1. Graph Theory, Lecture Tree Number.

Main source. Ch. 6, Biggs.
Beginning questions.
How many trees are there on n (labelled) vertices?
Do the cases : $n=2,3,4$
Do $n=5$.
The formula: n^{n-2}.
What is bigger: $2^{\binom{n}{2}}$ or n^{n-2} ? By how much?
A tree on n vertices has $n-1$ edges.
Prove!
Find a counterexample to the assertion: "A simple graph on n vertices is a tree if and only if it has $n-1$ edges".

Prove: if a graph on n vertices has $n-1$ edges AND is connected, then it is a tree.

Tree number, Laplacian, etc.
The tree number of a graph Γ is the number of spanning trees for the graph.
Example: Let K_{n} be the complete graph on n vertices. Then EVERY tree on these n vertices is a spanning tree. Hence the tree number of K_{n} is $n^{\binom{n}{2}}$.

