MAKE-UP PROBLEM FOR HW 5

A. Redo exercise 4 , but with \mathbb{Z}_{2} replaced by $\mathbb{Z}_{k}, k>2{ }^{1}$ Here \mathbb{Z}_{k} is the cyclic group of integers mod k. Thus, your vertex set will be $V=\left(\mathbb{Z}_{k}\right)^{n}$. Your edge set is defined by declaring vertices to be adjacent if and only if exactly one of their n coordinates are different. ${ }^{2}$

Show that " translations" are automorphisms of this graph. Thus, for $v \in V$ show that the "translation by v map": $T_{v}: V \rightarrow V$ which is defined by $T_{v}(s)=s+v$ is a graph automorphism ${ }^{3}$
B. [EXTRA PRACTICE PROBLEM] Let S be a set of n elements. Fix an integer $k<n$. Form a simple graph Γ from S whose vertex set $V=V(\Gamma)$ is the set of all k element subsets of S. Declare that two vertices are adjacent if and only if the corresponding subsets of S are disjoint. Let $G=S_{n}$ be the group of all permutations of S^{4} i) Describe how a $\sigma \in G$ acts on V. ii) Prove that this action of σ is a graph automorphism.

[^0]
[^0]: ${ }^{1}$ In bio-informatics $k=4$ corresponding to the 4 letters, $\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}$ of the genetic code.
 ${ }^{2}$ In symbols, $v, w \in V$ are adjacent if there is an index i_{0} in the index set $\{1,2, \ldots, n\}$ such that $v_{i_{0}} \neq w_{i_{0}}$ while for all $j \neq i_{0} v_{j}=w_{j}$.
 3_{s} and v each have n components, $s_{i}, v_{i} \in \mathbb{Z}_{k}, i=1, \ldots, n$. Their sum $s+v \in V$ is the vector whose i th component is $s_{i}+v_{i}$, the addition being mod k.

 4 a permutation of a finite set is just an invertible map from the set onto itself.

