Joseph Sylvia (CruzID: jasylvia)

MATH 115

Homework 1

Note: The following graphs, despite the arrows on each edge, are not directional. All graphs depicted are undirected.
1.

The above graphs are not directional—rather, the arrows dictate a path taken to produce an isomorphism Φ as follows:

$$
\Phi=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
1 & 3 & 5 & 2 & 4
\end{array}\right)
$$

2. Up to isomorphism, there is only one 2-regular graph on 5 vertices.

Proof: Consider an undirected graph G with a set of vertices $V=\{1,2,3,4,5\}$, with vertices 1,2 , and 5 forming a cycle as shown:

The remaining ways in which vertices 3 and 4 can be connected to each other or the rest of G are not sufficient to create a 2 -regular graph, as vertices 3 and 4 would have a degree of 1 , or vertices 1 , 2 , or 5 would have a degree greater than 2 .

Consider the graph above. Since connecting 3 and 5 would leave 4 disconnected, we are only left with connecting 3 to 4 and 4 to 5 in order to create a 2 -regular graph. Therefore, there is only one 2-regular graph on 5 vertices.
3. Up to isomorphism, there is only one 2-regular graph on 6 vertices.

Counterexample:

4. The additional "connected" qualifier doesn't affect problem 2. However, my counterexample in problem 3 would be invalid, as it is a disconnected graph. The original statement would then be true, as all vertices would have to be connected to form the shape of a circle in order to keep each vertex at a degree of 2 .
6.

7. There is a 3-regular graph on 5 vertices-false. Proof: Consider the following formula, which we will accept as true:

$$
2 m=\sum_{V=1}^{n} \operatorname{deg}(V)
$$

Where m is the number of edges and n is the number of vertices. In other words, the sum of the degrees of all vertices in any graph is equal to twice the number of edges. For a 3-regular graph with 5 vertices, the sum of the degrees of all vertices is 15 .

$$
\begin{aligned}
& \sum_{V=1}^{5} \operatorname{deg}(V)=15 \\
& \quad \Rightarrow 15=2 \mathrm{~m} \\
& \Rightarrow 7.5=\mathrm{m}
\end{aligned}
$$

So by the formula, we can see that a 3-regular graph on 5 vertices would require 7.5 edges, which is impossible. Therefore, there is no 3-regular graph on 5 vertices.
8. For brevity and sanity, I will only depict unlabeled isomorphisms of trees on 3, 4, and 5 vertices.

3 vertices.

There are only 3 ways to arrange labels here. 1-2-3, 1-3-2, and 2-1-3.

4 vertices.

For the left isomorphism, there are only 4 ways to arrange the labels, as the only unique vertex is the one with degree 3 . For the right isomorphism, there are

$$
\frac{4!}{2}=12
$$

ways to arrange labels, as half of the possible arrangements are reflections of the other half. So there are 16 ways total.

5 vertices.

As with the previous case, there are only $\frac{5!}{2}=60$ ways of arranging labels for the top tree. For the left tree, there are $5 * 4 * 3=60$ ways of arranging labels as well. For the right tree, there are only 5 ways of arranging labels, since the middle vertex is the only unique one, with a degree of 4 . There are 125 ways total, which falls in line with the formula n^{n-2}, where n is the number of vertices.

