GRAPH LAPLACIAN, DIFFERENTIAL. CYCLE BASIS.

RICHARD MONTGOMERY

Abstract. Working out the incidence matrix and Laplacian in terms of the differential on a graph.

1. Spectral Theory of Graphs.

References. The best source for this material, out of the texts we have listed, is chapter 4 of Biggs. Some of the material can also be found in ch. 12 of the online Murty and towards the end of ch 3 of Bollabas.

Write $C^{0}(\Gamma)$ for the vector space of all real-valued functions on the vertices of Γ. Several authors call this space "the vertex space". I will call it the space of functions on the graph. $C^{0}(\Gamma)$ is a real vector space of dimension $|V|=n$:

$$
C^{0}(\Gamma)=\mathbb{R}^{V(\Gamma)}=\text { real valued functions on } V
$$

It has for a canonical basis, the "delta functions" (following Dirac), which are the functions $\delta_{v}: V \rightarrow \mathbb{R}$ which are one on v and 0 off of the vertex $v:$ in symbols:

$$
\delta_{v}(w):=\delta_{v w}=\left\{\begin{array}{ll}
1, & \text { if } v=w \tag{1}\\
0, & \text { if } v \neq w
\end{array} .\right.
$$

We sometimes just write v instead of δ_{v}.
Exercise. Show that any $f \in C^{0}(\Gamma)$ can be expressed uniquely as $f=\Sigma_{v \in V} f(v) \delta_{v}$.
1.1. Laplacian on a graph. Define

$$
\Delta: C^{0}(\Gamma) \rightarrow C^{0}(\Gamma)
$$

by

$$
(\Delta f)(v)=\Sigma_{e=v w} \text { an edge incident to } v(f(v)-f(w)) .
$$

Exercise 1. Show that relative to the canonical basis $\delta_{v}, v \in V$ we have that

$$
\Delta=D E G-A
$$

where $D E G$ is the diagonal matrix whose vv entry is deg (v), and where $A=A(\Gamma)$ is the adjacency matrix of last week.

WARNING: Biggs writes Q for our Δ and Δ for our $D E G$.
Definition 1. The 'tree number" of a graph Γ is the number of spanning trees of Γ.

[^0]Example: If Γ is disconnected then its tree number is zero since it has no spanning trees.

Example. If Γ is the cyclic graph on n vertices then its tree number equals to n.
Example. If Γ is a tree then its tree number equals 1 .
Recall the cofactor of an $n \times n$ matrix $\left.M . C_{i j}=(-1)^{i+j} \operatorname{det}(\hat{M})_{i j}\right)$ where $\left.\hat{M}\right)_{i j}$ is the $n-1 \times n-1$ matrix we get by deleting the i th row and j th column of M.

Theorem 1. Every cofactor of Δ is the same and equals to the tree number of Γ.
APPLICATION. Cayley's formula. Since the complete graph on n vertices contains every labelled tree, its tree number is the total number of labelled trees on n vertices - the number Cayler counted and Prüfer proved is correct.
A) Write out the matrix Δ_{n} for Laplacian for the complete graph on n vertices (in terms of the standard basis!).
B) Let J_{n} be the n by n matrix all of whose entries are 1 . Show that $\Delta_{n}=n I_{n}-J_{n}$ where J_{n}.
C) Show that the $i j=1,1$ cofactor of Δ_{n} is $\operatorname{det}\left(n I_{n-1}-J_{n-1}\right)$.
D) Compute $\operatorname{det}\left(n I_{n-1}-J_{n-1}\right)$ by completing the following exercises which will allow us to compute $\operatorname{det}\left(\lambda I_{k}-J_{k}\right)$ the characteristic polynomial of J_{k}, for k a positive integer.

D1) Show that the rank of J_{k} is 1 and its nullity is $k-1$.
D2) Show that the only nonzero eigenvalue of J_{k} is k.
D3) Conclude that $\operatorname{det}\left(\lambda I-J_{k}\right)=\lambda^{k-1}(\lambda-1)$.
D4) Now set $\lambda=n, k=n-1$ to finish off the computation of the cofactor.

1.2. Proof of tree number formula; more Laplacian facts.

Proposition 1. (1) The constant functions are in the kernel of Δ.
(2) The nullity of Δ equals the number of connected components of Γ.

Corollary 1. If Γ is connected then the kernel of Δ is one-dimensional and consists of the constant functions.

Recall: the cofactor of a matrix. Recall the cofactor formula for the inverse of a matrix. Recall that the product of a square matrix M and its cofactor matrix is equal to $\operatorname{det}(M) I d$
....
Remark. It is really not so important that the functions are real-valued. They just need to take values in some field. It could be \mathbb{C}, \mathbb{Q} or even the field with two elements. For definiteness, think of them as real valued.

We define a differential by

$$
d f(v w)=f(w)-f(v) ; v w \in E
$$

so that

$$
d: C^{0}(\Gamma) \rightarrow C^{1}(\Gamma):=\text { functions on the edges. }
$$

Oop! We have a problem here. Which comes first v or w ? The edges, as we defined them, are unoriented: $v w=w v$. But for the differential to be defined we need to order them.

Definition 2. An orientation of an edge is an answer to the question: does e go from v to w or from w to v ? If the edge goes from v to w then the orientation
is (v, w) and we call v the "positive end" and w the 'negative end. We write $e_{+}=w, e_{-}=v$. If the edge goes from w to v then the orientation is (w, v). The two orientations are formal negatives: $-(v, w)=(w, v)$: reversing the pair, reverses the arrow, switches signs.

An orientation of a simple graph is a choice of orientation for each edge. We write such a choice by putting a tilde over $E: \tilde{E}(\Gamma)$

Bollabas, p. 6, calls these "oriented graphs". So his "oriented graph" is a directed graph arising by choosing an orientation for a simple graph.

There are $2^{|E|}$ orientations of the graph. Fix one. By abuse of notation, continue to write E for \tilde{E}.
Definition 3. $C^{1}(\Gamma)$ is the space of real-valued function on the oriented edges of the graph Γ and is called the "edge space".
. Bollabas around p. 38. Biggs, p. 24.
Now we have a well defined differential

$$
\begin{gathered}
d: C^{0}(\Gamma) \rightarrow C^{1}(\Gamma) \\
d f(e)=f\left(e_{+}\right)-f\left(e_{-}\right)
\end{gathered}
$$

CF: Murty, p. 212. Eq (12.2). Murty write δ for d and calls the oriented edges "arcs".

Now $C^{0}(\Gamma)$ and $C^{1}(\Gamma)$ have a canonical basis, the vertices and edges respectively. Relative to this basis the matrix of the differential is an m by n matrix whose entries are all 0,1 or -1 . Show that relative to this basis, the matrix of d is

$$
\text { for } e \in \tilde{E}, v \in V: M_{e, v}= \begin{cases}1, & \text { if } e_{+}=v \\ -1, & \text { if } e_{-}=v \\ 0, & \text { else }\end{cases}
$$

TEXTS: this is the matrix B^{T} of p. 38 of Bollabas. The matrix B is called the "incidence matrix". This is the matrix D^{T} of Biggs, DEf. 4.2, again called the "incidence matrix" for the digraph. This matrix is NOT QUITE the matrix $M(G)^{T}$ from p. 7 of Murty. What is the difference between Murty's incidence matrix $M(G)$ and our M^{T} ?

Exercise. Use the basis ... Write out the matrix for the differential on K_{3} and K_{4} as indicated.

Now, if V is finite, then $C^{0}(V)$ inherits a canonical inner product for which the δ_{v} 's are orthonormal: Namely:

$$
\langle f, g\rangle=\Sigma_{v \in V} f(v) g(v)
$$

Similarly $C^{1}(E)$ has a canonical inner product:

$$
\langle\alpha, \beta\rangle=\Sigma_{e \in \tilde{E}} \alpha(e) \beta(e)
$$

We can then compute the dual of d by:

$$
\langle d f, \alpha\rangle=\left\langle f, d^{*} \alpha\right\rangle .
$$

EXERCISE
Show that

$$
\left(d^{*} \alpha\right)(v)=\Sigma_{e: e_{+}=v} \alpha(e)-\Sigma_{e: e_{-}=v} \alpha(e) .
$$

Alternatively

$$
\left(d^{*} \alpha\right)(v)=\Sigma_{e \in \tilde{E}} M_{e, v} \alpha(e)
$$

with M as above.
Exercise. Verify that the matrix D of d^{*} and the matrix M of d are related by $M=D^{T}$.

Definition 4. The Laplacian on the graph is the linear map

$$
\Delta=d^{*} d: C^{0}(\Gamma) \rightarrow C^{0}(\Gamma)
$$

Exercise. Let $D E G$ be the diagonal matrix whose entries are the degrees of the vertices: $D E G_{v v}=\operatorname{deg}(v) ; D E G_{v w}=0, v \neq w$. Show that

$$
\Delta=D E G-A(\Gamma)
$$

where $A(\Gamma)$ is the adjacency matrix described earlier.
TEXTS: prop 4.8, p. 27, Biggs. Bollabas, Theorem 6, p. 38. Biggs writes Δ for our $D E G$.
(Montgomery) Mathematics Department, University of California
E-mail address: rmont@ucsc.edu

[^0]: Date: January 19, 2016.

