18.312: Algebraic Combinatorics		Lionel Levine
	Lecture 19	
Lecture date: April 21, 2011		Notes by: David Witmer

1 Matrix-Tree Theorem

1.1 Undirected Graphs

Let $G=(V, E)$ be a connected, undirected graph with n vertices, and let $\kappa(G)$ be the number of spanning trees of G.

Definition 1 (Laplacian matrix of undirected graph) The Laplacian matrix L of G is equal to $D-A$, where

$$
D=\left(\begin{array}{ccc}
d_{1} & & 0 \\
& \ddots & \\
0 & & d_{n}
\end{array}\right)
$$

such that d_{i} is the degree of vertex i, i.e. the number of edges incident to vertex i, and A is the adjacency matrix of G such that

$$
\begin{gathered}
A=\left(a_{i j}\right), \\
a_{i j}= \begin{cases}1 & \text { if }(i, j) \in E \\
0 & \text { else }\end{cases}
\end{gathered}
$$

Theorem 2 (Matrix-Tree Theorem, Version 1)

$$
\kappa(G)=\frac{1}{n} \lambda_{1} \lambda_{2} \ldots \lambda_{n-1},
$$

where $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n-1}$ are non-zero eigenvalues of the Laplacian matrix L of G.

1.2 Directed Graphs

We can give another version of the Matrix-Tree Theorem for directed graphs. First, we need to define spanning trees and Laplacian matrices for directed graphs. Let $\Gamma=(V, E)$ be a directed graph.

Definition 3 (Oriented spanning tree) An oriented spanning tree of Γ rooted at $r \in V$ is a spanning subgraph $T=(V, A)$ such that

1. Every vertex $v \neq r$ has out degree 1 .
2. r has out degree 0 .
3. T has no oriented cycles.

Example 4 Consider the following directed graph:

It has three oriented spanning trees:

Definition 5 (Laplacian matrix of directed graph) The Laplacian matrix L of Γ is equal to $D-A$, where

$$
D=\left(\begin{array}{lll}
d_{1} & & 0 \\
& \ddots & \\
0 & & d_{n}
\end{array}\right)
$$

such that d_{i} is the out degree of vertex i, i.e. $\#\{j \in V \mid(i, j) \in E\}$, and A is the adjacency matrix of Γ.

Theorem 6 (Matrix-Tree Theorem, Version 2) Let

$$
\kappa(\Gamma, r)=\#\{\text { oriented spanning trees of } \Gamma \text { rooted at } r\}
$$

and L_{r} be the Laplacian matrix of Γ with the row and column corresponding to vertex r crossed out. Then

$$
\kappa(\Gamma, r)=\operatorname{det} L_{r}
$$

where L_{r} is the Laplacian matrix L with row and column r removed.

Example 7 Consider the directed graph from the previous example:

Then we see that

$$
D=\left(\begin{array}{llll}
2 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

and

$$
A=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right)
$$

so

$$
L=\left(\begin{array}{cccc}
2 & -1 & 0 & 0 \\
0 & 1 & -1 & 0 \\
-1 & 0 & 2 & -1 \\
-1 & 0 & -1 & 1
\end{array}\right)
$$

and

$$
L_{r}=\left(\begin{array}{ccc}
2 & -1 & 0 \\
0 & 1 & -1 \\
-1 & 0 & 2
\end{array}\right)
$$

Then

$$
\operatorname{det} L_{r}=2 \cdot 1 \cdot 2+-1 \cdot-1 \cdot-1=3
$$

which matches what we found in the previous example.

We will prove this version of the Matrix-Tree Theorem and then show that it implies the version for undirected graphs.

Proof: Reorder the vertices of Γ so that r is the nth vertex. Then $\operatorname{det} L_{r}=d_{1} d_{2} \ldots d_{n-1}-$ (other terms), since L_{r} has the d_{i} 's on the diagonal and either -1 or 0 for the off-diagonal
entries. $d_{1} d_{2} \ldots d_{n-1}$ counts the number of subgraphs H of Γ such that each vertex $v \neq r$ has out-degree 1. So we have that

$$
H=T \cup C_{1} \cup \cdots \cup C_{k},
$$

where T is an oriented tree rooted at r and each C_{i} is an oriented cycle.
Then

$$
\operatorname{det} L_{r}=\sum_{\sigma \in S_{n-1}} \operatorname{sgn}(\sigma) L_{1, \sigma(1)} \ldots L_{n-1, \sigma(n-1)} .
$$

Let $\operatorname{fix}(\sigma)=\{i \mid \sigma(i)=i\}$. Then we have

$$
\operatorname{det} L_{r}=\sum_{\sigma \in S_{n-1}} \operatorname{sgn}(\sigma) \prod_{i \in \operatorname{fix}(\sigma)} d_{i} \prod_{i \notin \mathrm{fxx}(\sigma)} L_{i, \sigma(i)} .
$$

$\prod_{i \notin \operatorname{fix}(\sigma)} L_{i, \sigma(i)}$ is only non-zero when $(i, \sigma(i)) \in E$ for all $i \notin \operatorname{fix}(\sigma)$. In this case,

$$
\prod_{i \notin \mathrm{fix}(\sigma)} L_{i, \sigma(i)}=(-1)^{n-1-|\mathrm{fix}(\sigma)|} .
$$

We wish to write

$$
\operatorname{det} L_{r}=\sum_{\text {subgraphs } H \subset \Gamma} C_{H},
$$

where C_{H} is 1 if H is an oriented spanning tree and 0 otherwise. Any permutation σ consists of fixed points and cycles. A subgraph $H=T \cup C_{1} \cup \cdots \cup C_{k}$ arises from σ if and only if the union of all cycles C_{i} of H contains all vertices not fixed by H, which, in turn, is true if and only if $T \subseteq \operatorname{fix}(\sigma)$.

We can then conclude that

$$
C_{H}=\sum_{\left\{\sigma \in S_{n-1} \mid T \subseteq \mathrm{fix}(\sigma)\right\}} \operatorname{sgn}(\sigma)(-1)^{n-1-|\mathrm{fix}(\sigma)|} .
$$

Our goal is then to show that C_{H} is 1 when H is a tree and 0 otherwise. When H is a tree, $H=T$ and there are no cycles. Then all vertices are in \mid fix $(\sigma) \mid$ and σ is the identity permutation. The sign of the identity permutation is 1 and $n-1$ points are fixed, so $C_{H}=1$.

Lastly, we need to show that $C_{H}=0$ if $k \geq 1$, i.e. if H has a cycle. For each C_{i}, we can either choose $C_{i} \subset \operatorname{fix}(\sigma)$ or C_{i} to be a cycle of σ. Let i_{1}, \ldots, i_{l} be the indices of the C_{i} 's that are formed from vertices in cycles of σ. All other points must be fixed by σ, so

$$
\operatorname{sgn}(\sigma)=(-1)^{\left(\left|C_{i_{1}}\right|-1\right)+\ldots+\left(\left|C_{i_{l}}\right|-1\right)} .
$$

This means that

$$
C_{H}=\sum_{\left\{i_{1}, \ldots, i_{l}\right\} \in[k]}(-1)^{\left(\left|C_{i_{1}}\right|-1\right)+\ldots+\left(\left|C_{i_{l}}\right|-1\right)}(-1)^{\left|C_{i_{1}}\right|+\ldots+\left|C_{i_{l}}\right|} .
$$

So,

$$
\begin{aligned}
C_{H} & =\sum_{S \subseteq[k]}(-1)^{|S|} \\
& =\sum_{l=0}^{k}\binom{k}{l}(1-1)^{k} \\
& =0 \text { if } k \geq 1 .
\end{aligned}
$$

1.3 Proof of the Matrix Tree Theorem, Version 1

Now we will show that Version 2 of the Matrix Tree Theorem implies the version for undirected graphs.

Proof: Given undirected graph G, let Γ be the directed graph with edges (i, j) and (j, i) for every edge of G. We first observe that there is a bijection between the set of oriented spanning trees of Γ rooted at r and the set of spanning trees of G. We can take any oriented spanning tree of Γ rooted at r and get a spanning tree of G by disregarding the root and the orientation of the edges. For any spanning tree T of G, we can get an oriented spanning tree of Γ by orienting edges along the unique path from each vertex to r. Such a path exists because T is connected and is unique because T has no cycles. Then

$$
n \kappa(G)=\sum_{r=1}^{n} \kappa(\Gamma, r) .
$$

Let L be the Laplacian matrix of Γ. Then the characteristic polynomial of L is

$$
\chi(t)=\operatorname{det}(t I-L)
$$

It is true that

$$
\sum_{r=1}^{n} \operatorname{det} L_{r}=(-1)^{n-1}[t] \chi(t)
$$

where $[t] \chi(t)$ is the coefficient of t in $\chi(t)$.

So, we have that

$$
\begin{aligned}
n \kappa(G)=\sum_{r-1}^{n} \operatorname{det} L_{r} & =(-1)^{n-1}[t] \chi(t) \\
& =(-1)^{n-1}[t] \prod_{i=1}^{n}\left(t-\lambda_{i}\right), \text { where the } \lambda_{i} \text { 's are eigenvalues of } L \text { and } \lambda_{n}=0 \\
& =(-1)^{n-1}(-1)^{n-1} \lambda_{1} \ldots \lambda_{n-1} \\
& =\lambda_{1} \ldots \lambda_{n-1} .
\end{aligned}
$$

Therefore,

$$
\kappa(G)=\frac{1}{n} \lambda_{1} \ldots \lambda_{n-1} .
$$

2 Cayley's Theorem

Theorem 8 (Cayley's Theorem) The number of trees on n labeled vertices is n^{n-2}.

Example 9 Consider trees containing 4 vertices. There are $16=4^{4-2}$ total, 4 of the form

and 12 of the form

Proof: Any tree on n vertices is a spanning tree of the complete graph K_{n}, so we can apply Version 2 of the Matrix-Tree Theorem. So,

$$
\kappa\left(K_{n}\right)=\frac{1}{n} \lambda_{1} \ldots \lambda_{n-1},
$$

where

$$
\lambda_{1}, \ldots, \lambda_{n-1}
$$

are the non-zero eigenvalues of the Laplacian matrix

$$
L=\left(\begin{array}{cccc}
n-1 & -1 & \cdots & -1 \\
-1 & n-1 & \cdots & -1 \\
\vdots & \vdots & \ddots & \vdots \\
-1 & -1 & \cdots & n-1
\end{array}\right)=n I-J
$$

where J is the $n \times n$ matrix of ones.
J has the ones vector as one of its eigenvectors. The remaining $n-1$ eigenvectors are of the form

$$
\left(\begin{array}{c}
\vdots \\
1 \\
-1 \\
\vdots
\end{array}\right)
$$

so J has eigenvalues $n, 0, \ldots, 0$, with 0 having multiplicity $n-1$. This implies that L has eigenvalues $0, n, \ldots, n$, with n having multiplicity $n-1$.

So,

$$
\kappa\left(K_{n}\right)=\frac{n^{n-1}}{n}=n^{n-2} .
$$

3 Eigenvalues of the Adjacency Matrix

Let G be an undirected, connected graph with n vertices. Let P_{l} be the number of closed paths in G of length l :

$$
P_{l}=\#\left\{\left(v_{0}, v_{1}, \ldots, v_{l-1}, v_{l}=v_{0}\right) \mid\left(v_{i}, v_{i+1}\right) \in E \text { for } i=0,1, \ldots, l-1\right\}
$$

Theorem 10

$$
P_{l}=\phi_{1}^{l}+\cdots+\phi_{n}^{l},
$$

where $\phi_{1}, \ldots, \phi_{n}$ are the eigenvalues of the adjacency matrix A of G.

Proof: We observe that

$$
\left(A^{l}\right)_{i j}=\#\{\text { paths of length } l \text { from } i \text { to } j\}
$$

So,

$$
P_{l}=\left(A^{l}\right)_{11}+\left(A^{l}\right)_{22}+\cdots+\left(A^{l}\right)_{n n}=\operatorname{Tr}\left(A^{l}\right) .
$$

Note that this holds for both directed and undirected graphs.
Since G is undirected, A is symmetric, which means that A is diagonalizable so there exists some S such that

$$
S A S^{-1}=\left(\begin{array}{cccc}
\phi_{1} & 0 & \cdots & 0 \\
0 & \phi_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \phi_{n}
\end{array}\right)
$$

So,

$$
\begin{aligned}
P_{l} & =\operatorname{Tr}\left(A^{l}\right) \\
& =\operatorname{Tr}\left(S A^{l} S^{-1}\right) \\
& =\operatorname{Tr}\left(\left(S A S^{-1}\right)^{l}\right) \\
& =\operatorname{Tr}\left(\begin{array}{cccc}
\phi_{1}^{l} & 0 & \cdots & 0 \\
0 & \phi_{2}^{l} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \phi_{n}^{l}
\end{array}\right) \\
& =\phi_{1}^{l}+\cdots+\phi_{n}^{l} .
\end{aligned}
$$

