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1 Matrix-Tree Theorem

1.1 Undirected Graphs

Let G = (V,E) be a connected, undirected graph with n vertices, and let κ(G) be the
number of spanning trees of G.

Definition 1 (Laplacian matrix of undirected graph) The Laplacian matrix L of G
is equal to D −A, where

D =

d1 0
. . .

0 dn


such that di is the degree of vertex i, i.e. the number of edges incident to vertex i, and A is
the adjacency matrix of G such that

A = (aij),

aij =

{
1 if (i, j) ∈ E
0 else.

Theorem 2 (Matrix-Tree Theorem, Version 1)

κ(G) =
1

n
λ1λ2 . . . λn−1,

where λ1, λ2, . . ., λn−1 are non-zero eigenvalues of the Laplacian matrix L of G.

1.2 Directed Graphs

We can give another version of the Matrix-Tree Theorem for directed graphs. First, we
need to define spanning trees and Laplacian matrices for directed graphs. Let Γ = (V,E)
be a directed graph.
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Definition 3 (Oriented spanning tree) An oriented spanning tree of Γ rooted at r ∈ V
is a spanning subgraph T = (V,A) such that

1. Every vertex v 6= r has out degree 1.

2. r has out degree 0.

3. T has no oriented cycles.

Example 4 Consider the following directed graph:

1

2 3

r=4

It has three oriented spanning trees:

1

2 3

r=4

1

2 3

r=4

1

2 3

r=4

Definition 5 (Laplacian matrix of directed graph) The Laplacian matrix L of Γ is
equal to D −A, where

D =

d1 0
. . .

0 dn


such that di is the out degree of vertex i, i.e. #{j ∈ V |(i, j) ∈ E}, and A is the adjacency
matrix of Γ.

Theorem 6 (Matrix-Tree Theorem, Version 2) Let

κ(Γ, r) = #{oriented spanning trees of Γ rooted at r}
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and Lr be the Laplacian matrix of Γ with the row and column corresponding to vertex r
crossed out. Then

κ(Γ, r) = detLr

where Lr is the Laplacian matrix L with row and column r removed.

Example 7 Consider the directed graph from the previous example:

1

2 3

r=4

Then we see that

D =


2 0 0 0
0 1 0 0
0 0 2 0
0 0 0 1


and

A =


0 1 0 0
0 0 1 0
1 0 0 1
1 0 1 0


so

L =


2 −1 0 0
0 1 −1 0
−1 0 2 −1
−1 0 −1 1


and

Lr =

 2 −1 0
0 1 −1
−1 0 2


Then

detLr = 2 · 1 · 2 +−1 · −1 · −1 = 3

which matches what we found in the previous example.

We will prove this version of the Matrix-Tree Theorem and then show that it implies the
version for undirected graphs.

Proof: Reorder the vertices of Γ so that r is the nth vertex. Then detLr = d1d2 . . . dn−1−
(other terms), since Lr has the di’s on the diagonal and either −1 or 0 for the off-diagonal
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entries. d1d2 . . . dn−1 counts the number of subgraphs H of Γ such that each vertex v 6= r
has out-degree 1. So we have that

H = T ∪ C1 ∪ · · · ∪ Ck,

where T is an oriented tree rooted at r and each Ci is an oriented cycle.

Then
detLr =

∑
σ∈Sn−1

sgn(σ)L1,σ(1) . . . Ln−1,σ(n−1).

Let fix(σ) = {i | σ(i) = i}. Then we have

detLr =
∑

σ∈Sn−1

sgn(σ)
∏

i∈fix(σ)

di
∏

i/∈fix(σ)

Li,σ(i).

∏
i/∈fix(σ) Li,σ(i) is only non-zero when (i, σ(i)) ∈ E for all i /∈ fix(σ). In this case,∏

i/∈fix(σ)

Li,σ(i) = (−1)n−1−|fix(σ)|.

We wish to write
detLr =

∑
subgraphs H ⊂ Γ

CH ,

where CH is 1 if H is an oriented spanning tree and 0 otherwise. Any permutation σ consists
of fixed points and cycles. A subgraph H = T ∪ C1 ∪ · · · ∪ Ck arises from σ if and only if
the union of all cycles Ci of H contains all vertices not fixed by H, which, in turn, is true
if and only if T ⊆ fix(σ).

We can then conclude that

CH =
∑

{σ∈Sn−1 | T⊆fix(σ)}

sgn(σ)(−1)n−1−|fix(σ)|.

Our goal is then to show that CH is 1 when H is a tree and 0 otherwise. When H is a
tree, H = T and there are no cycles. Then all vertices are in |fix(σ)| and σ is the identity
permutation. The sign of the identity permutation is 1 and n−1 points are fixed, so CH = 1.

Lastly, we need to show that CH = 0 if k ≥ 1, i.e. if H has a cycle. For each Ci, we can
either choose Ci ⊂ fix(σ) or Ci to be a cycle of σ. Let i1, . . . , il be the indices of the Ci’s
that are formed from vertices in cycles of σ. All other points must be fixed by σ, so

sgn(σ) = (−1)(|Ci1
|−1)+...+(|Cil

|−1).

This means that

CH =
∑

{i1,...,il}∈[k]

(−1)(|Ci1
|−1)+...+(|Cil

|−1)(−1)|Ci1
|+...+|Cil

|.
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So,

CH =
∑
S⊆[k]

(−1)|S|

=

k∑
l=0

(
k

l

)
(1− 1)k

= 0 if k ≥ 1.

2

1.3 Proof of the Matrix Tree Theorem, Version 1

Now we will show that Version 2 of the Matrix Tree Theorem implies the version for undi-
rected graphs.

Proof: Given undirected graph G, let Γ be the directed graph with edges (i, j) and (j, i)
for every edge of G. We first observe that there is a bijection between the set of oriented
spanning trees of Γ rooted at r and the set of spanning trees of G. We can take any oriented
spanning tree of Γ rooted at r and get a spanning tree of G by disregarding the root and
the orientation of the edges. For any spanning tree T of G, we can get an oriented spanning
tree of Γ by orienting edges along the unique path from each vertex to r. Such a path exists
because T is connected and is unique because T has no cycles. Then

nκ(G) =

n∑
r=1

κ(Γ, r).

Let L be the Laplacian matrix of Γ. Then the characteristic polynomial of L is

χ(t) = det (tI − L).

It is true that
n∑
r=1

detLr = (−1)n−1[t]χ(t),

where [t]χ(t) is the coefficient of t in χ(t).
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So, we have that

nκ(G) =

n∑
r−1

detLr = (−1)n−1[t]χ(t)

= (−1)n−1[t]
n∏
i=1

(t− λi), where the λi’s are eigenvalues of L and λn = 0

= (−1)n−1(−1)n−1λ1 . . . λn−1

= λ1 . . . λn−1.

Therefore,

κ(G) =
1

n
λ1 . . . λn−1.

2

2 Cayley’s Theorem

Theorem 8 (Cayley’s Theorem) The number of trees on n labeled vertices is nn−2.

Example 9 Consider trees containing 4 vertices. There are 16 = 44−2 total, 4 of the form

1

23 4

and 12 of the form

1 2 3 4

Proof: Any tree on n vertices is a spanning tree of the complete graph Kn, so we can apply
Version 2 of the Matrix-Tree Theorem. So,

κ(Kn) =
1

n
λ1 . . . λn−1,

where
λ1, . . . , λn−1
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are the non-zero eigenvalues of the Laplacian matrix

L =


n− 1 −1 · · · −1
−1 n− 1 · · · −1
...

...
. . .

...
−1 −1 · · · n− 1

 = nI − J,

where J is the n× n matrix of ones.

J has the ones vector as one of its eigenvectors. The remaining n − 1 eigenvectors are of
the form 

...
1
−1
...

 ,

so J has eigenvalues n, 0, . . . , 0, with 0 having multiplicity n − 1. This implies that L has
eigenvalues 0, n, . . . , n, with n having multiplicity n− 1.

So,

κ(Kn) =
nn−1

n
= nn−2.

2

3 Eigenvalues of the Adjacency Matrix

Let G be an undirected, connected graph with n vertices. Let Pl be the number of closed
paths in G of length l:

Pl = #{(v0, v1, . . . , vl−1, vl = v0) | (vi, vi+1) ∈ E for i = 0, 1, . . . , l − 1}

Theorem 10
Pl = φl1 + · · ·+ φln,

where φ1, . . . , φn are the eigenvalues of the adjacency matrix A of G.

Proof: We observe that

(Al)ij = #{paths of length l from i to j}.

So,
Pl = (Al)11 + (Al)22 + · · ·+ (Al)nn = Tr(Al).
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Note that this holds for both directed and undirected graphs.

Since G is undirected, A is symmetric, which means that A is diagonalizable so there exists
some S such that

SAS−1 =


φ1 0 · · · 0
0 φ2 · · · 0
...

...
. . .

...
0 0 · · · φn

 .

So,
Pl = Tr(Al)

= Tr(SAlS−1)

= Tr((SAS−1)l)

= Tr


φl1 0 · · · 0
0 φl2 · · · 0
...

...
. . .

...
0 0 · · · φln


= φl1 + · · ·+ φln.

2
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