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1. Cats and magnetic fields

I fell into sub-Riemannian geometry through the problem of the falling cat [26],
[27]. Dropped from upside down with no angular momentum, the cat changes her
shape so as to land right-side up. How? Is there an optimal sequence of shape
changes she can choose to follow in order to right herself? This last question is a
particular case of the problem of finding a sub-Riemannian geodesic.

Open Problem 1. Is every sub-Riemannian geodesic smooth?
This problem remains open despite 30 years of effort.

The dominant feature of living in a sub-Riemannian geometry is that the space
of directions in which you can move is restricted. A sub-Riemannian structure is
a type of differential-geometric structure, we can put on a smooth manifold Q,
which we will define carefully in due time. But for now, its dominant feature is
that the space of directions D(q) you can move in, starting from q ∈ Q, forms
a k-dimensional subspace D(q) ⊂ TqQ of the n-dimensional tangent space at q.
These k-planes vary smoothly with q. We call such a field of k-planes on an
n-manifold a distribution.

For our falling cat, k = n − 3 and the k-plane fields D(q) are given by the
condition that the total angular momentum J ∈ R3 is zero. Recall that the total
angular momentum of a configuration of N particles q1, . . . , qN ∈ R3 travelling with
velocities v1, . . . , vN is the sum J(q, v) =

∑
a maqa × va ∈ R

3, where the ma are
the particle masses. For the cat, the qa can be thought of as representative marker
points on the cat—foot, tail, hips, . . . , with constraints (rigid rods), bones, connect-
ing them. So Q ⊂ (R3)N represents the cat’s configuration space—the cat’s shape,
including how that shape is oriented within the inertial space of the surrounding
room within which she is falling. For each configuration q = (q1, . . . , qN ) ∈ Q of
the cat, the space of physically allowable velocites v = (v1, . . . , vN ) must lie in
the codimension 3 subspace D(q) = {v : J(q, v) = 0} of the space of all possible
velocities.

For the simplest nontrivial example imagine a two-plane field on R3; see Figure
1.1. So, at each point q = (x, y, z) ∈ R3, we attach a two-plane D(x, y, z) and
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Figure 1.1. A field of two-planes (A1 = y,A2 = 0 in (1.1)).

these planes vary smoothly with q. We can only move away from q along curves
tangent to the two-plane D(q). For the cat, the vectors tangent to D represent
the physically allowable infinitesimal changes of the cat’s configuration. If our
two-plane field never goes vertical, meaning it never contains the vertical direction
(0, 0, 1), and is invariant under translation in the z-direction, then we can express
it as the vanishing of a one-form,

θ := dz −A1(x, y)dx− A2(x, y)dy,

which means that D(x, y, z) = {(v1, v2, v3) : v3−A1(x, y)v1−A2(x, y)v2 = 0}. The
Ai are smooth functions of x and y describing the orientation of the two-planes. A
basis for D(x, y, z) is

(1.1) X(x, y, z) = (1, 0, A1(x, y)), Y (x, y, z) = (0, 1, A2(x, y)).

We call a smooth path q(t) = (x(t), y(t), z(t)) horizontal (for D) if it is every-
where tangent to D, i.e., q̇(t) ∈ D(q(t)) where the dot denotes time derivative.

Question 1. Starting from the origin q0 = (0, 0, 0), can we get to any point q1 =
(x1, y1, z1) of space by travelling along a horizontal path q(t)?
Using our moving frame X,Y , we see that q(t) is horizontal if and only if

(1.2) q̇ = u1(t)X(q(t)) + u2(t)Y (q(t))

for some smooth functions u1, u2. Written in coordinates, this ordinary differential
equation (ODE) for horizontality reads

(1.3)

ẋ = u1,

ẏ = u2,

ż = u1(t)A1(x, y) + u2(t)A2(x, y).

Our question asks us to find a control strategy (u1(t), u2(t)) which steers us from
the origin q0 to the given point q1 = (x1, y1, z1) in space in some fixed time, say
t = 1. As a first pass at a solution, take constant controls u1 ≡ x1, u2 ≡ y1.
The resulting path has the form q(t) = (tx1, ty1, z(t)) and joins the origin to q̂1 =
(x1, y1, Z) in time 1. The final height reached is Z = z(1) =

∫
�
A1dx+ A2dy, with

the integral being over the line segment � connecting (0, 0) to (x1, y1) in time 1.
We would be dumb lucky if Z = z1. How do we change this final height without
changing the final xy endpoint? We fiddle around at (x1, y1) by drawing little
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planar loops c(t) = (x(t), y(t)) based at (x1, y1) and using the induced controls
(u1(t), u2(t)) = (ẋ(t), ẏ(t)). The resulting change in z is

(1.4) Δz =

∫
c

A1dx+A2dy =

∫ ∫
D

B(x, y)dx ∧ dy,

where

(1.5) B(x, y) = −∂A1

∂y
+

∂A2

∂x
,

where D is the disc bounded by c, and we have used Stokes’ theorem. It follows
that if B(x1, y1) �= 0, then we can increase or decrease the height arbitrarily by
using an appropriate loop c, winding around it clockwise or counterclockwise many
times if neccessary to go up or down, to get Δz = z1 − Z and ending up at the
desired q1.

The hypothesis B(x1, y1) �= 0 is the opposite of the hypothesis of the classic
integrability theorem of Fröbenius. The hypothesis of Fröbenius is that D is closed
under the Lie bracket: the Lie bracket [X,Y ] of our frame X,Y for D again lies
in D so that [X,Y ] = fX + gY for smooth functions f, g. The theorem then
asserts that the answer to our question is a strong no: the set of all endpoints of
horizontal paths leaving the origin forms a smooth two-dimensional surface whose
tangent space at any point is the two-plane D at that point. For our frame (see
(1.1)) we have

[X,Y ] = (0, 0, B(x, y))

so that the Fröbenius integrability condition is indeed B ≡ 0 everywhere. (A
variation of the argument in the previous paragraph shows that if B(x1, y1) �= 0
somewhere, then we can get from the origin to any point of R3 by a horizontal
path.)

To define a sub-Riemannian geometry on R3 with underlying distribution D,
declare the vector fields X and Y to be orthonormal. Then the length of a vector
v = u1X(q) + u2Y (q) ∈ D(q) is

√
u2
1 + u2

2, and so the length of a horizontal path

q(t) = (x(t), y(t), z(t)) is the usual Euclidean length
∫
c

√
ẋ2 + ẏ2dt of its horizontal

projection c(t) = (x(t), y(t)). The sub-Riemannian geodesic problem is to
find, among all horizontal paths connecting two fixed points q0 to q1, the
one whose length is minimal.

We can now define a sub-Riemannian geometry. A sub-Riemannian geometry on
a manifold Q is a distribution D, meaning a family of k-planes D(q) ⊂ TqQ varying
smoothly with q ∈ Q, together with a smoothly varying family of inner products
on these k-planes. We can then measure the lengths �(γ) of horizontal paths γ and
define a distance function on Q by

(1.6) dsR(q0, q1) = inf{�(γ) : γ a horizontal curve joining q0 to q1}.

1.1. Magnetic distributions, continued. Returning to our sub-Riemannian ge-
odesic problem on R3, we can use the method of Lagrange multipliers to solve
it. The horizontal constraint q̇ ∈ D(q) reads ż(t) − A1ẋ(t) − A2ẏ(t) = 0, valid
for each t. We introduce a continuous family λ(t) of Lagrange multipliers to en-
force this continuum of constraints. Use the Cauchy–Schwartz inequality to see
that minimizing the energy

∫
1
2 (ẋ

2 + ẏ2)dt is equivalent to minimizing the length

�(c) =
∫ √

ẋ2 + ẏ2dt and parameterizing c(t) by a constant multiple of arclength.
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Thus our Lagrange multiplier principle problem becomes to extremize the following:∫
1

2
(ẋ2 + ẏ2) + λ(t)(ż −A1(x, y)ẋ−A2(x, y)ẏ)dt.

Since no z occurs explicitly inside the integral, the Euler–Lagrange equations for z
read

λ̇ = 0,

so that λ(t) = const. Interpret this constant as charge and realize that
∫
żdt = z1−

z0 is constant once we fix the endpoints, so that we can throw out λ(t)ż(t) from the
integrand and arrive at precisely the Lagrangian for a particle of charge λ travelling
in the plane under the influence of a scalar magnetic field of strength B(x, y)
orthogonal to the plane. The one-form α = A1dx+A2dy with dα = Bdx∧dy is the
vector potential for this magnetic field. The remaining Euler–Lagrange equations
read

(1.7)

ẍ = λB(x, y)ẏ,

ÿ = −λB(x, y)ẋ,

ż = A1(x, y)ẋ+A2(x, y)ẏ.

The first two equations are known as the Lorentz equations. The last equation is
called the horizontal lift equation: given any smooth curve c(t) = (x(t), y(t)) in the
x, y plane and any initial value of z0, by solving this equation we obtain the unique
horizontal curve (x(t), y(t), z(t)) whose projection is c(t) and which passes through
(x(0), y(0), z0) at time t = 0.

The most studied case of the Lorentz equations is the case of a constant mag-
netic field, say B = 1. The corresponding sub-Riemannian geometry is called the
Heisenberg group. The projections of its geodesics are circles of radius 1/|λ|, when
λ �= 0, and lines when the charge λ = 0. Why Heisenberg? Well, when B ≡ 1,
then [X,Y ] = Z := (0, 0, 1) and [X,Z] = [Y, Z] = 0. These bracket relations on
X,Y, Z are those of the Heisenberg algebra, famous from Heisenberg’s commutation
relations. Take vector potential α(x, y) = A1(x, y)dx+A2(x, y)dy = 1

2 (xdy − ydx)

associated to Bdx ∧ dy = dx ∧ dy. Then define a group law on R3 according to

(1.8) (x, y, z)(x′, y′, z′) = (x+ x′, y + y′, z + z′) + (0, 0,
1

2
(xy′ − x′y)).

(Note this last component is α(x, y)(x′, y′).) With this group law R3 becomes
the non-Abelian group known as the Heisenberg group and is denoted here by H.
X,Y, Z form a basis for the left-invariant vector fields on H. The distribution D
and its inner product are invariant under left translations by H.

Why “sub” and why “Riemannian”? What does all this have to do with Rie-
mannian geometry? In Riemannian geometry we can move in any direction leaving
any point. The length squared of a vector v ∈ TqQ is a nondegenerate quadratic
form on the tangent space, written in coordinates ds2(v) = Σgij(q)v

ivj . We can
alternatively diagonalize the metric and write it as a weighted sum of squares of
n covectors at a point—one-forms at q. Recall that our distribution D on R

3 was
defined by the vanishing of the one-form θ = dz−A1dx−A2dy. We can describe a
family of Riemannian metrics compatible with our sub-Riemannian one by setting

(1.9) ds2ε = dx2 + dy2 +
1

ε2
θ2.
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In this way X,Y, Z are orthogonal to each other, Z’s length is 1/ε, while X and Y
remain of length 1. By letting ε → 0, these Riemannian metrics converge to the sub-
Riemannian one just described above. A path q(t) moving in such a Riemannian
metric gets infinitely penalized for having any vertical component (i.e., θ(q̇) �= 0)
as ε → 0. As a metric space, and as a length space [7] the one-parameter family of
Riemannian metrics ds2ε converges to our sub-Riemannian metric.

The limit of (1.9) as ε → 0 is singular. If instead we take the inverse metric and
let ε → 0, we get something nice. In coordinates the inverse metric, or cometric,
associated to the metric ds2(v) = Σgij(q)v

ivj is the q-dependent quadratic form
(ds2ε)

−1(p) = Σgij(q)pipj on the cotangent bundle of Q, where gij(q) is the inverse
matrix to gij(q) and where the pi are the coordinates of a covector p ∈ T ∗

q Q. Now

the basis dx, dy, θ for T ∗R3 used in (1.9) is the dual basis to our basis X,Y, Z for
TR3 from which it follows that

(1.10) (ds2ε)
−1 = X2 + Y 2 + εZ2 → X2 + Y 2 as ε → 0.

The limit is now a nice, well-defined gadget: a quadratic form on each T ∗
q Q whose

rank is everywhere 2.
If we divide the Riemannian cometric by 2 (see (1.10)), we get kinetic energy,

a Hamiltonian H(q, p) = 1
2Σg

ij(q)pipj , H : T ∗Q → R whose Hamilton’s equations
are well known to be a rewriting of the geodesic equations on the Riemannian
manifold. In coordinates, Hamilton’s equations read q̇i = ∂H

∂pi
, ṗi = −∂H

∂qi . The

projection q(t) of any solution (q(t), p(t)) to these ODEs is a Riemannian geodesic,
and all Riemannian geodesics arise in this way. It stands to reason that if we
view the limiting expression above as a Hamiltonian, and divide it by 2 (not so
important), then this sub-Riemannian kinetic energy Hamitonian will govern sub-
Riemannian geodesics. We call the resulting Hamiltonian ODEs on T ∗Q the normal
sub-Riemannian geodesic equations.

It is standard in differential geometry to write

(1.11) X(x, y, z) =
∂

∂x
+A1(x, y)

∂

∂z
, Y (x, y, z) =

∂

∂y
+A2(x, y)

∂

∂z
,

instead of using the coordinate notation (see (1.1)) which we used above for our
basis for D. The two notations means the same thing. But if we substitute (1.11)
into (1.10), what we get seems to be a second-order linear differential operator.
(To include Z, use Z = (0, 0, 1) = ∂

∂z .) But this operator is not what we mean.
We want a quadratic form. To get a quadratic form, note that there are at least
three distinct ways to think of a vector field on a manifold: as a first-order linear
differential operator (see (1.11)), as the right-hand sides of a system of first-order
differential equations (see (1.2)), or as a fiber-linear function on the cotangent
bundle of the manifold. We are thinking of X and Y in this last way when we
view the limit (1.10) as being twice the sub-Riemannian kinetic energy. In order
to ensure that we think of vector fields this way, it is helpful to use a different
notation. Let

PX = px +A1(x, y)pz, PY = py +A2(x, y)pz

denote our vector fields X and Y , viewed as linear functions acting on covectors
p = pxdx+ pydy + pzdz ∈ T ∗R3. Our sub-Riemannian kinetic energy Hamiltonian
is then

(1.12) H =
1

2
(P 2

X + P 2
Y ).
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Since no z occurs in H, Hamilton’s equations assert that ṗz = 0. Again, interpret
this constant pz as an electric charge, λ from before. Now look in most any clas-
sical mechanics or electromagnetism text to see that (1.12) is the Hamiltonian for
a particle moving in the plane under the influence of the magnetic field B, i.e., the
Hamiltonian generating equations (1.7). As in Riemannian geometry, the projec-
tions to R3 of the solutions to this Hamiltonian differential equation are geodesics.
But unlike Riemannian geometry, there may exist other geodesics, not governed
by these differential equations. Their existence is why Problem 1 is still open. We
return to this point near the end of the review.

When we instead interpret the limit (1.9) as a linear second-order differential
operator, we get

(1.13) Δ = X2 + Y 2,

with the vector fields X,Y understood as linear first-order diferential operators as
per equation (1.11), then it is the sub-Laplacian of our sub-Riemannian structure.
The restriction Δλ of Δ to functions of the form ψ(x, y, z) = eiλzφ(x, y) with φ
square integrable is the Schrödinger operator for a quantum particle of charge λ
moving in the xy plane under the influence of our magnetic field B(x, y).

As long as B(x, y) does not vanish to infinite order, then Δ has many properties

in common with the usual Laplacian ∂
∂x

2
+ ∂

∂y

2
+ ∂

∂z

2
on R3. To underline one

of these properties, hypoellipticity, consider the partial Laplacian Δ0 = ∂
∂x

2
+ ∂

∂y

2

acting on functions on R3. For f smooth, solutions to Δ0u = f can be as wild
as we like. For example, any function u = u(z) of z alone satisfies Δ0f = 0. In
contradistinction, if B �= 0, then the distributional solution u to Δu = f must
be smooth, provided f is smooth. Operators enjoying this property are called
hypoelliptic. The usual Laplacian, being elliptic, is hypoelliptic.

1.2. Hörmander’s condition. Hörmander [20] showed that second-order linear
differential operators of the form

(1.14) Δ =

k∑
a=1

X2
a on Q, dim(Q) = n > k,

are hypoelliptic, provided the collection of vector fields {Xa} are bracket-generating.
Bracket-generating means that the Xa together with all their Lie brackets [Xa, Xb],
[Xa, [Xb, Xc]], . . . span the tangent space at each point q ∈ Q.

If the Xa are linearly independent, then they define a sub-Riemannian structure
on the manifold: the distribution of k-plane fields D is their span, and the inner
product is defined by declaring them to be orthonormal. Δ (plus possible first-order
terms) is a sub-Laplacian for this structure.

1.3. Sub-Riemannian kinetic energy: Normal geodesics. The principal sym-
bol of the sub-Laplacian, divided by two, is the sub-Riemannian kinetic energy

(1.15) H =
1

2

k∑
a=1

P 2
a : T ∗Q → R,

where Pa(q, p) = p(Xa(q)) is the vector field Xa viewed as fiber-linear functions
Pa : T ∗Q → R. This is a direct generalization of the Heisenberg Hamiltonian in
(1.12). H generates sub-Riemannian geodesics: the projection q(t) to Q of
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any solution (q(t), p(t)) to H’s Hamiltonian equations is a sub-Riemannian geo-
desic. A sub-Riemannian geodesic is defined to be a curve such that all sufficiently
short subarcs of the curve are minimizing geodesics between their endpoints. The
geodesics which arise fromH are called normal geodesics. Unlike Riemannian geom-
etry, it can happen that a sub-Riemannian geometry admits geodesics not governed
by H, the abnormal geodesics. The existence of these abnormal geodesics lies at
the heart of the open problem concerning smoothness of geodesics. More on this
near the end of this article.

1.4. Getting there. Chow and Rashevskii. Forget about finding a shortest
horizontal path. Can we find any horizontal path joining two given points? Yes,
provided the bracket-generating condition on the Xa holds, where the Xa frame
our distribution. Moreover, if the points are close, the path is short so that small
sub-Riemannian balls (see (1.6)) are open sets relative to the usual topology on the
manifold. This theorem, due to Chow [9] and to Rashevskii [36], can be viewed as
the fundamental theorem for sub-Riemannian geometry. It preceded Hörmander’s
theorem by nearly 30 years.

The key idea behind the theorem is summarized by the formula,

e−tY e−tXetY etX = et
2[X,Y ] +O(t3),

for the commutators of the flows etX , etY of two vector fields. The formula says
that we can move in the hard direction Z = [X,Y ] by moving along a small square
in the X and Y directions, and that the amount moved in the hard direction is
roughly the area of this small square. Iterated appropriately, this idea leads to a
proof of the Chow–Rashevskii theorem.

1.5. Growth vector. Take two random elements g1, g2 of the symmetric group
on n letters, and with high probability they will generate the group. Take two
random vector fields X,Y on Rn, and generically they will bracket-generate Rn.
Thus, leaving the origin and travelling only along linear combinations of the X and
Y directions, we can reach any point. How fast? How do the open sets which X
and Y generate grow with increasing path length? How does this growth depend
on the brackets? The answers are encoded by the growth of the span of the Lie
brackets. From

X,Y, [X,Y ], [X, [X,Y ]], [Y, [X,Y ]], [X, [X, [X,Y ]]], . . . ,

compute the dimension dk of the vector space spanned by all k-fold brackets and
nk of the space spanned by these and all brackets involving k or fewer brackets.
Then nk = nk−1 + dk. We start out with n1 = 2 = d1 for the span of X and Y .
There is only one 2-fold bracket, [X,Y ], and typically it is linearly independent of
X and Y , so d2 = 1 and n2 = 3. Continuing, for our generic X,Y we will get the
list of dimensions

�d = (2, 1, 2, 3, 6, 9, 18, 30, 56, . . .)

and
�n = (2, 3, 5, 8, 14, 23, 41, 71, 127, . . .).

The first list of numbers for our generic case is the graded dimension vector of the
free Lie algebra on two generators ([17]). The second list is called the growth vector
of the distribution spanned by X and Y . We truncate the lists when we run out of
room due to the fact that our ambient space has finite dimension n. For example,
if n = 100, then the last component of the growth vector must be n9 = 100 rather
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than n9 = 127, and correspondingly d9 = 29 = 100− 71 rather than d9 = 56, with
the earlier di and ni staying the same.

We just wrote down the maximal possible growth vector for a rank 2 distribu-
tion—this being the growth vector of a generic distribution of rank 2 above. There
are distributions having slower growth. At the other extreme of slow growth, there
is a distribution whose growth vector is (2, 3, 4, 5, . . . , n − 1, n). The length of the
growth vector is called the step of the distribution at the point in question: it equals
the total number of Lie brackets required to generate the tangent space at the point
in question. The growth vector may depend on the point. For example, if A1 = 0
and A2 = y2 above, then along the plane y = 0 the growth vector is (2, 2, 3), while
off this plane the growth is (2, 3). A point at which the growth vector is locally
constant is called a regular point for the distribution.

The growth vector game works for distributions of any rank k. Next, we form

the graded vector space of total dimension n and graded dimensions �d, given by

(1.16) g(q0) = V1 ⊕ V2 ⊕ · · · ⊕ Vs, di = ni − ni−1 = dim(Vi)

with V1 = D(q0), V2 = D2(q0)/D(q0), . . . , Vi = Di(q0)/D
i−1(q0), where Di(q0) is

the vector space obtained by evaluating all iterated Lie brackets up to step i at the
point q0. If q0 is a regular point for D, then g(q0) inherits a Lie bracket from the
Lie bracket of vector fields. This Lie bracket respects the grading,

(1.17) [Vi, Vj ] ⊂ Vi+j

and is nilpotent: all (s+1)-fold brackets are zero (Vk = 0 for k ≥ s+1). Let G(q0)
be the simply connected Lie group having Lie algebra g(q0). We call this group the
nilpotent approximation, or Carnot group, at q0.

Definition 1.1. A Carnot group is a simply connected finite-dimensional Lie group
G whose Lie algebra g is graded nilpotent and which is Lie generated by V1.

Since g is nilpotent, the exponential map g → G is a global diffeomorphism,
and in these exponential coordinates, group multiplication becomes a polynomial
map g× g → g. Thus we can view the Carnot group G as being the Lie algebra g,
endowed with a non-Abelian polynomial multiplication law. Belläıche [2], Folland,
and others have suggested thinking of Carnot groups as non-Abelian vector spaces.

Example 1.2. When D has growth vector (2, 3), then its Carnot group is isomor-
phic to the Heisenberg group H. Such a distribution is called a three-dimensional
contact distribution.

Scalar multiplication v1 → λv1 on V1 induces, by Lie bracket, the scaling
vi 
→ λivi of Vi. Put together, these linear maps form a single linear map g → g

which is a one-parameter family of Lie algebra automorphisms, δλ : g → g. This
automorphism exponentiates to a one-parameter family of automorphisms denoted
by the same name, δλ : G → G.

Left-translating V1 defines a left-invariant distribution D̂ ⊂ TG. A norm on
V1 can be similarly translated, giving D̂ a fiber norm and so a notion of length
for horizontal paths, and thus, by taking infimums of lengths connecting points,
a left-invariant metric dG : G × G → R on G. If G = G(q0) as above, it makes
sense to use the given Euclidean norm of V1 = D(q0), in which case this structure
is sub-Riemannian. When the norm is not neccessarily a Euclidean norm, then this
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structure is called a sub-Finsler structure or sometimes a Carnot–Carathéodory
metric. Regardless of norm used, δλ is a metric dilation,

dG(δλg1, δλg2) = λdG(g1, g2).

There is a converse to the above construction, summarized by the following satis-
fying theorem in synthetic metric geometry by Le Donne.

Theorem 1.3 ([22]). A homogeneous metric space, which is locally compact, ge-
odesic, and which admits a metric dilation δλ, λ > 0 (a single one will do), is a
Carnot group endowed with a left-invariant sub-Finsler structure.

(A metric space is geodesic when the distance between its points equals the
length of the shortest curve joining them.)

A homogeneous metric space has a well-defined Hausdorff dimension N (possibly
infinite). Lie groups have Haar measures μ. In the case of a Carnot group these
ideas are linked through μ(B(r)) = CrN , where B(r) denotes the ball of radius r
about the identity and C = μ(B(1)). We have,

N =
∑

idi, di = dim(Vi).

This formula can be derived by observing that when using exponential coordinates,
the usual Lebesgue measure dnx on g is a Haar measure, and by computing δ∗λd

nx =
λNdnx. Since n =

∑
di, we have that the Hausdorff dimension of G is greater than

its topological dimension. For example, the Hausdorff dimension of the Heisenberg
group is 4.

1.6. Summary of section. We introduced sub-Riemannian geometry by way of
the magnetic examples on R

3 (see (1.1) and (1.2)) and wrote out their geodesic
equations in (1.7). We then went to general sub-Riemannian geometries, intro-
duced the key bracket-generating condition and its consequent theorems, including
the fundamental theorem of sub-Riemannian geometry, the getting-there theorem
of Chow and Rashevskii. We ended with the notion of the growth vector of a dis-
tribution at a point q and how a non-Abelian vector space, the Carnot group G(q),
endowed with its own sub-Riemannian geometry, is attached to each regular point
of a sub-Riemannian geometry.

2. Sources of sub-Riemannian geometry

I describe three sources of inspiration for sub-Riemannian geometry: The first
(section 2.1, I) is the focus of the book under review. The third (section 2.3, III)
is the focus of the book [8]. The second source (section 2.2, II) is touched on in
both of these books and my book [30], but it is probably best understood by going
back to the original sources.

2.1. I. Control theory, geodesics, and Hamiltonian dynamics. Control the-
ory has ubiquitous applications in modern daily life, exemplified, sometimes disas-
trously, by drones, a 757 taking off on autopilot, and the use of anti-lock brakes.
The basics of control theory, as it fits into sub-Riemannian geometry, are perhaps
best understood on the first pass by considering the driving and parallel park-
ing of a car. You have two controls: the angle of your steering wheel and your
foot’s pressure on the accelerator or brake. (See the beautiful section on Lie brack-
ets in Edward Nelson’s book [32].) Sub-Riemannian geometries can be viewed as
under-actuated systems : they have fewer controls than states. The early prophet
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of control theoretic thinking in sub-Riemannian geometry was Roger Brockett [5]
who espoused a view of Heisenberg geometry as a kind of platonic ideal for all mo-
tors. In Heisenberg geometry, moving around circles in the plane leads to averaged
linear motion upward along the z axis, thus converting cyclic motion to rectilinear
motion.

The focus of this source is to understand sub-Riemannian geodesics, normal
geodesic flow, conjugate points, cut points, and the structure of sub-Riemannian
balls. The methods are Hamiltonian dynamics and optimal control, combined with
some differential topology, functional analysis, and singularity theory. Many of the
masters of this area—the authors of the book under review included—come from a
control theory background, not a Riemannian geometry background.

A continuous time control system on a manifold Qn is defined by a parameterized
family of ODEs which generalizes equation (1.2),

(2.1) q̇ = f(q, u); f : Q×K → TQ;K ⊂ R
k,

and where we insist that f(q, u) ∈ TqQ. Continuing with the language following
equation (1.2), we speak of a control strategy u : [0, 1] → K steering us from q0 to
q1 in some given time interval. In sub-Riemannian geometry the control system is
linear in the controls,

(2.2) f(q, u) =

k∑
a=1

ua(t)Xa(q(t)),

where the Xa are an orthonormal frame for D.
For optimal control, we introduce a running cost function L(q, u) and ask to

minimize
∫
L(q(t), u(t))dt among all controls that steer from q0 to q1. We might fix

the time interval b− a, or not. For the sub-Riemannian geodesic problem, we take
L = 1

2

∑
(ua)2. Hamiltonian dynamics enters by way of the maximum principle

which provides a neccessary condition for optimality in terms of Hamiltonian sys-
tems on T ∗Q. The sub-Riemannian kinetic energy Hamiltonian with its consequent
normal geodesics is one outcome of this principle.

Control theorists were used to nonsmooth paths: K might be a box or just the
vertices of the box. The optimal control may switch from vertex to vertex, jumping
discontinuously. This familiarity with discontinuous path phenomenon appearing
in optimal processes gave control theorists advantages over Riemannian geometers
when it came to understanding sub-Riemannian geodesics. Riemannian geometers
kept searching for canonical connections and tangent bundle formulations of the
geodesic equations. There are none. And they largely missed the meaning and
importance of the abnormal extremals. Most of the big advances in the 1990s and
2000s in sub-Riemannian path geometry came from control theorists using their
Maximum Principle. (See the last section of this review).

2.2. II. Metric limits and Carnot groups in the wild. This source we’ve di-
vided in three. First we present some fundamental internal facts to sub-Riemannian
geometry and nilpotent Lie groups. We follow with descriptions of two problems
in which Carnot geometries arose organically as limits and ultimately solved the
original problems.

2.2.1. IIc. Tangent cones. Asymptotic cones. Gromov defined limits of sequences
of pointed metric spaces; see [7]. Using this notion he defined the metric tangent
cone of a metric space Q at a point q0 as the limit of the pointed metric spaces
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(λQ, q0) as λ → ∞. Here λQ means Q is endowed with the scaled metric λd. He
defined the asymptotic cone to the metric space by going in the other direction
λ → 0. These limits need not exist. If they exist, they need not be unique.
Nevertheless:

Theorem 2.1.

(1) The metric tangent cone to a sub-Riemannian manifold at a regular point
q0 is its nilpotent approximation, the Carnot group G(q0), equipped with the
induced sub-Riemannian structure; see [25],

(2) If q is an irregular point of a sub-Riemannian manifold, then there is a
Carnot group G of topological dimension greater than n and a G-homo-
geneous space G/H such that the metric tangent cone at q is G/H; see
[2].

(3) If G is any simply connected nilpotent Lie group endowed with a left-
invariant Riemannian metric, then its asymptotic cone is a Carnot group
with sub-Riemannian structure induced from one on V1 = G/[G,G]; see
[34].

The first item of the theorem, known as Mitchell’s theorem, when applied to
Riemannian geometry (k = n) asserts that the the metric tangent cone to a Rie-
mannian manifold at a point is its usual tangent space, endowed with the Euclidean
metric given to it by the Riemannian metric. Mitchell’s theorem asserts that Carnot
geometry is to sub-Riemannian geometry as Euclidean geometry is to Riemannian.

2.2.2. IIa. Geometric group theory. Groups of polynomial growth. Think of the
lattice Z

2 ⊂ R
2. Connect the dots in the usual way, to form an infinite sheet of

graph paper, a tiling composed of unit squares. Shrink the edges by ε forming
εZ2. Then εZ2 → R2 as a metric space, if we give R2 the metric coming from the
L1-norm ‖(x, y)‖1 = |x| + |y|. In the language of the preceding paragraph, the
asymptotic cone for Z2 is R2.

We can repeat this construction with any finitely generated infinite discrete group
Γ. The word metric on Γ is defined by selecting some finite number � of generators
for Γ, forming the resulting Cayley graph and letting each edge have length 1. The
vertex set of this graph is Γ. Leaving each vertex are 2� edges labelled by the
generators and their inverses, with vertex x joined to vertex y by the edge labelled
γ if and only if y = xγ. Look at the volume V (R) of balls of radius R about the
identity, i.e., the number of elements of Γ in that ball. If V (R) is bounded by a
polynomial in R, then we say the group has polynomial growth, with growth rate
being the degree of that polynomial. The problem here is to characterize the groups
of polynomial growth.

Z2 has polynomial growth of degree 2. An Abelian group of rank r has poly-
nomial growth of rate r. Abelian groups are special examples of nilpotent groups,
groups whose descending series of commutatant subgroups ends in the trivial group.
Joe Wolf [40] and Hyman Bass [1] proved that every finitely generated nilpotent
group has polynomial growth. Growth rate is unchanged by passing to finite index
subgroups. So, if we call Γ virtually nilpotent when it admits a finite index normal
subgroup which is nilpotent, then these virtually nilpotent groups have polynomial
growth.

Question 2. If a group has polynomial growth, is it virtually nilpotent?
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Gromov [16] answered yes by showing that if a group Γ has polynomial growth,
then εΓ → G as ε → 0, where G is some Carnot group. He needed polynomial
growth at a crucial stage to infer that the limiting object (G) had finite Hausdorff
dimension. He finished the proof, roughly speaking, by showing that the original Γ
almost embeds as a lattice in G and hence is virtually nilpotent.

For me, this is a mind-blowing proof, with its miraculous construction of a
continuous Lie group out of thin air. By itself, this is enough to show that Carnot
groups warrant study.

2.2.3. IIb. Mostow rigidity and the visual boundary of rank 1 symmetric spaces.
First, let us introduce our “Carnot group heros”. They will enter this play near the
end. We can write the Heisenberg multiplication law (1.8) as

(z, t)(w, s) = (z + w, t+ s+
1

2
Im(z̄w))

upon identifying R2 with C, so that z = x+ iy, w = x′+ iy′ ∈ C, t, s ∈ R ∼= Im(C).
Now, replace z and w with r-vectors z = (z1, . . . , zr), w = (w1, . . . , wr) and replace
Im(z̄w) by Im(

∑
z̄iwi), and we get the standard Heisenberg group structure on

V1⊕V2 = Cr⊕R. We write this as Hr
C
. Replacing C by the quaternions K, the same

formula holds and yields a Carnot group structue Hr
K
= Kr ⊕ Im(K) = R4r ⊕ R3.

There is also an octonionic Heisenberg group of the form R8 ⊕ R7, where R8 has
the structure of the octonions and R

7 are the imaginary octonions. We will refer to
any of these extended Heisenberg groups as Hr

K
below, letting K run through the

four real division algebras R, C, the quaternions, and the octonions, with the case
of K = R being just Hn

R
= Rn since Im(R) = 0.

Now the play starts. The fundamental group Γ of a compact manifold Mn is a
finitely generated discrete group. If M admits a Riemannian metric of (variable)
negative curvature, then Γ is infinite and has exponential, rather than polynomial
growth. Mostow rigidity asserts that if the metric on M has constant negative
curvature and if n > 2, then the group Γ determines the manifold Mn up to an
isometry.

The Cartan–Hadamard theorem asserts that the universal cover of any compact
manifold M with negative curvature, whether constant or variable, is the unit open
ball Bn in n-space. Γ acts on Bn by deck transformations and the metric lifts
to a Γ-invariant metric on Bn. If M has constant negative curvature, then this
lifted metric is that of the standard hyperbolic n-space, denoted RHn, with its rich
group of isometries, denoted GR, and Γ embeds in GR as a lattice. Mostow’s proof
proceeds by promoting an abstract isomorphism between two such lattices, say Γ
and Γ′, to a conjugacy: Γ′ = gΓg−1 by some element g ∈ GR. This g yields the
desired isometry.

Standard hyperbolic space RHn forms one of four families of negatively curved
symmetric spaces—Riemannian metrics on the ball having large interesting isom-
etry groups. We denote the others by KHn, where K runs over the other three
division algebras. We call them complex, quaternionic, and octonionic hyperbolic
spaces. (The octonionic one only exists for n = 2.) We will write GK for their
isometry groups. Mostow extended his rigidity theorem to lattices sitting within
all the GK’s [31]. Developing and understanding the essence of Mostow’s methods
demanded new fundamental ideas in sub-Riemannian geometry, ideas developed by
Pansu in [35] and Mostow and Margulis in [24].
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The metric defining KHn lives on the open unit ball Bdn ⊂ Kn, where d =
dimR K. Every isometry g ∈ GK extends to a smooth map of Sdn−1, but this
extended map is typically not an isometry of the bounding sphere. Indeed, the
metric on Bdn is complete, so it must blow up as we approach the bounding sphere
Sdn−1 = ∂Bdn, and there is no obvious metric to be preserved. But there is
something preserved by the GK action on the sphere. This something is a conformal
sub-Riemannian structure.

In the case of R this structure preserved by GR is the standard conformal struc-
ture of the sphere, and so GR identifies with the Möbius group—the group of all
conformal automorphisms of the sphere. Now the sphere is conformally flat: stere-
ographic projection maps Rn onto Sn \ {pt} and takes the usual flat metric on R

n

to a positive function times the round metric on the sphere, so that we identify Sn

with the conformal compactification of Rn. A key fact is that every local conformal
transformation of the sphere at infinity arises from an isometry inside, at least when
n > 2.

Mostow’s proof proceeded in the original real case by first promoting the assumed
abstract isomorphism Γ → Γ′ to an equivariant map Bn → Bn with a weak type
of regularity called being a quasi-isometry. Next, he had to show that this quasi-
isometry induced a map of the bounding sphere of a type called a quasi-conformal
map of the boundary. The next and perhaps hardest step was to use the lattices
to gain extra regularity for his quasi-conformal map and to show that it is actually
conformal. Then, by the key fact described in the end of the preceding paragraph,
he is done.

For the other K’s the basic structure of this proof holds, with the difference
being that the geometry inherited by their sphere at infinity is no longer con-
formal but conformal sub-Riemannian. The conformal sub-Riemannian structure at
infinity is similarly a conformal compactifiction of a flat structure, but
now that flat structure is that of our model 2-step Heisenberg type Carnot
groups Hr

K
. There is a group-theoretically induced stereographic projection map,

Hr
K
→ Sdr−1 \ {pt} which maps the sub-Riemannian structure described above on

this Carnot group to the sub-Riemannian structure on the K-sphere, up to multipli-
cation of the inner product on the D’s by overall postive function. The analogous
key fact holds: isometries of KHn induce sub-Riemannian conformal automor-
phisms of the corresponding sphere at infinity, and every such sub-Riemannian
conformal automorphism arises in this way.

The quaternionic case and octonionic cases are particularly interesting. Any
smooth map preserving these distributions automatically is an element of GK—no
conformality condition is needed! This is an old theorem of E. Cartan, going back to
his work on classifying groups of finite and infinite Lie type. The hard work comes
because the quasi-subconformal map induced through the Mostow procedure need
not be smooth. Somehow, Pansu had to manufacture more regularity for these
maps. He did so through the notion of the Pansu differential and by developing
analysis on Carnot groups.

Pansu’s hard work came in obtaining regularity for his quasi-conformal maps.
He modified the usual definition of the derivative of a map between real vector
spaces by replacing scalar multiplication of vector spaces with the Carnot dilation
and arrived at a new type of derivative for maps between Carnot groups, called the
Pansu derivative. With the aid of the nilpotent approximation, Pansu’s derivative
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can be promoted to a derivative for maps between sub-Riemannian manifolds, at
least at equiregular points.

Theorem 2.2 (Pansu [35]; Mostow and Margulis [24]). A Lipshitz map between
sub-Riemannian manifolds is Pansu differentiable almost everywhere. At each point
of differentiablitly, the derivative is a homomorphism of Carnot groups.

Corollary 2.3. There is no Lipshitz embedding of a sub-Riemannian manifold into
a Riemannian one.

Proof of Corollary. There are no injective homomorphisms from a non-Abelian
Carnot group to R

m. �
2.3. III. Subelliptic PDE and geometric measure theory.

2.3.1. Linear PDE. The fundamental solution K(x, y) = Δ−1(x, y) for the usual
Laplacian Δ = ΔRn on Rn, is

Δ−1
RN (x, y) =

C

‖x− y‖n−2
, n > 2,

where C = C(n) is the reciprocal of the (n − 1)-dimensional surface area of the
sphere in Rn. Being the fundamental solution means u(x) = K(x, y) satisfies
(ΔRnu)(x) = δy(x), and so by convolution, inverts the Laplacian. Folland [14]
explicitly computed the fundamental solution for the sub-Laplacian (1.14) on the
Heisenberg group,

Δ−1(q, q′) :=
1/8π

ρ2
, (x, y, z) = q−1q′, ρ = {(x2 + y2)2 + 16z2}1/4.

(Folland uses a different framing than ours. To get from his X,Y to ours, set his t
equal to our 4z.) The function ρ is called the Koranyi gauge (see, e.g., [8, p. 16]),
and it provides an alternative to the sub-Riemannian distance function dH that we
have been using. This Koranyi gauge is a norm on H,

ρ(δλg) = λρ(g), ρ(gh) ≤ ρ(g) + ρ(h),

and so dK(g, g′) = ρ(g−1g′) provides an alternative to the usual horizontal path-
based sub-Riemannian distance dH. Any two norms on a Carnot group yield
Lipshitz equivalent metrics, so that Folland’s fundamental solution satisfies
Δ−1(q, q′) ∼ C/dH(q, q

′)N−2, where N = 4 is the Hausdorff dimension of H. This
estimate generalizes to any Carnot group G, yielding

Δ−1(x, y) ∼ C

dG(x, y)N−2
,

where N is the Hausdorff dimensionn of G and dG is the sub-Riemannian distance
(see [8, p. 109], [15]).

Folland, Rothschild, Stein, and others developed the nilpotent approximation
using Carnot groups well before Mitchell’s thesis result, Theorem 2.1(1). They
called their groups stratified groups and developed them as a tool for creating
parametrices (inverses up to a compact operator) for general sub-Laplacians (1.14).
Unlike Belläıche, in Theorem 2.1(2) they did not concern themselves with niceties
of taking the smallest approximation to a variable sub-Riemannian structure at
irregular points, but rather they went all the way and attached the free s-step
nilpotent group to each point of the sub-Riemannian manifold, where s = maxq s(q)
is the global step of the distribution—the minimal number of brackets needed to Lie
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generate the tangent space at any point of the manifold. See [15] for a wonderful
overview.

The interplay between classical and quantum mechanics has been a thriving
sideshow in Riemannian geometry. Geodesic flow represents classical mechanics,
and the spectral properties of the Laplacian represents the quantum. In the 1910s
Weyl established a relation between the growth rate of the number of eigenvalues
and the volume of phase space. Starting in the 1950s with Selberg [38], came a
series of trace formulas by Colin de Verdiére in [11], Gullemin and Duistermaat
in [13], Guzwiller in [18], and others, which established tight relationships between
certain sums of lengths of closed geodesics and sums of eigenvalues of the Laplacian.
In 1974 Schnirelman [37] kicked off the field of quantum ergodicity, which continues
to boom, the effort being centered around finding quantum signals for ergodic
geodesic flow. Recently in sub-Riemannian geometry there has been a flurry of
effort following these classical-quantum lines [12], with the normal sub-Riemannian
geodesic flow representing classical mechanics and the spectral properties of the sub-
Laplacian representing quantum mechanics. Lying like a ghost in the background,
are the abnormal geodesics. What is their quantum trace? (The article [29] provides
strong evidence that there is one.)

2.3.2. Nonlinear PDE. Minimal and constant mean curvature surfaces, or soap bub-
bles in Euclidean space, are central subjects for geometric analysis. These surfaces
locally minimize area or minimize it subject to the constraint of bounding a do-
main of fixed volume. The PDE characterizing these surfaces are nonlinear and
have garnered an immense body of work.

Analogous surfaces can be defined in sub-Riemannian geometry. Surface area is
problematic, even in the Heisenberg groupH, since the Hausdorff dimension of a sur-
face in H is 3 at most points, and it becomes difficult to define near characteristics—
points where the distribution is tangent to the surface. Geometric measure theory
enters big time. One way to define surface area is to use the notion of Minkowski
content obtained by thickening the surface by an amount ε, then differentiating the
Haar measure of the resulting domain with respect to ε.

Perhaps the most basic such problem, the isoperimetric problem, remains un-
solved in H. An isoperimetric surface is a compact surface having the property that
among all surfaces bounding a fixed volume, it has the least surface area. In R

3

an isoperimetric surface is a sphere. In 1982 Pansu [33] formulated the Heisenberg
isoperimetric problem and provided a conjectural answer, now called a bubble set.
As in Euclidean spaces, the isoperimetric surface leads to the optimal constants in
various Sobolev embedding theorems.

Open Problem 2. Solve Pansu’s conjecture. Show that the bubble sets solve the
H-isoperimetric problem.

To form a bubble set, fix two points on the z-axis, say (0, 0,−z1) to (0, 0,+z1),
and form the surface swept out by all minimizing H-geodesics which join them. We
have placed the two points in the same manner as the two points we used way back
when the magnetic field B was introduced; see equations (1.4) and (1.5). Each
minimizing geodesic projects to a circle in the xy plane passing through the origin
and enclosing area Δz = 2z1. By rotating any one of them about the z-axis, we
generate all the others, hence the bubble set is a surface of revolution. It is not
a sphere relative to either our original sub-Riemannian metric or any one of the
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Koranyi-type distance functions; see, e.g., [8] for a parameterization. The bubble
set is C2-everywhere and fails to be C3 at the poles, that is, the two points we
started with.

The book [8] is inspired by this problem and is a good reference. It reports sig-
nificant progress to date. For example, the conjecture is true if competing surfaces
are restricted to be surfaces of revolution, or convex in the Euclidean sense.

2.4. Summary of section. I described three sources of inspiration for research in
sub-Riemannian geometry: optimal control and motion planning, metric geometry
and geometric group theory, and subelliptic PDE. A source I skipped arises in trying
to understand an area of the visual cortex known as V1. There is overwhelming
evidence that V1 is inhabited by cells whose purpose is to detect orientations of
edges. There is a natural sub-Riemannian structure on the space of contact elements
on the plane—meaning pairs (point, line) where the line and point are incident.
Problems of finding optimal (perhaps minimal) surfaces which fill in curves of this
three-dimensional sub-Riemannian geometry have proved useful to image processing
and to the understanding of some optical illusions; see [10].

3. Abnormal geodesics

In equations (1.2) and (2.2) we represented horizontal paths as solutions to

(3.1) q̇(t) =

k∑
a=1

ua(t)Xa(q(t)).

We view the ua’s as control strategies, taking them to be L2 functions of t. Fixing
q(0) = q0 turns equation (3.1) into an initial value problem, thus it coordinatizes
the space of all horizontal paths leaving q0 by the Hilbert space L2 = L2([0, 1],Rk)
of control strategies u. The endpoint map

(3.2) G : L2 → Q;G(u) = q(1)

sends such a path, or control strategy, to its endpoint. G is smooth. G is an
open mapping provided D is bracket-generating. Using the endpoint map, the sub-
Riemannian geodesic problem becomes a constrained optimization problem on L2:
among all controls u satisfying the constraint G(u) = q1, find the one(s) minimizing
the squared L2-norm F (u) = 1

2‖u‖22.
We proceed to solve for the optimal u, using the method of Lagrange multipliers.

Form the differential, λ0dF (u) + λdG(u), insisting that (λ0, λ) �= (0, 0), set it to
zero, and solve for u. Note that dG(u) : L2 → Tq(1)Q so that we have λ ∈ T ∗

q(1)Q

and λdG(u) := λ ◦ dG(u) : L2 → R. We say that the horizontal path, or its
control strategy u, is regular for the endpoint map if dG(u) is onto. Otherwise
we call the path singular for the endpoint map. If a minimizer u is regular for
the endpoint map, then the implicit function theorem kicks in. Near u constraint
space {u : G(u) = q1} forms a smooth Hilbert manifold whose tangent space is
the kernel of dG(u). With a bit of work, we can then show that the corresponding
horizontal path q(t) must be the projection of a solution (q(t), p(t)) to the normal
sub-Riemannian geodesic as defined above by the sub-Riemannian kinetic energy
(1.15).

If a minimizer is regular for the endpoint map, then λ0 �= 0. The solutions to the
Lagrange multiplier equations, for which λ0 = 0, are precisely the singular curves
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for the endpoint map. Indeed, for such a u we have λdG(u) = 0, and the image of
dG(u) is contained in the hyperplane {λ = 0} ⊂ Tq(1)Q.

Minimizing geodesics must either be normal or be singular for the endpoint map.
(They might be both.) For awhile, it was believed that every sub-Riemannian
geodesic was normal. The first example of a minimizer which was not normal arose
in a sub-Riemannian geometry of magnetic type as described in the beginning of
this review. Suppose the magnetic field B(x, y) (see (1.5)) has a nondegenerate
zero locus, so that there is a point (x0, y0) with B(x0, y0) = 0 and dB(x0, y0) �= 0.
Then the locus {B = 0} forms a smooth embedded curve passing through (x0, y0).

Theorem 3.1 ([28]). Any sufficiently short subarc of a horizontal lift of the non-
degenerate zero locus of a magnetic field is the unique minimizing sub-Riemannian
geodesic between its endpoints. If the planar curvature of this arc is nonzero at
(x0, y0) (i.e., if the arc is not contained in a line), then the horizontal lift is not a
normal sub-Riemannian geodesic.

The growth vector for the distribution in the theorem is (2, 2, 3) along the abnor-
mal minimizer. Abnormal minimizers do not exist for two-step distributions—ones
having growth vector (k, n)—since for these distributions one can show that ev-
ery nonconstant path is regular for the endpoint map. Any rank 2 distribution in
dimension n ≥ 4 has step 3 or greater. The abnormal minimizer of the theorem
above was soon shown to be part of a generic phenomenon. Rank 2 distributions in
dimensions n ≥ 4 admit abnormal minimizers passing through every point. Distri-
butions of type (2, 3, 5, . . .) have abnormal minimizers passing through every point
in every horizontal direction; see [23] and [6].

To date, all known abnormal minimizers found have been smooth. But singu-
lar curves for the endpoint map, without being subject to minimality, can be as
nonsmooth as we wish. Indeed, take a rank 2 D on R3 as above whose magnetic
field B(x, y) has as zero locus a curve as rough as can be, and horizontally lift this
curve to get a nonsmooth singular curve. The existence of abnormal minimizers
is why the problem of whether or not sub-Riemannian geodesics are always smooth
remains open.

Perhaps there is a nonsmooth minimizing geodesic joining q0 to nearby q1 relative
to some sub-Riemannian geometry. We do not know. We would at least like to say
that most of the geodesics leaving q0 are smooth. This would be true provided that
the answer to the next question was yes.

Open Problem 3. Does Sard’s theorem hold for the endpoint map?

In other words, is the set of endpoints of singular paths leaving q0 a set of measure
zero? For the special case of three-manifolds endowed with analytic distributions,
this question was very recently answered affirmatively; see [3].

4. The book

I am glad to have this book.
One of the main tools in optimal control is the Maximum Principle, due to Bolt-

janskĭı, Gamkrelidze, and Pontrjagin in [4]. This principle is a computationally
effective Hamiltonian reformulation of the Lagrange multiplier method. (My fa-
vorite reference on the principle is [41].) A direct line connects the book’s senior
author, Agrachev, to the Maximum Principle: Pontrjagin advised Gamkrelidze who
advised Agrachev. Agrachev has built a prolific school of geometric control theory
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which dominates mathematical control theory in parts of Europe and Russia. The
other two authors, Barilari and Boscain, are members of this school.

For decades Agrachev and his school have been developing powerful tools for
sub-Riemannian geometry based on methods and thinking coming primarily from
geometric control theory, but also having significant input from symplectic geom-
etry, differential topology, and functional analysis. Agrachev has over a hundred
papers listed on MathSci Net. He is not the most patient or friendly of writers.
Many of his papers I could not penetrate. So I was overjoyed to read this book
and find the writing clear. It is wonderful to have a wide swath of the work of this
school explained clearly and set down in one place. I am understanding some of the
concepts described for the first time. I am grateful to the three authors for their
efforts in putting this book together.

They describe and demonstrate several of powerful tools originating from their
work that I could not find in any other books. One such tool is Agrachev’s chrono-
logical calculus which is a nonlinear version of what physicists call the path-ordered
exponential for expressing the flow of time-dependent vector fields, such as equation
(3.1). This calculus is a flexible tool, good for computing variations such as those
needed in understanding the derivatives of the endpoint map.

Another set of tools is built around understanding second derivatives in hori-
zontal path space. It is well known that the second derivative of a function on
a manifold has no intrinsic meaning except at a critical point. How do you then
make sense of the second derivative of a map between manifolds, or a map like the
endpoint map, between a function space and a manifold? Agrachev and his school
are masters of unexpected incarnations of the second derivative. In Riemannian
geometry, the second derivative of arclength leads to Jacobi fields along a geodesic,
a basic tool. What are the Jacobi fields in sub-Riemannian geometry? How does
one compute the second variation in sub-Riemannian geometry? Along an abnor-
mal sub-Riemannian geodesic? How to you make sense of the second derivative
of the endpoint map? To answer these questions, the authors use intrinsic sec-
ond derivatives, calculus on the Lagrange Grassmannian, and a topological study
of vector-valued quadratic maps. A Jacobi field in their hands is a curve on the
Lagrange Grassmannian. In a pleasant and surprising reversal, the authors define
the Riemann curvature tensor as the derivative of their Jacobi field, and then show
that the result of their definition can be interpreted as the usual tensorial Riemann
curvature.

The book also showcases gems developed by other researchers. One such gem
is the most significant progress to date on the regularity problem, Open Question
1 above. This result is the no-corners theorem of Hakavuori and Le Donne [19]
which implies that any piecewise C1 minimizer must in fact be C1.

The book is based on a decade of lectures in various places by the three authors.
It is structured something like a year-long course aimed at a strong master’s student
who will be working with one of these researchers. The book begins with classical
geometry of surfaces in R3, looked at through a control theorist’s lens. Chapter
2 concerns the general theory of vector fields on manifolds, both autonomous and
nonautonomous, their flows, Lie brackets, etc. Sub-Riemannian geometries and the
problem of understanding their geodesics arrives on page 71. In the next chapter
they describe the Maximum Principle with symplectic geometry put to the fore.
The chronological calculus enters in a chapter soon after. We get a break to look
at various incarnations of integrable sub-Riemannian geodesic flows on Lie groups
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mixed in. Carnot groups arrive on page 331. Abnormal minimizers take center
stage a bit more than half-way through the book, on page 402. The Lagrange
Grassmannians takes center stage on page 513, and here I will stop my description
with over 200 pages in the book left to go.

At 724 pages the book feels at times more like an encyclopaedia than a Compre-
hensive introduction to sub-Riemannian geometry. The index is lacking, but this
lack is partly made up by a quite detailed table of contents. A real strength of the
book are the wonderful Bibliographic Notes ending each chapter. I was, however,
surprised by a particular missing reference in the Bibliographic Notes after the ti-
tled Left-invariant Hamiltonian systems on Lie groups, since it left out the work of
Gershkovich and Vershik [39] on this subject. The preceding chapter, Curvature in
3D contact sub-Riemannian geometry, uses their curves-in-Lagrange-Grassmanians
approach to curvature to derive the same two curvature invariants found in the
1990s by Keener Hughen [21] in his masterful thesis. I prefer Hughen’s method,
which is based on Cartan’s method of equivalence and moving frames, but my
preference might be due to familiarity.

For the reader who wants to get more of a feel for sub-Riemannian geometry
beyond this review, but who does not want to commit to reading over 700 pages,
you might want to browse my old book [30]. But for students and researchers who
are in this field already or are certain they want to be in this field, this is probably
the right book to buy. It has begun to replace my book as the book of choice in
bibilographies of current research papers on sub-Riemannian geometry.
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