The incidence matrix.

The entries of the incidence matrix are d_{ia} where *i* runs over an index set for the vertices (could be the vertices themselves!) and *a* runs over an index set for the edges. Thus the vertex set is

$$V(\Gamma) = \{v_i, i = 1, \dots, n\}$$

while the edge set is

$$E(\Gamma) = \{e_a : a = 1, \dots, m\}$$

To define the incidence matrix we choose an orientation for each edge, which means a 'positive' end and a 'negative' end for each edge.

Then

$$d_{ia} = \begin{cases} 1, & \text{if } v_i = \text{is the positive end of } e_a \\ -1, & \text{if if } v_i \text{ is the negative end of } e_a \\ 0, & \text{if } v_i \text{is not incident to } e_a \end{cases}$$

Now recall that

$$C_1(\Gamma) \cong \mathbb{R}^m$$
; coordinates $\phi \mapsto \phi(e_a)$

and

 $C_0(\Gamma) \cong \mathbb{R}^n$; coordinates $f \mapsto f(v_i)$.

For $\phi \in C_1(\Gamma)$ a function on edges we have

$$D\phi(v_i) = \Sigma d_{ia}\phi(e_a)$$

while for $f \in C_0(\Gamma)$ a function on vertices we have:

 $df(e_a) = \Sigma d_{ia} f(v_i)$

Then

$$D = d^2$$

and they form a pair of linear operators: $C_0(\Gamma) \xleftarrow{d}{D} C_1(\Gamma)$ In defining the transpose L^T of a linear operator L, we need an inner product on its domain and range. In our case of $D = d^T$, we need an inner product. For us, the transpose is relative to the following natural inner products on the two spaces:

$$\langle f, g \rangle = \sum_{i=1}^{n} f(v_i) g(v_i)$$

$$\langle \phi, \psi \rangle = \sum_{i=1}^{m} \phi(e_a) \psi(e_a)$$

Exercise 1. Verify that these formulae for d, D are the same as the "intrinsic" formula: If $e_a = (v_i v_j)$ then

$$df(e_a) = f(v_i) - f(v_i)$$

Notation: If the positive vertex is v_j and the negative vertex is v_i then we will also write $e_a = v_i v_j$. And

$$D\phi(v_i) = \Sigma\phi(v_jv_i) - \Sigma\phi(v_iv_k)$$

where the first sum is over edges with positive end v_i and the second sum is over those edges whose negative end is v_i .

Exercise 2. Verify that the graph's Laplacian is given by $\Delta = Dd$.

Theorem 1. The kernel of d consists of the functions which are constant on each connected component of Γ .

PROOF OF THEOREM. IN CLASS.

Corollary 1. dim(ker(d)) = c is the number of connected components of Γ . The dimension of the image of d is n-c. The dimension of kernel of D is m-(n-c) = m-n+c

Proof of Cor. Use the rank plus nullity theorem: dim(im(L)) + dim(ker(L)) = dim(dom(L)) where dom(L) is the domain of L.

For the second statement use the fact that $im(L)^{\perp} = ker(L^T)$ valid for any linear operator between inner product spaces. Then use the rank plus nullity theorem. QED

Corollary 2. The kernel of the Laplacian consists of the functions which are constant on each connected component of Γ .

Proof. The Laplacian is $d^T d$. It is a general fact that the kernel of $L^T L$ is equal to the kernel of L, for any linear operator L between inner product spaces. QED

CYCLE SPACE. Take a cycle in our graph. Orient it as per the standard cycle so the edges follow each other in a "circle". Now, for our given orientation of Γ and a given edge $e_a \in C$, that edge's orientation may or may not agree with the orientation we gave to C. We want to make it agree by using a choice of signs for a function supported on the edges of C. We call this the 'cycle function' of C and write it ξ_C :

$$\xi_C(e_a) = \begin{cases} 1, & \text{if } e_a \in C \text{ and its orientation agrees with } C \\ -1, & \text{if } e_a \in C \text{and its orientation is opposite of } C \\ 0, & \text{if } e_a \notin C \end{cases}$$

Exercise. $D\xi_C = 0$ for any 'cycle function' C.

Later, we will see that ker(D) is spanned by the cycle functions.

CUT SPACE. Fix a partition of $V(\Gamma)$ into two non-empty disjoint subsets, V_1, V_2 . Thus $V = V_1 \cup V_2$ and consequently $V_2 = V \setminus V_1$. Let $H \subset E(\Gamma)$ be the set of all edges with one end in V_1 and the other in V_2 . We call any such H a "cut set". We can choose an orientation for the edges of H by insisting that they 'go' from V_1 to V_2 : so each $e \in E$ has positive end in V_2 and negative end in V_1 . We will call this the "cut orientation" of the edges of H. We can now define the cut function associated to $H = H(V_1, V_2)$ by

$$\chi_H(e_a) = \begin{cases} 1, & \text{if } e_a \in H \text{ with cut-orientation agreeing with graph's orientation} \\ -1, & \text{if } e_a \in H \text{ with cut-orientation opposite to graph's orientation} \\ 0, & \text{if } e_a \notin H \end{cases}$$

Theorem 2. The image of d is spanned by cut functions χ_H . This image equals the orthogonal complement of the kernel of D and is spanned by cut functions.

Proof of theorem. For the first statement, let f_i denote the standard basis for $C_0(\Gamma)$, so that $f_i(v_j) = \delta_{ij}$. Compute that $df_i = -\chi_{H_i}$ where H_i is the partition with $V_1 = \{v_i\}$ and $V_2 = V \setminus \{v_i\}$.

For the second statement use that for any linear operator $L: X \to Y$ between inner product spaces we have $im(L)^{\perp} = ker(L^T)$ or $im(L) = ker(L^T)^{\perp}$. Here $L = d, L^T = D$.

From these theorems we have

dim(I'md) = dim(cut space) = n - c

where , we recall c is the number of components of the graph. Thus

dim(kerD) = dim(cyclespace) = m - (n - c)

Spanning trees to get a basis for the cut and cycle space

Suppose now that Γ is connected so that c = 1. Let $T \subset \Gamma$ be any spanning tree. To form T we had to take out a number of edges out of Γ .

Exercise 3. If you add back to Γ any one of the edges you took away, the resulting graph has exactly one cycle

Exercise 4. If you take away from T a single edge the result is disconnected.

Theorem 3. Fix a spanning tree. Write $E(\Gamma) \setminus E(T)$ for the edges we had to take away from Γ to form T. For each edge $e_a \in E(\Gamma) \setminus E(T)$ let ϕ_a be the cycle function associated to the unique cycle we get by adding e_a back to T. Then the ϕ_a form a basis for the cycle space.

Dimension count check. As we saw just a bit earlier dim(cyclespace) = m-(n-1). The number of edges of T is n-1. Hence the number of edges of $E(\Gamma) \setminus E(T)$ is m-(n-1), the correct number to form a basis for the cycle space.