SOLUTIONS.

The columns and rows are labelled by the vertices as given.
EXER. 1. The matrix is

$$
H=\left(\begin{array}{ccc}
0 & \frac{1}{2} & 1 \\
1 & 0 & 0 \\
0 & \frac{1}{2} & 0
\end{array}\right)
$$

EXER 2.

EXER 4. With

$$
I=\left(\begin{array}{l}
a \\
a \\
b
\end{array}\right)
$$

and H as in exert. 1, we compute that

$$
H I=\left(\begin{array}{c}
\frac{1}{2} a+b \\
a \\
\frac{1}{2} a
\end{array}\right)
$$

Setting $H I=I$ yields the equations $\frac{1}{2} a+b=a, a=a, \frac{1}{2} a=b$ with unique solution, up to scale

$$
I=\left(\begin{array}{c}
a \\
a \\
\frac{1}{2} a
\end{array}\right)
$$

Normalizing by insisting that the entries sum to 1 yields $a=2 / 5, b=1 / 5$.
EXER 5. If we start off with 5 students in our Markov Maze after N iterations we ought to get the ratio [2:2:1].

Did we?
How big was N ?
COMPUTE: λ_{2}
The other two eigenvalues of H are $-\frac{1}{2} \pm \frac{1}{2} i$. The norm of either is $1 / \sqrt{2}$
Say we want to get within 10 percent of the desired distribution. The error is estimated by $\left|\lambda_{2}\right|^{N}$. We are asking: what is the first N for which $\left|\lambda_{2}\right|^{N}<.1$ or $1<(1 / 10) 2^{N / 2}$. Since $2^{3}<10<2^{4}, N=7$ or 8 should work.

After 8 about 8 rounds we ought to settle down to $2: 2: 1$
[We simultaneously make 1 step from each vertex.]

