dy — dB dv,
ud’;dydz — u “dydz,
vdydzdz — 0,
wazdzdy - 0.
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'23. Conservation Laws

Conservation laws can be expressed very naturally using differential
forms. 1

Example: Look at cars moving along a one-lane road. Let |
p(z,t) be the local density of cars, and k(z,t) the local flux
of cars. The number of cars between z = a and z = b will
be

b
/ p(z,t)dz.
The number of cars that crossz = afrom timet =ctot=d
will be ‘
/ k(a, t) dt.

The net loss in the number of cars in the region a < z < b
over that time will be -

‘/abp<?,c)dz -pr(z,@&.

If cars are not created or destroyed, then this decline must
be balanced the the cars coming in and out of the region:

/c ke ) di - / kb0 .

If we bring all the terms to one side, and properly stréighten
out the signs, we have

/:P(z,c)d:z:+£dk(b,t)#+£ap(z,@h +/:k(a,t)dt=0.

Let us define a 1-form on this two dimensional spacetime

j=pdi+kdz,
j=pditdzs + kdz dt,

j = —pdzdtdz + kdz dtdt,
j=—pdz + kdt.




The first form is our preferred shorthand for twisted forms.
In the second line I add in the explicit terms, but still leave
out the orientation. In the third line I add in the orientations
specifically. In the fourth line I use the notation that you will
find in most books on differential forms, where the standard
orientation is omitted as -a shorthand. Note the peculiar
minus sign that arises from this convention.

Now let I' be the rectangular region of spacetime, then

we have found that
[i=s
or

To assert this for all possible regions I' is the general state-
ment of the conservation of cars. Using the divergence the-

orem we can write this
/d) =0.
r

If this is to be true for all regions, then

_ dj =0,
is our conservation law in differential form. This would nor-
mally be written

All conservation laws will fit the above pattern: an n dimensional
space with a twisted (n — 1)—form with vanishing exterior derivative.

Example: Here is a twisted 3-form that describes the con-
servation of electric charge in spacetime.

j=J.dz + Jydy + J. dz,
j=J.dzdydzdt + Jydydzdzdt + J, dz dz dy dt + pdt dz dy dz.

The exterior derivative is
. _8J.  8ly 8, &
4 =——+ o
Note that it doesn’t matter in what order you add in the
missing three terms in the first definition of the current since
dz dy dz dt = {dz dy dz dt} dy dz dt,
= {dz dzdydt} dzdydt,

= dz dzdy dt.




24. Inverse of Stokes’ Theorem

From the basic theorem
dd =0,
we can find solutions of the differential form equation
dw =0,
by taking
| w = dg,

for any form ¢ one rank lower than w.

Example: In electrodynamics Maxwell’s equation for the

B field reads
dB=0,’

and we want to introduce a 1-form potential A such that
B =dA.

* Can this always be done? That is the question for this sec-
tion. A similar question comes up with the scalar potential:
Does dE = 0 mean we can always find a potential such that
E=-—dvV?

A form which can be written in terms of a potential is called
exact, as in the sense of an exact differential in thermodynamics. A
form with zero exterior derivative is called closed, as in a surface with
no boundary. 4

The answer to this question is involved, and one of the advantages
of differential forms is the order that it brings to this situation. Again
I will give no proofs. This is quite a complicated subject, in fact.
We ask if there are closed forms that are not exact. This question
is equivalent to its adjoint: are there surfaces that have no boundary
that are not themselves boundaries? Such a surface is called a cycle.
For simple spaces this adjoint question is easy.

Example: On the surface of the sphere there are no closed
curves that are not boundaries. The equator, for example,
bounds two discs, the northern and southern hemispheres.
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On the surface of a torus there are two intrinsically
different curves that are not boundaries. They go around
the torus in the two possible ways. These cycles cannot be
shrunk to zero while staying in the surface.

Example: Look at an annular space in two dimensions, the
plane with a central hole removed. Any curve encircling the
hole in the middle is a cycle. '

Look at the 1-form df. This is a closed 1-form, but it
is not exact. The notation df might lead you to believe that
it is the d of 6, but 6 is not a true function; it is not single-
valued over the region. Normally you don’t care about this,
but in topology these things matter.

Now we can state the solution to our problem: you can write

w=da
provided that -
dw =0
and
/ w=20
r
for all cycles I

Example: Continuing the above example: df is not exact
because the integral around any circle enclosing the origin
has a non-zero value

dé = 2x.
0

If you have a closed form with a non-zero value integrated over a
cycle you can subtract out that degree of freedom.

Example: In the above case, if the form had

/w=A,
r
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will have zero integral, and will therefore be exact. Thus we

can write 1
W= mdg + da,
for some «, and this gives a representation of all the possible

solutions.
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25. Delta Functions

With a notation for integration that does not depend upon dimension,
there is little or no need for the conventional notation for functions
confined to subspaces or even points. The connections between the
dimensions are provided by the pullback formulae.

I intend to look through some of the books on advanced delta-
functionology and verify that they have been made totally redundant
by the differential forms notation. I will start with Mathematical
Tools for Changing Spatial Scales in the Analysis of Physical Systems
by William G. Gray et al.




CHAPTER FIVE. GEOMETRY WITH FORMS

Not all the geometrical objects that we deal with can be represented
by differential forms. In particular the metric properties of a space
are represented by symmetric tensors. There are tricks that we can
use to represent them in our language, however, and these are the

subject of this chapter.
The techniques here are very powerful, and when they were intro-
duced in general relativity back in the 1970’s, they made calculations

easier by a factor to more than ten or twenty.
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26. Tensor Algebra

There are some situations where a tensor multiplication that is not
antisymmetric is more natural. The general ordered multiplication of
tensors is indicated by the tensor product symbol ®. If u and v are
tensors, and a and b are in spaces dual to the spaces containing u and

v, then we define
©u®v-(a,b) =(u-a)(v-b).
The multiplication on the left is tensor multiplication, the multipli-
cation on the right hand side is just the ordinary multiplication of
numbers. Here u and v need not be tensors of the same type, all that

i8 necessary is that they be linear operators.
If k is a real number, then we require that

k(u®v) = (ku) @ v = u @ (kv).

Example: The wedge product of two 1-forms can be written
aAf=a®f~-F®a.

The metric properties of a space are expressed by a symmetnc
tensor. Euclidean geometry uses the tensor £

€ =dr ®dzr +dy ®dy.
The usual dot product between two vectors a and b is
aeb=E-(a,b).

The spacetime geometry of special relativity is described by a

tensor M
M=dzr@dz - dt ®dt

All of special relativity is contained in the above equation and in its
four dimensional extension:

M=dr®dz +dy @ dydz @ dz — dt @ dt.
When you see geometry metric tensors written
£ = dz? 4 dy?,
you are seeing a shorthand notation where the tensor product symbol
has been left out.
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27. The Star Operator

The calculus of differential forms is an efficient tool for calculating
with antisymmetric tensors. To include symmetric tensors is impor-
tant, and we resort to a trick for this. You are already familiar with
this trick in the realm of vectors. One commonly represents little ar-
eas (antisymmetric pairs of vectors) with with their surface normal
vectors. In the same way, the star operator represents antisymmetric

pairs of 1-forms with a twisted 1-form.
To dot two forms together one needs to use the metric structure,

just as one would to dot two vectors together. We can think of the

metric as map
E:VxV-=R

or as the partially evaluated operator
E:V - (V->R)

That is, we can think of E as an operator which maps vectors to 1-
forms, and then the natural duality leads to the dot product. To stay
in the realm of forms, we can mimic this action.

Introduce an operator that maps r-forms to twisted (n —r)-forms:

o *a.
Now given another form of the same type as a, we can form

B A (xa)

and this is an n-form. These are all similar except for magnitude, and

we can compare the magnitude with that of the unit volume element,
which we will write *1:

BA(xa)==*1:-(fea),
= x(f o a).
This definition of the dot product is bilinear in it arguments. We will

have to arrange the definiton of * so that it is symmetric, and then
we will have arranged a representation of our metric that stays within

the domain of differential forms.
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The tool for this will be the orthnormal frame. Look at a basis
of 1-forms that are all of unit size according to the metric, and mutu-
ally orthogonal. We will denote these by w*,w?,..., although wz, ...
would be more in parallel with dz,....

Because they are orthonormal we can write the metric in terms

of them
E=w @' +w RuwY,

using the tensor product of the last section. Following the conventions
used with the coordinate basis, we will write the arbitrary such basis

form w? and the wedge product of an arbitrary number of them by

wh,

The rule for the metric operator * when the metric is positive
definite is .
*w? = w4, Positive Definite Metric
Example: In three dimensional Euclidean space dz,dy,dz
are alréady an orthonormal basis. Thus

*dz = fiz\,
*dy = dy,
*dz = :iz\,
" xdzdy = Z:c\c’l;/,
*1 =T1.

Example: In two dimension polar coordinates we have an

orthonormal basis
w" =dr,

w® = rdé.

and
*gdr = *w" = 0" w?
=drrdf=rdrdd
*odf = %@dr,
*2l = Tw" w’ =T1rdr dé.

When there are two sets of basis forms being used, it is not
safe to leave out basis forms when describing twisted forms.
Leaving them in makes only a small complication.
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The metric inner product of two r-forms is given by
x(aof)=(aef)x1=aAx*p.
To see that this is symmetric, let
a=wh
This entails no loss of generélity because this is an algebraic argument

that only involves the value at a single point. Now £ must involve
exactly the same factors, or the wedge product will vanish. But if we

have
B = kdw?
then it is clear that
aAxf = Ax*a.

To represent Lorentz geometry we need a more general rule,

adding one minus sign for each timelike basis form being starred:
xh = (=) A WB,

where p is the number of timelike factors in w*. In Lorentz geometry
the number of timelike factors will be either zero or one.

Example: For two dimensional spacetime we can pick an
orthonormal basis

w' = dt,
w* =dz.

Then we have . .
*¥pw' = —wtw®

= —dt dz,
*Lw® = wF Wt
= dz dt,
and we see that
wt Aspwt = dt A (— dit)dz,
=-Tdtdz = —1dzdt

Also we have
*x11 = —1dzdt,

so we would say that
Wt = ~1.

Likewise you can show that
w* - w*=1.
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28. Symmetry and the Lie Derivative

The notion of symmetry is closely connected with conservation laws.
For some systems every continuous symmetry leads to a conservation

law.

Under a continuous transformation, every point moves along a
curve, and the tangent vector to that curve is a representation of
an infinitesimal transformation. We will restrict our attention to in-

finitesimal transformations.

Example: An infinitesimal translation along the x-axis is
represented by the vector field
9
oz’
A rotation about the origin by
9 _.8
y az 8y ]
and a Lorentz transformation by
i) i)

t — —.
oz T

Given a transformation, a good question to ask is what objects
are not changed by the transformation. We call such objects invariant
under the transformation. We could also say they have such-and-such

a symmetry.

Example: The function r has rotational symmetry, but not
- translational symmetry.

Example: A function f(z,y) is invariant under an infinites-
imal transformation given by the vector field k if

kJdf = 0.

We want to generalize the differentiation shown in the last ex-
ample so that we can decide if a given differential form is invariant or

not.
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Example: The 1-form dy is invariant under the transfor-
mation
i)
y b;a
which represents a shear. To see this pictorially, transform
each point in the rendering of dy by a pair of parallel lines.
The picture of dy slides into itself.

The differentiation which measures zthe change under infinitesi-
mal transformations is called Lie differentiation. It is very easy for
differential forms. The Lie derivative £ is given by

8f

19o;quda Q dgda+ fdQ Aa..

It satisfies the important identity

Lrw = kJddw + d(k Jw).

Example:

£ 2= y;,;(ddy)+d(y % Jay)=o.

Isometries

One can also study the symmetries of a metric. Here the focus is not

on which metric tensors have a given symmetry, but rather, given &
metric, what are its symmetries. If the metric is given in terms of its

components, with summation over repeated indices

Guv dz¥ ® dzy’
then a vector 8
k=k*—
Sk

is a symmetry provided that
g;w,dka + gndka.v + gyck'.n =0

Here the comma indicates a partial derivative. This is by no means
obvious; I am just quoting it without proof, since the proof really
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needs more tensor analysis tools than you have. Such a symmetry
vector is called a Killing vector.

Example: It is not obvious, but the symmetries of the
two dimensional Euclidean metric are the three independent
Killing vectors:

9

81:,

0

5;’
20
Yor oy

The only result you will need for Killing vectors is the relation

£r ra=xL;a.
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29. 0Old Vector Calculus

You might be expecting here a translation guide along the lines of:
the dot product of two 1-forms is given by

a-fr " aAxp),
and the cross product by
ax prxaAp).

This is not the case. The hidden stratification of three-degree-of-
freedom objects shows up here in a multiplicity of translations for
dot and cross products. I will give exa.mples here drawn mainly from

electrodyna.mlcs
First we note that the stratification must be respected in equa-

tions. Consider Ohm’s Law. It makes no sense to write this in forms-
J=0EFE,

with o & scalar parameter, because J is a twisted 2-form, (integrate
it over a two-sided surface) while F is a 1-form, (integrate along a di-
rected line). The geometrically correct translation must be something
like

J=oxE.

Even this can be criticized, and the relativistically correct form re-
quires that the material velocity be specified, to

J=o0x(E—-vlB).

There are a variety of dot products in electrodynamics. The
electrostatic energy density will be a twisted 3-form

E AxE,
and similarly magnetic energy

B A xB.
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Relativistically these cannot be separated, and only the combination
EAxE + BA*B

makes sense if you are moving between different states of motion.
Another important invariant is the dot product E - B. This too
can be written without reference to a metric as

EAB.

Likewise, the local density for ohmic heating becomes the twisted
3-form '
JAE.

The most frequent cross product is v X B, which translates into
—vliB,

again independent of any choice of metric.

What about the Poynting vector E x B? This will be a twisted 2-
form, giving the flux of energy across a two-sided surface. It translates
into : _

E A =B ,

More difficult are cross products like J x B. This gives the local
density of force on a conducting fluid in magnetohydrodynamics. This
18 really three different conservation laws, one for x-momentum, and
so on. To translate this into forms we need to explicitly introduce the
conserved quantity by giving the Killing vector field that generates it.
In terms of this vector k we have

JAkIB.

This is a collection of twisted 3-forms, one for each Killing vector.
In Euclidean space there are three Killing vectors representing trans-
lational symmetries. We have something like a “vector” of twisted
3-forms, but this is not a “vector” in the sense of vector field, like the
k. It is not attached to any point, but has components that require
an integration over all space. In a similar manner we can also include
the angular momentum conservation laws. Really we have not three

but six conservation laws.
For a loop of current in a magnetic field, the k-momentum balance

I/ k1B.
A

Note that here we are integrating an untwisted 1-form over a loop
with inner orientation specified by the direction of current flow.

involves
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'30. Simplicial Calculus

I want to just sketch here the start of a geometrically natural lattice
calculus that would provide the underpinnings for finite-difference,
finite-element, and boundary-element calculations. The use of differ-
ential forms and their analogs is particularly well suited to a discus-
sion of conservation laws. The approximations involved in the dis-
cretization appear only at the algebraic level. Unlike finite-difference
methods, we do not replace differential equations with infinite-order

equations.
The main utility for this section for us will be the nice pictures

it provides for the boundary operator and exterior differention.

Elements

We will consider cellular lattices embedding in Euclidean space. The
embedding may be time dependent or not, as the problem demands.
The elements of the lattice are vertices, edges, faces, and cells, in
three dimensions. The lattice element of dimension r will be referred
to generally as an r-cell. These cells need not have the mininum
number of vertices. That is, the faces can be squares, not triangles.
This makes things like the orientation and the boundary operator
more complicated, but allows us to consider the dual lattice as well.
The dual of a simplicial lattice is not usually simplicial.

We need to orient these lattice elements. For our case of lattices
embedded in Euclidean space, we specify the orientation by giving any
r-form which pulls back to a non-zero r-form on the lattice element.
A twisted orientation for a lattice element in n dimensions can be
specified by any (n — r)-form which pulls back to zero on the r-cell.
An ordinary orientation for the r-cells of a lattice naturally defines a
twisted orientation on the dual lattice.

Chains and Cochains

To analog of a vector will be the formal sum of any number of 1-
cells, with coefficients that can be reals although they will usually
be integers. The formal sums of r-cells are called r-chains. They are
the lattice versions of curves, surfaces, and volumes. A picture of a
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1-chain is a picture of the lattice, with a weight written next to all of
the non-zero 1-cells.

The linear operators on r-chains are called r-cochains. These are
the analogs of differential forms on the lattice. The picture of a 1-
cochain looks just like that of a 1-chain. Are they really the same
thing? To see the difference, you need to consider a refinement of
the lattice. If you subdivide an edge into two pieces, one after the
other, then they go to a new chain with weight 1 on each piece. A
particular 1-cochain that have a value of 1 on the original edge, will
now have a value of 1/2 on each of the new edges, assuming that it
was divided symmetrically. This representation of both chains and
cochains in terms of chains is similar to our decision to represent both
vectors and forms in the tangent space.

Example: The electrostatic field in two dimensions will be
a l-cochain giving the potential difference across any edge.
This has an ordinary orientation. The electric lux is a
twisted 1-cochain, and this will give the flux through any
edge. The electric charge will be a twisted 2-cochain, which
tells you how much charge is contained on each face.

The equations of electrostatics will relate the flux and
the field strength, and express the balance between the net
flux out of a face and the charge it contains.

Boundary Operator
For a simplex the boundary operator 8 is defined by

a(PO'--Pr) = E(“)'(PDﬁPr)a

where (pg...pr) denotes the r-simplex with vertices py and so on, and
(po...Pi...pr) is the (r-1)-simplex which is missing the vertex p;.

The boundary of any cell can be found by taking a simplicial
decomposition and adding up the boundaries of all the simplices. The
boundary of a chain is the sum of the boundaries of its cells, with the

appropriate weights and signs.
This is consistent with the orientation rule for the boundaries of

regions

d¢ A{ar'} = {T'},

where ¢ is a function which increases to the outside of I". Both sides
of the above equation are equivalence classes of r-forms.
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Figure 30-1. The boundaries of two
l-chains and a twisted 1l-chain in
two dimensions.

Figure 30-2. The boundaries of a
2-chain and a twisted 2-chain in
two dimensions.

Coboundary Operator

L e ) — ° °
2 -2
L ] — . °
1 1 1

-

The adjoint to the boundary operator is d, the coboundary operator
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defined by
dw-g=w-dyg,

for any r-chain ¢ and (r-1)-cochain w. The operator d is the lattice
version of the ea;tetior derivative d.

° (o 4
Figure 30-3. The coboundaries of — 3
a 0-chain and a 1l-chain in two di-
mensions.
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Figure 30-4. The coboundaries of
a twisted 0-chain and a twisted 1-
- chain in two dimensions.
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CHAPTER SIX. ELECTRODYNAMICS

Electrodynamics is the ideal field theory to show off the advantages
of differential forms. You should be able to follow the developments
in this chapter after or during your junior year electrodynamics class.
The section on estimating capacitance and inductance is provided to
show that forms are not just useful in the formulation of the theory,
but also in doing hard calculations.
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31. Electromagnetic Fields and Equations

The geometric picture of the four electromagnetic fields follows from
their integral properties. The electric field E integrated along a path
tells us how much work is done by a charge carried along that path.
Clearly FE is a 1-form.

The flux D integrated over a sphere tells us- how much charge is
inside. D is a twisted 2-form.

The time derivative of the magnetic flux through a 2-surface gives
us the voltage induced around its boundary. Using Stokes’ Theorem,
this means that B will be an ordinary 2-form. Finally, H will be
a twisted 1-form. The density of electrical charge will be given by
a twisted 3-form, and the current density by a twisted 2-form. The
current J through a surface is related to the integral of H around its
boundary. This shows that H is indeed a twisted 1-form.

These are all given in a form suitable for a curvilinear coordinate
system, but one which is not moving. Time is treated as a separate
variable here, and the operator d does not include time differentiation.

Maxwell’s equations in natural units, cgs Gaussian units with the

speed of light set equal to unity, are

éB

=% = —dE,

%I?’- =dH —4=J,
dB =0,

dD = 4xp.

In addition we need relations between F and D and between B
and H. In vacuum we have

D =+E,
H =«B.
The force law for a charged particle is
F=g¢(E-vJ4B).
As I mentioned before, force is a 1-form. Integrated along a line it
gives you work.
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32. Electrostatics

To go deeper into the differential forms calculus, let us look at the
physically simpler situation of electrostatics. The vacuum equations

simplify to

dE =0,
dD = 4xp,
D ==xE.

Over a region like all of space, where there are not any holes, we can
infer from the fact that E is closed that we can introduce a potential
(the sign is a historical convention)

E=—-dV.
In a region with no chargé this leads to Laplace’s equation
dxdV =0.

Note that you cannot bring a derivative through a star, otherwise this

would be a trivial equation.
Let us write out Laplace’s equation in spherical polar coordinates.
The d operator is simple in a coordinate basis

dr,df, d¢,

while the star operator is simple in an orthonormal basis

w’ =dr,
w® =rdo,
w? = r sinfd¢.

First we take the gradient of the potential:

oV v /)%

Next convert to an ortonormal basis:

eV . 18V, 1 8V
V=W + o * o

dg.
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Now we can star this

_BV wf w? 1aV,,¢ 1:91»; 0
_arw" + aaww +——oa¢www

And now convert back to a coordinate basis, getting ready for the
final exterior derivative:
8V -~ 8V — 1 8V~
=2 i g0 9 -

xdV =r smﬂardrdﬂd¢+ Gwdadrd¢+ 08¢d¢dd0
Now the final exterior derivative. Because of the antisymmetry, this
involve only one differentiation per term. Collecting up the results we
have

sV
28V )+ 8

=5 ) dr o dé.

dedV = (G153 + oo g

Conformal Ma_,pping

In two dimensions the equations of electrostatics have a particularly
simple geometric picture. We know that we can draw E by drawing
the contour lines of V. In charge-free regions, we can draw flux tubes
of D. How are these flux tubes related to E?

The relation between E and D is given by the algebraic equations

D = «D.

No derivatives are involved. Thus we can pursue this argument by
picking special coordinates for E without any loss of generality. Take

E = Ey dz,

at some point. Then

D = Ey dz dy.

The lines representing F are perpendicular to the lines of D, and they
have the same spacing. Thus the lines of E, called equipotentials, and
the lines of D, called streamlines, meet everywhere at right angles, and
form what are called “curvilinear squares.” The squares are only true
for lines infinitesimally close together, but is still visible even in the
finite case. You can often sketch a crude but servicable approximation
to a solution of Laplace’s equation this way.
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These squares do not depend on the actual field strength. Dou-
bling the strength of the E field doubles the strength of D, in all
dimensions. But only in two dimensions is the D field also a 1-form.
In three dimensions you do not have curvilinear cubes because when
you double the F field, this factor of two is spread over two other

dimensions, /2 for each.
This field strength invariant behavior of two dimensional elec-

trostatics is called conformal symmetry.” Every analytic function in
complex variable theory leads to a picture with exactly these proper-
ties, and this is a powerful technique for solving Laplace’s equation in
two dimensions. '
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The same argument used above gives us the energy in the configura-
tion Q’
= =CV? =
W= C’ Yok

Estimating Capacitance

We can combine the two expressions for energy into a powerful tool
for estimating the capacity coefficients for system too difficult to solve

exactly.

Suppose we guess the voltage V everywhere in space, call this
V., making sure that we have the correct voltage on the conductors.
This leads to an estimate of the electric field, E., which will be closed
but not satisfy Maxwell’s equations. We now calculate the energy in
this estimate of the field, and discover that first-order mistakes in the
guess of the field leads only to a second-order mistake in the energy.
This is pretty much like getting some information for nothing.

Write the estimate in terms of a difference field e:

E.=FE+e,

then
/E,A*E, =A/(E+e)A(*E+*e).

The linear error terms in here are identical, because

eA*xE = E A xe.

Now introduce the potential going with e. This is possible because e
is closed over the entire space, even inside the conductors. The linear

error term is thus

2/6A*E=—2/dv/\*E.

Now integrate by parts, using
dv*E)=dvA*xE+vd+*E.

The surface integral is taken on the surfaces of the conductors. Since
the estimate has the correct voltage there by assumption, we have
v = 0 on the surfaces and this surface term vanishes. It is only a
surface term after using Stokes’ Theorem, which is just moving the d

down to a boundary operator 4.
33.3

ember, wedge star acts like
a dot product.]

[The trick in doing this is to

guess where you want to get a
d into the expression.]



The volume integral involves d * E, the divergence of the true
solution. We do not allow free charge inbetween the conductors, and
so this vanishes as well, since

d*E =4np=0.

Now we notice that the quadratic term is just like our energy
term. Thus it is everywhere positive. This leads to a true inequality

if we drop it:
1

Cs 4xV2

/E,A*E,, A

with a quadratic error.

You can pursue a similar calculation for the case where you guess
not E but D, picking D so that the correct amount of charge is on
the conductors. This leads to a bound going the other way:

47 Q?
> =
¢= [D. AxD,

Example: Look at a square conductor of width 2 inside a
larger grounded square of width 4. We will make two very
crude guesses just so you get the idea. In two dimensions

the conformal symmetry means that the capacity is a di-
mensionless number, and we needn’t specify units for the

lengths.
We guess equipotentials to be squares. We will do the

integrals over just one of the eight symmetrical octants, the
one from 1:30 to 3:00 o’clock. The E, field is

E =dz.

We don’t have to pick any particular size for the electric field
because of linearity. The scaling of E and V cancel out.

«E = dz dy.
The energy density is
dz A d/;dy ="dz dy,

and so the energy integral is just the area of the octant,

which is % The voltage between the conductor and the
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ground plane is V = —1. Thus the estimate of the capacity

is 8 3 3
<2 x2=Z
C‘47rx2 x

For the flux, let us pick
+E = dz dy, y<l1.

That is, the flux is just confined to the square. This leads
to an estimate o
C2= e

Even these crude guesses at fields have narrowed down the
capacitance to 50%. It also shows that the capacitance is
finite even with the sharp corner. You could pursue a simi-
lar argument to show that even an infinitely thin rectangle
would have a finite capacitance.
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34. Magnetism

Magnetostatics is an all together more complex case than electrostat-
ics. The equations look the same, except they have the 1-form and
2-form interchanged:

dH = 4xJ,

dB = 0.

What is missing is the nice boundary condition corresponding to

conductors being equipotential surfaces. The corresponding potential
for magnetostatics is not a scalar potential but a 1-form potential:

B = dA.

Now first of all surfaces like this on which B pulls back to zero
are nowhere near as common as conductors, surfaces on which E
pulls back to zero. Either we talk about superconductors, or we talk
about moderate frequency alternating magnetic fields, low enough in
frequency so that radiation effects can be ignored, and high enough
in frequency so that the skin depth is small and the fields do not -
penetrate the conductors. Cases where the currents are distributed
throughout the conductor are also tractable, but even more compli-
cated than the case where all the current is confined to the surface.

Even once we accept the idea of a perfect conductor, the extra
complications involved in having surface currents rather than surface
charge will be nontrivial. In fact, there are important topological con-
sequences. The number of degrees of freedom in a configuration will
not be, as in the electrostatics case, the number of separate conduc-
tors, but rather the total number of holes in the conductors. Spherical
conductors surprisingly will have, in fact, no magnetic degrees of free-
dom, and a figure eight conductor will have two.

Energy

To compute the assembly energy of a system of currents distributed
on a finite number of isolated perfect conductors we need to depart

from the approximate equations above. The work done will depend
on the small F field generated by
6B

dE = —Ta—t—.

34.1




This electric field is called the “back electromotive force,” and usually
gets either neglected or treated as a mystery in undergraduate courses.
A rather similar argument to the electrostatics case leads to the pretty
expression for energy in the configuration in terms of field quantitites

W= -l—/ B AH.
8« T
Since this is not an electrodynamics book, take this as a given.

To find the degrees of freedom in the system, let us convert this
to surface integrals over all of the perfect conductors. First we bring
in the vector potential A. We can do this because we have

dB =0,

over all of space, even inside the conductors. The motivation for this

should be clear. We need to get a d into the equation, then use

integration by parts and Stokes’ Theorem to get surface integrals.

Thus 1 . "

W= — / dAAH.
8 T

There are by assumption no currents in the region between the perfect
conductors, so there we have dH = 0, and so we get the surface

integral -
W=i/ AAE.
81 Jor

On the surface we have the pullback of the B field vanishing, so we
have on the surface
dA=0.

There will be a discontinuity in the H field at the surface, and
this will require that there be a surface current on the conductor. The
equation .

dH = 4xJ,
integrated around a little loop transverse to the surface relates the
surface current K to the pullback of the H field:

1
K = — Pullback(H).

We have not bothered to introduce any special notation for the pull-
back. The picture of this operation shows how natural it is, including
the need to know on what side of the surface the H field comes from.
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Figure 34-1. Surface current caused
by the pullback of H.

This surface current is conserved. ‘To see this, look at the integral
of K around a closed loop in the surface. Break this up into a lot of the
little loops used to define K in terms of H. This relates the integral
of K to the integral of H over two loops, one just outside and one just
inside the surface. The one inside is clearly zero. The one outside is

also zero:
| / H=/dH=/41rJ=0.
or r r

where I is any surface spanning the inside of the loop which remains
outside of the surface. Since the integral of K around any closed loop
is zero, we have

dK = 0.

This is important. On the surface of the conductor, which is topolog-
ically non trivial, both K and A are closed. “
The energy integral can be written completely in terms of surface

quantities.
w=1 / ANK.
2 Jor

This is to be compared with the electrostatic case, which was just a
simple sum of voltage time charge for each conductor. That simpli-
fication came about because the voltage was constant, and could be
factored out of the integral over the surface, leaving the total charge
as the result. Remarkably, the same thing happens here.
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Let us deal only with a simple torus. There are two ways to cut
the torus that will remove the hole. These are sketched in the next

figure.

Figure 34-2. Two cuts (cycles) that
remove the hole in the torus with-
out cutting it apart.

Neither of these has a boundary in the surface. The first of them
has a boundary inside of the conductor. That implies that the integral
of B over that surface is zero, and hence that the integral of A around
that cycle vanishes. For the other cut, we want to see that the net
current across that cut is zero. A net current across it would be a net
integral of H just outside the conductor. But the integral just outside
18 the boundary of a region of space, albeit not on the surface. On
this surface there is no current, hence that integral must vanish.

We are left with the possbility of net current K across the first..
cut, and a net A around the second. These are the two conjugate
variables that correspond to voltage and charge. They are called
current and magnetic flux. Now we show that we can factor the

energy integral into the form

1
wellafx
In the surface integral we can move the current around as long as we
keep the same net current around the ring and we will have the same
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energy. To see that look at the difference of the two currents K; — K.
Since this has no net integral around the ring, it can be written in
terms of a potential; integrate by parts and this D either will hit the
A term or the boundary of the surface. Both vanish. Exactly the
same argument-can be made for the vector potential.

Thus we can confine the current to a small strip around the ring,
and the vector potential to a small strip through the center. They
can both be made constant in the small rectangle where they cross,
and hence the integral factors. See the figure for the modified current

and vector potential.

Figure 34-3. Deformed current and
vector potential shown on flattened
torus.

Thus we can write 1
W= EIQ,

where I is the total flux and ® the net flux.
One can now follow exactly the same path as with capacitance
to find upper and lower bounds on the inductance.
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35. Maxwell’s Equations in Spacetime

We can also find a fully four dimensional formulation of electrodynam-
ics. For this we use a four dimensional version of the star operator. I
will denote it by *, to keep things straight.

Example:
*4dz = d?=d?dy&# = (dydzdt,{dzdydzdt}),
*4dy = 2;’
*4dz = Ez\,
*ydt = —&\t.

A minus sign in the last equation because dt is a timelike

1-form. : e
*4(dz dy) = dz dy,
*4(dz dt) = —d?(?t,
and so on.

We can assemble a 2-form for half of the components of the elec-
tromagnetic field by taking

F=B+EAdt.
We are using dz both as a basis 1-form in 3D and in 4D. If we now
take the four dimensional exterior derivative of this, we find

&F=dB+dt/\%+dE/\dt.
Note that when you d the new forms appear at the front, that is why
the dt is first in its term.-
dF = —dtdE + dE dt = 0. {Be careful in switching the two -

factors. Moving a 1-form, dt,
through a 2-form dE involve two
sign changes.]

We have to be more careful with the twisted forms. We start by
taking the star of our field 2-form:

*4F= xB —'*4(th),
=+B+d xE.
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[Minus sign because there is a

This leads us to define the twisted 2-form timelike 1-form being starred.)
G=H+dtD.

Example: Suppose that we have in 3D
D= t:i-;,
H = zdzdz. .

Then - _~

G = zdz dz + tdt dz.
We take the exterior derivative of this. Remember that we
work from right to left with twisted forms.

QG=$—£=0.

We take the 4D exterior derivative, being very careful with the

signs
~ éD
d,G = dH + dtdD — —. [You may have to work this
- ot . out several times until you have
. . made an even mumber of sign
Using Maxwell’s equations mistakes.]

d(G = didnp + 4nJ.
The right hand side is the twisted current 3-form
Jj= Etp +J.

Example: For a unit charge density we have
p=,
i=a&,

and for unit current in the x direction

-

j =dz.

Thus we have Maxwell’s equations in 4D:

d F =0,
dG = 4nj,
*4F - G.

In a material with dielectric or magnetic properties we would have to
change the third equation.
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CHAPTER SEVEN. CLASSICAL MECHANICS

Here I just sketch without any derivation the geometric structure of
classical mechanics. The idea is to show how the ideas adapt to the
geometry of mechanics without getting into the details.

The most geometrical formulation of mechanics is the Haxmlto—
nian form when time does not appear explicitly. The geometry here
is the symplectic geometry of a 2-form on phase space. Even the less
geometric Lagrangian form fits well with our language, however.

I give just a brief sketch of continuum mechanics, showing how
even a theory with considerable dependence on a symmetric tensor can
be geometrized with differential forms, although the extreme simplic-
ity of the Navier Stokes equations seems like a miracle to me.
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36. Hamiltonian Mechanics

We saw that the structure of a metric space was given by a symmetric
second-rank tensor. Classical mechanics has its structure determined
in part by an antisymmetric second-rank tensor, a 2-form. The space
is phase space, the space of genera.hzed coordma.tes ¢i and generalized
momenta p*. The 2-form is given by

Q=3%;dp; A dqi.

It is called the canonical 2-form. Note that it is a closed 2-form.
The equations of motion of a given dynamical system follow from the
Hamiltonian function, which is a function on phase space, according
to

- ul) = —dH.

Here u is the vector velocity of the system as it moves in phase space.

The parametrization need not be time; often time is just one of the

coordinates in phase space.
If we write the veloc;ty vector in a two dimensional phase space

u=gqg 9 +p 9

8  op’
where the symbols ¢ and p are just convenient mnemonic names, not
time derivatives. This follows our convention that lower case letters
are independent variables. Thus

uldpAdg = pdg — ¢dp,

6H 6H
= ——dg - —d,
CTTu
The system will move along integral curves of this vector field, given
by maps
t— (g,p) = (Q(2), P(2))
such that
Q_._ 0%
dt =q= &) ’
ap_ . __of
i~ PT g

36.1
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It would be easy to go back and add summation signs to these equa-
tions and produce a calculation for any dimension.

Integral Invariants
The canonical 2;form can be_: written in terms of a canonical 1-form
Q =df = d(Z;p; dq‘).

The action is the integral of this canonical 1-form around any closed
loop in phase space

S=/82pdq=/’;dp/\dq.

The change in this integral as the curve is moved by the equations of
motion is given by the Lie Derivative

$= L £ dpdy,
= [ dwsapa),
= [B d(dH) =0.

The value of this integral is invariant.
One can derive other integral invariants. The most important is

found from
/QAQ/\...

with enough {Is to make this a volume integral in phase space. The
invariance of this integral is usually called Liouville’s Theorem. It
lies at the heart of the second law of thermodynamics.
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37. Lagrangian Mechanics

There is also a nice geometric picture of Lagrange’s equations in me-
chanics . These are .

TG -m=F

dt \ 8¢ 8q ?

where L = T'—V is the Lagrangian function, a scalar function on the
space of positions, velocities, and time. I have left off an index on all
of these quantities for clarity. It should read:

d 8L, &L

i) ~ e =
The F; are generalized forces in the sense of the principle of virtual
work. The work done is

aw = Y Fdg

in the sense of p.v.w. Of course we interpret the right hand side as a
1-form, and recognize the F; as the components of a 1-form.

To geometrize these equations we need to identify the intrinsic
structure of the space (g,4,t). If we look at a possible motion of a

particle in (g) space:
t— (Q(2)),

then this leads naturally to a curve in (g,4,t) space:

£ (Q(0), 22,0

called the “lift” of the original curve. Not all curves are lifts. Those
curves which are lifted from position space have the 1-forms

a=dq—qdt

all pull back to zero on the curve. |
The geometric structure of Lagrange’s equations is that the sys-
tem moves in (g, 4,t) space along curves for which the above forms

pull back to zero as well as the forms

8L, 0oL
a5 -

37.1
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the requirement that the q-
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This provides us with 2n 1-forms in a (2n+1)-dimensional space. This
will determine unparametrized curves through the space. Time is just
a coordinate here, except insofar as it occurs in a simple manner in

dg — g dt.
Example: For a free particle in one dimension we have the
three dimensional space (g, d,t), with a Lagrangian function

1 2
L - 2q 9
and two 1-forms
dq—q.dt)
dq,

determine the path. These describe tubes along which the
system point must move. See the figure.

Figure 37-1. Free particle motion.

¥

In this formulation it is not apparent that the terms involving
the Lagrangian function are really independent of the coordinates.
The easiest way to see that is to recognize that these are the Euler-
Lagrange equations for a variational problem, extremizing the integral

[fra
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You could have motivated the choice of velocity space by asking the
question: on what space is L dt truly a 1-form? It certainly isn’t in
(g,t) space, for example.
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38. Fluid Mechanics

While any partial differential equation can be cast into the language of
differential forms by going to a phase space that is large enough, it re-
quires a special structure to the equations for them to be described by
differential forms on 3-space itself. Here we see how the Navier-Stokes
equations can be so written. This is a remarkable simplification. It al-
lows these equations to be written in curvilinear coordinates without
using covariant derivatives. _

Two natural geometric objects come to mind when you think
about the state of a fluid: the tangent vector describing the local ve-
locity of a fluid particle, and the 2-form representing the mass flux.
Our representation scheme will use this mass flux 2-form and its as-
sociated mass density 3—form. We are considering using curvilinear
coordinates for the spatial dimensions, and treat time as a parameter,
just as in the usual Maxwell’s theory. In this way the thermodynamic
state variables are all scalars. I will ignore them for this brief dis-
cussion. Also, fluids with intrinsic spin angular momentum will be
ignored, and so we do not need separate equations for the angular
momentum budget.

To keep as close to familiar representations as possible, I will
write the mass density *p so that p will be an ordinary scalar field.
The mass flux will be a 2-form that I will write as *p7y. In rectangular

coordinates the 1-form + is given by

7 =vzdz + vydy + vy dz,

where v, is the z-component of the fluid velocity, and so on. The

conservation of matter is written
op
— 4+ d =0.
+o T d*7)

Similar balance laws can be written for the other scalar variables such
as entropy.

The interesting balance laws involve momentum, since it is a
vector quantity. It would seem to require covariant derivatives. To
discuss the balance of momentum we need expressions for its density,
and for its transport by convention, pressure, and viscous stresses.
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Since the language of forms includes only antisymmetric quantities,
the treatment of the symmetric stress-energy tensor will take some
circumlocution. We must write separate balance laws for each of the
momentum components, z-momentum, and so on. While this might
seem to be geometrically barbaric, note that these conservation laws
depend upon the symmetries of the metric, and such symmetries are

represented by vector fields (called Killing vector fields) such as a‘%
The density of k-momentum is just the mass density 3—form *p

times the k-component of the velocity,
(k 7).

Pressure transfers z-momentum in the negative z-direction, and so
on. This flux of momentum will be given by

kJxp.

The momentum convected with the fluid will be represented by a
2-form aligned in the *7 direction. The correct flux will be quadratic
in velocity, and is '

*(p(k Jy)y).

At this point we can write down the Euler equations, which de-
scribe the momentum balance for the case of no viscosity. The con-
servation of k-momentum requires

* ba—t(p(kJ'Y)) +d[p(kdy) A (*7) + kJ *p] = 0.

Now one can manipulate these equations and make a marvelous sim-
plification. Here one can write these scalar equations in the form of
the vector k contracted into a 1-form. The calculation uses an un-
familiar identity that I will give later. Using this identity along with
some standard forms manipulations leads to the Euler equations in
the form

k..l[p% + gd |7 > +dp+ *p(*dy A gamma)] =0

Now there are three Killing vectors for the three translations, and
these are linearly independent at every point. Thus the 1-form in
brackets must vanish. Thus we have the Euler equations

pgtl + gd | 7 12 +dp + *p(¥dy A gamma) = 0.
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There you see the Euler equations written in curvilinear coordinates
without the use of covariant derivatives. In fact, the * operator is
even outside of all the differentiations.

We now add the viscous stresses to this. The easiest approach is
to write out all possible 2-forms involving the velocity 1-form «, the
Killing vector k, one differentiation d, and one * (to match the parity
of the other terms). Then one tries to construct from them the flux
of k-momentum known to describe viscosity.

The possible terms are

*d(k l1v),*k Jdy, and kJd+ v.

We can now write these out in rectangular components and compare
with the usual expression for viscous momentum flux. Using the usual
viscosity coefficients, we find that the flux of k-momentum caused by

viscous stress is
2
. r;(*k.qur + 2% d(kJ7)) + (- é-_r])k.Jd * 9.

These give the correct expressions for the flux of linear momentum,
but not for angular momentum. Some of the differentiations hit the
Killing vector, which is only constant for translations. The above is
not the stress tensor, since it is not function-linear in k.

To find the Navier-Stokes equations we have to add the divergence
of this flux to our system. This flux is fairly easy to find using the
identities given below. We are forced to assume that the 1-form «
which is the covariant form of k satisfies ds = 0. This is true for the

translations. The resulting equation is

3C;4"d*d*7.—_ 0.

%-}-%dl'ylz+*(*d7A7)+£if+:]—)*d*d7—

For incompressible fluids we have the usual Navier-Stokes equa-
tions
o 1 2 dp 0
— 4+ =d d — 4+ <xdxdy=0.
Fria I'rl+*(*7/\'r)+p+p y
For some uses it is more convenient to write this as a Lie deriva-
tive, using the velocity vector v

v={r.
38.3
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We have
*(xdy Ay) = v idy,

and so &y 1 P
a - 2,9 .1 —
o+ Lor—3d17] +=-+ S xdwdy=0.
In terms of the vorticity 2-form

w=dy

we have aw
ot

from which Kelvin’s circulation theorem follows for n = 0

+.€,w+%d*d*w=0,

£(g+u)w=0.

For some applications it is convenient to use time-dependent
curvilinear coordinates, for example when considering rotating fluids,
or Lagrangian coordinates. In this case we must introduce an addi-
tional spatial vector field A giving the velocity of the coordinates rel-
ative to inertial space. The time differentiation must now be changed

according to

.. _ &
a Lgmr=atHrr

Special Identity

Until I tried to derive the Euler equations I was unacquainted with
the following identity; nor can it be found in the common books.

Sk |y = #(ey A d(k I7)) = kI (s(xdy A ).
There are some peculiar signs that arise in higher dimensions. This

is only true for three dimensional Euclidean space. Here k£ must be a
Killing vector.

38.4
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CHAPTER EIGHT. DISPERSIVE WAVES

The phenomena of group velocity and phase velocity are nicely ge-
ometrized once you realize that group velocity is a tangent vector and

that phase velocity is a 1-form.
In addition, the picture of a wave packet of dispersive waves pro-
vides a nice geometric picture, much needed, of the momenta in Hamil-

ton’s equations.
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39. Dispersive Waves

We want to develop a geometric description of waves which are per-
fectly coherent. By perfect coherence, we mean that you can define a
global phase function. Thus you can describe the wave with functions

of the form
¥ = A(t, z) cos(276(t, z))..

Both the amplitude and the phase are functions of position. We will
only consider the case where the amplitude and the phase gradients
change slowly with respect to the phase itself.

Example: If you look at the pattern of light that you see
on the bottom of a swimming pool, you see a wave field with
only partial coherence. If you follow a minimum in the light,
it will not be continuous, but disappear in an ambiguous
manner. A coherent wave lets you follow the crests and
troughs forever, and they are conserved.

Phase velocity

The most important geometric property of a coherent wave field is
the alignment of the wavecrests and wave troughs in spacetime. We
will be building a theory that nowhere depends on the metric, and we
will be indifferent as to whether we are in several spatial dimensions
or a spacetime situation. For clarity I will always speak of it as if it
were spacetime. When we discuss optics in a later section, we will be
in a purely spatial situation. This disposition of the wave throughs in
spacetime is specified by the gradient of the phase 6: :

df = vdt + kdz.

I use v instead of w to go with the 2x that I have inserted into the
definition of the phase. I do this to follow the Fourier transform con-
ventions of Bracewell. Fourier theory is needed if you are to consider
situations of partial coherence.

A major difference between what we do here and what you will
see in all of the books is that I am treating all coordinates equally.
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Most of the time you will see plane waves written
¥ = cos(2n(vt — kz)),

in which time and space are treated differently. Since we want to pro-
ceed smoothly between spaces of different dimension and signature,
we should not do this. This will bring in a minus sign that is avoided
by the above barbarity, and our waves with positive frequency will
have a negative wave number when they are right-going.

You need to exercise a little care with this representation. The
wave with both v and k reversed in sign represents the same wave.

The geometric interpretation of v and k is that they are densities.
v is the density of wavecrests along the time axis. k is the density
of waves along the space axis. The phase gradient is then the flux of
wave-crests 1-form, and the identity

ddé =0,

can be interpreted as the conservation law for wave crests.

Figure 39-1. The basic geometry of
the wave crests in spacetime, T v

/ 1/

Y

The geometrically unaware could try to describe the geometry of
wavecrests by defining a vector that follows a wave crest in spacetime.
The folly of this is apparent if you try to do it with even one more
dimension. This is what makes the conventional treatment of phase
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velocity a dead end, and why we need to recognize that phase velocity
is a 1-form.

Dispersion Relation

The phase gradients are constrained by the wave equation that de-
scribes the waves. This relation is called a dispersion relation, vaguely
reflecting its origin in optics. If the wave equation has constant coef-
ficients, then you can find the dispersion relation by just inserting a
plane wave solution into the equation.

Example: The wave equation for an elastic beam with com-
pression is, up to irrelevant dimensioned constants

'»bit + ¢;; + ¢:::: =0.
This leads to a dispersion relation

—4n%? —4x’K + 167K = 0.

Interactions

If two waves are to interact via some linear relation, then the fact that
different frequencies are linearly independent gives us the requirement
that the interacting waves must have their phase gradients equal up
to a sign when they are pulled back to the set on which they inter-
act. You can use this to find the relations across an interface which
leads to Snel’s Law in optics, or the relation which determines the an-
tenna pattern for a linear antenna in radio waves, or the discrete Laue
conditions that apply across the discrete lattice in x-ray diffraction.
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40. Group Velocity

For dispersive waves all of the information about the frequency of the
wave, it’s wavenumber, and it’s amplitude is propagated along curves
called characteristics, whose tangents are the group velocity vectors.
This situation has a very nice geometric picture provided we use both
the space of tangent vectors and the less familiar space of 1-forms.

Geometric Derivation

We argue at first in two dimensions. Look at two plane wavetrains
with nearly the same phase gradient. The two sets of wave crests form
a Moire pattern in spacetime. Physically, there are beats between the

two different waves.

Figure 40-1. The Moire pattern be-
tween two wavetrains defines the

group velocity direction. /

The line of beats is the line along which amplitude information
propagates. Since time is just another coordinate, there is no par-
ticular length for the tangent vector, and we are free to choose any

40.1
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convenient normalization. We choose for the group velocity u
df-u=1.

In the space of vectors this construction looks like the next figure.

Figure 40-2. The relation between
phase and ?’oup velocity shown in
the space of tangent vectors.

[The technical name for this
space is the tangent space, and
the space of 1-forms is called
the cotangent space.]

An similar construction holds in the space of 1-forms. Note the
change in the labels, however.

Note that in the space of 1-forms, a 1-form is represented by a
point. To make the point obvious we can draw an arrow from the

origin to that point, just as we do with vectors. In that space vectors

are represented by the set of 1-forms a such that o -u = 1. The
duality between the spaces is nicely seen in the duality between these

two pictures.
Let me remove extraneous lines from Figure 40-1 and redraw just

the essence, the two phase gradients and the group velocity vector.

If we now draw our two beating wavetrains in 1-form space, we
get the following figure.

40.2
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Figure 40-3. The same relation shown
in the space of 1-forms. This is a
numerically correct translation of
the preceeding figure. The arrows
on the axes are all of unit length.

Figure 40-4. Two beating wave-
:ra.ins drawn in the space of vec-
ors.

an N

Now we want to take the limit as the two wavetrains get closer
together in the space of 1-forms. That is, their frequencies and
wavenumbers approach each other. Since both wavetrains are to be
solutions of whatever wave equation we are considering, both lie on
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Figure 40-5. Two beating wave-
trains in the space of 1-forms.

the dispersion relation. Clearly the group velocity will be tangent to
the dispersion relation in the limit. The general pattern is shown in
the next figure. :

AV

dispersion relation

Figure 40-6. The limit as the wave-
trains merge.

Va.

In two dimensions this is the usual result. When the disper-
sion relation is given by the specifying the frequency as a function of
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wavenumber the speed is dv/dk.
In more dimensions you just need to draw a tangent plane to a

hypersurface and properly arrange the normalization. In three dimen-
sions we have

oW 8 oW 8 awa LW
“= 8k8:c+ T )/( +5,7)

Algebraic Derivation

[This discussion comes from
my book Spacetime, Geometry,

The above geometric discussion is very good for showing you how to Cosmology,]
geometrize the idea of group velocity. It is not really convincing unless
you already know that group velocity exists. Here is a straightforward
argument, unfortunately lacking in geometric intuition.
We start with a dispersion relation

W(k,v) =0.

We are not letting the dispersion relation depend on z or t. We take
k and v to refer to a specific wavetrain solution, then they will be
functions of £ and ¢, and we can differentiate the above relation

oW 6k oW v

ok oct awas
Wok Wow _ o
ok ot v ot

Now recall that k and v are already partial differentials, the gra-
dient of the phase, so we have

2| ®
I
B

This lets us write the above equations

oW 8k % | oW &k -0
ok 6z ' ov ot ’
W ov ., W ov ~0
ok 8z = ov ot !
These equations state that both k and v are constant in the direction
of the vector
o oW 8 + oW 8
ok oz | ov ot
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This is the same group velocity vector, except for the overall length,
that we had before.

Now we need to consider dispersion relations that depend on po-
sition in spacetime. Then the wavenumber and frequency will not be
constant along the characteristics along the group velocity directions.
There will now be further terms in the differentiations

6W8k+8W6u+8W 0
ok oz  weoex oz

Weoék oeWeov oW
watwata ="
From these we can read off the rate of change along the group velocity

direction. These equations are

k= -2

8z’
aw

V= ——

The dot is differentiation with respect to a parameter. This is not
time, since we are treating all of the coordinates equally, but rather

the wave action. We also have equations for the characteristic curves

ow

—6—76—,

ow

o

From these we see the remarkable result that wavepackets follow the
rules of Hamiltonian dynamics.

=

i=

Wave Diagrams

Return to the geometry. Every wavetrain corresponds to a point on
the dispersion relation, and the tangent plane at that point determines
a vector, the group velocity vector. You can use this to map the
dispersion relation surface point by point into the tangent space. I

call the resulting surface a wave diagram.
The wave diagram is interpreted in a dual manner to the disper-

sion relation. Points on the wave diagram correspond to wavetrains
with specified group velocity. The tangent to the wave diagram shows
you the phase gradient of that wavetrain.

Example: For the elastic beam with
W =02 +5 -
40.6
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you will not find this general
construction or the name else-
where.]




The phase gradient is
df = vdt + kdz,
and the group velocity, properly normalized, is
v 2t — 1

u= YE ddt + i ddzx.

That is

i e k2 -1

2k
_2k%-1

TR
See the next figure for the wave diagram. It is shown as the
envelope of the phase gradients.

Figure 40-7. The wave diagram for the elastic beam. This is only
schematic. '
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41. Water Waves

A nice, visible, example of the foregoing ideas about dispersive waves
can be seen in the waves on the ocean: deep water waves in the linear
approximation with surface tension neglected. You should probably
read this section and the last one in parallel. New material on sym-
metries and conservation laws is introduced here.

Dispersion Relation

We can write the usual dispersion relation for water waves

: V‘=k2+12.

We have picked new units for space to get rid of thé physical constant,

we have squared the dispersion relation to get waves going in both

directions, and we have made the obvious extension to two spatial

directions. Restore physical units by replacing lengths according to
L

L —

2ng
The phase gradient is
dd =vdt+ kdz +1dy,

and this statement really serves to define k and 1, including the sign

that we will use.
Had we included surface tension we would have used

T
2 _ 1.2
w = k(g + p k ) [In Spacetime, Geometry, Cos-
mology I use this to make a
physical model of special relativ-
ity.)
Wave Diagram

In (z,1) spacetime we can draw a wave diagram as follows. From the
dispersion relation in the form

W=124k=0
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we find that the group velocity vector u

1s given by

We can eliminate the parameter k

2 -4z =0.

The wave diagram is a parabola. The paramenter k is negative, and
these waves are all going to the right. The left-going waves would be

described by the parabola

t?2 + 42 =0.

The wave diagram in three dimensional spacetime .(z, y,t) is just the
surface of revolution formed by rotating the above parabola around

the time axis.

Figure 41-1. The geometry for right-
going water waves.
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You can see here the famous result that the group velocity is half
the speed of the wavecrests. Note also that longer waves travel faster
than shorter ones. One direct result of this is that long sail boats sail

faster than short ones.

Chirp
In the winter the Pacific coast is treated to large swells that come
from storms in the South Pacific, beyond Hawaii. Over a few days
the period of the waves will decrease, from around 17 or 18 seconds
to 8 seconds or so. Then it will jump up again as waves from a new
storm dominate.

You can easily find the distance to the storm, and verify the
surprising result that this wave energy comes from thousands of miles
away, just by measuring the rate of change of the frequency, called the
chirp, of the wavetrain. Waves with wavenumber k travel a distance
Lin atime T

| T = 2L\/—k = 2Lv.
We use the group velocity since it is the energy that we want to track,
not the wavecrests. Thus waves with frequency v are received at a-
time ¢

t
v(t)= 37
and the chirp is
dv 1
dt ~ 2L
and so i g
L=$=Z_1r-l_5.

I have restored the physical units in the last equation.

Symmetry

Dispersive waves follow the laws of Hamiltonian dynamics. Thus we
have a conservation law associated with every symmetry. We only
need this in its simplest form: if a coordinate does not appear in the
dispersion relation, then its associated wavenumber is constant along
the group velocity ray.

You can use this to estimate the direction that the ocean waves
discussed above really came from. The direction near the beach is
severely affected by refraction as the depth becomes comparable to
the wavelength. In fact, the refractive effects make all the waves
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appear to come in perpendicular to the beach. This makes beaches
effective traps for wave energy. Wave which reflect off of rocks and
local irregularities are bound by refraction to bend back to the shore
again and not escape to “infinity”.

If the topography is symmetric, that is, we are treating the case of
a straight beach, the the wavenumber along the beach is conserved. In
addition, the frequency of the wave is conserved. From this frequency
you can find the deep-water wavelength. Thus, in deep water, beyond
where you can see, we have

B +12 =t

Where this v can be measured on the beach since it is invariant. The
wavenumber k can also be measured on the beach, assumed to run

along the z-axis. Thus the deep water angle ¢ is given by

2

sin? ¢ = K ,

k2+t2

that is : £ drok
g

8m¢=ﬁ_ v?

Again I have restored dimensioned variables in the last equation.

Partial Coherence

One striking observation is that the waves coming in to the beach are
grouped into sets with a statistical regularity. A few larger waves will
be followed by a few tiny ones, and so on. The surfers say roughly
that every fifth wave is the biggest. This is only true statistically.
The physical effect is cause by there being a mixture of frequen-
cies present at the beach at any one time: short, slow waves from early
on in the distant storm combined with long, fast waves from later in
the storm. If the storm duration is T', and its distance L, then the

spread of frequencies is T

Av=or
You need the previous result on the chirp to estimate both T and L.
The spectral purity is ’
Av T _ =gTP
v 2Lv L °
where P is the period. From this you can estimate the number of
waves per packet.
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42. Forms Calculator

Here is a calculator implemented in Mathematica to simplify expres-
sions involving differential forms. As the name implies, the intent was
to make a minimal implementation, with little attention paid to. effi-
cient input or pretty output. It will get the signs right for you, and
the simplicity of the implementation will demonstrate the efficiency
of a rule-based system for this kind of programming. Setting up such
a gystem is a good way to debug your understanding of forms.

The key idea behind all of this is that Mathematica manipulates
expressions as trees. It looks for patterns, and when it finds a match,
substitutes something else for the pattern. When it finds no further
matches, or none at all, it returns the expression. I will use the “fallen
tree” representation for drawing trees in ascii text streams. This is
the style used in the trn newsreader. The trees are written on their
sides, hence my name for it. The vector expression

i) 8 9o
3z + 2'8; + 52
would be written as an expression tree in Mathematica which I will
write in this notation
Plus--Vector--x
|-Times--2
I \-Vector--y
\-Vector--z

Coordinates

You might want to start working with forms in three dimensional
Euclidean space. There are special definitions to simplify the input
and output for this case in the file euclid3.mThe coordinates there
are z, y, and z. It is surprising how many of the rules for forms do
not depend on any knowledge of the full list of coordinates. I didn’t
realize this until I developed this system.

The shorthand names for the basis forms defined in euclid3.m
are dx, dxdy, dxdydz and so on. No spaces here, Mathematica treats
these as a single symbol. The basis vectors are given by px, and so
on. The ”absent” symbol dz is denoted by tx.
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There is also an output function Efilter that you can use to

beautify the output, setting
In[]:= $Post = Efilter

Vectors

A vector will be a linear combination of monomial terms. Each of
these monomials will be a tree with one branch. The head of the tree
is a node labeled “Vector”. The symbol on the branch indicates the
direction of the vector relative to the coordinate system. No rules are
needed for these monomials to form a vector space.

Forms

Differential forms will be linear combinations of monomial terms. This
time there will be a number of branches; an r-form will have r branches
below a node labeled “Form”. The 2-form dz dy would be represented
by the tree ' _
Form--x
\-y :
and written Form[x,y]. The shorthand in euclid3.m would let

you write this dxdy, no space.
We need to explicitly accomodate the fact that a 0-form is a

number with a rule
Form[] := 1
The antisymmetry allows us to simplify expressions involving
forms. This is not done continually, in the interests of efficiency, but
the following rule is invoked as needed:
' FSimp := Form[ a__.] :>
Signature[ Form[a]] Sort[Form[a]]

Duality

The operation which contracts a vector with a form is denoted by the
operator “angle”.. The expression

ai Jdbdzdyd=z
oz

is represented by
angle--Times--a
| \-Vector--x
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\-Times--b
\-Form-~x
I-y
\-z
There are rules needed to enforce the bilinearity of this operation,
such as
angle[ a_, b_ + c_] := angle[a,b] + angle[a,c]
which is the replacement )

angle--a Plus--angle--a -
\-Plus--b -> ] \-b
\-c -+ \-angle--a
\-c
The essential rule replaces
angle~-Vector--u
\-Form--u -> \-Form--a
I-a \-b
\-b

with due attention to the signs.
There are also rules needed to take care of the fact that we rep-
resent the zero vector and the zero forms by the number zero.

Wedge Product

The wedge produce is denoted by the tree
vedge--Form
|-Form

\-Form
I have put in some rules that let you denote the wedge product
with NonCommutativeMultiply, **, but these are not fool proof at
present. Intuitively you expect ** to bind more weakly than %, but
that can’t be done in Mma as I understand it. So it gets confused on
dx ** 3 dy

Exterior Derivative

The exterior derivative operator is denoted d[.]. Functions need to
have their arguments explicitly indicated, since the differentiations
are done by the Mathematica operator Dt. Thus
In := d[ £[x,y] ]
(1,0) (0,1)
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Out = £ [x,y] Form[x] + £ [x,y] Forml[y]

Lie Bracket

The Lie bracket (Jacobi bracket) is represented by
Lie--Vector
\-Vector
and linear combinations.

Lie Derivative of Forms -

This is represented by
Lie--Vector
\-Form
and linear combinations.

Twisted _Forms

These are put in using the “absent symbol” Vnota.tion. ‘The twisted
form :

dzdy
will be represented by the expression tree
TForm--x.
\-y :

and written TForm([x,y]. The shorthand in euclid3.m would
allow you to write this txty. The unit pseudoscalar is called tmax,
and in Euclidean 3-space we have

tmax = TForm([x,y,z]

The Length of the variable tmax is used whenever a result de-
pends upon the dimension of the space.

The wedge of an ordinary form with a twisted form in that order
does not depend upon the dimension of the space, but the other two
products do. Thus the exterior derivative of a twisted form can be
computed without knowing the dimension of the space or the names
of any coordinates beyond those given.

Pullback

Defined so far only for ordinary forms:
Pullback--Form
\-Rule
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where the second argument is the set of rules that describe the
map. For the z-axis as a parametrized curve, the rules would be
pc = {x->s, y->0, z->0}
The points on the curve are found from the replacement
{x,y,z} /. pc
and the pullback of a form alpha onto the z-axis would be found
from
Pullback[pc, alpha]

Hodge Star

The present implementation is rather simple minded. It assumes that

the coordinates are orthonormal, and that the coordinate ¢, if present,

is timelike. Also both star and it’s inverse are denoted by star:
star--Form and star--TForm

Testing

There is a file of test expfessions that has been used to validate the
system, and that should be used if you modify the rules to ensure that
you have not broken anything. The file is called trip.m, and will run

“when you load it after forms.m.
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1-form 10-1

Divergence Theorem 22-2
Gaussian optics 9-2
Killing vector 28-3

Laplace’s equation 32-1
Lie derivative 28-2
Liouville’s theorem 36-2

- Maxwell’s equations 31-1
Stokes’ Theorem 22-1, 24-1
Teylor’s series 10-2, 7-2

basis 11-2
buffing wheel 6-2

calculus 7-1

canonical 2-form 36-1
capacitance 33-2

chain rule 19-2

closed 24-1 »
conformal mapping 32-2
contour map 10-1
contraction 17-1

cycle 24-1

density 14-1

derivative 7-1

dilation 8-1
displacement vector 5-1
duality 11-3

electrostatics 32-1
exact 24-1

flow 13-1

generalized coordinates 12-1, 36-1

gradient 10-1

. hypersurface 19-3

inductance 34-5
invariance 5-1

lift 37-1
magnetostatics 34-1
orientations 18-1

paraxial approximation 9-2
phase space 36-1

pool 10-2

pullback 19-2, 19-2, 20-2
pushforward 19-1

reciprocity 12-1
rotation 8-1

shear 8-1

shorthand 17-1

star operator 27-1
symmetry 18-1, 5-1
tangent vector 6-1

tensor product 26-1
transverse orientation 19-3
uniqueness theorem 33-2
virtual work 37-1

wedge 14-5, 17-1

Mobius strip 22-2



