HOMEWORK, DUE FEB 14, VALENTINE'S DAY: CYCLE AND CUT SPACES; HOW THEY WORK ON WHEEL GRAPHS

Below is the star graph with 4 edges, $K_{1,4}$ with its associated wheel graph W_{4} just to the right. The edge labeling will be detailed further on.

1. Look up the definition of "star graph" and "wheel graph".
A) Draw the star graph $K_{1,5}$ with 5 edges and the wheel graph W_{5}.
B) The star graph with n edges is also referred to as the bipartite gaph $K_{1, n}$. Why?

Labelling of edges, vertices. We label the 'hub vertex' of the wheel as 0 and the other vertices $1,2, \ldots, n$ in cyclic order. Label the edges coming out of the hub as $e_{1}, e_{2}, \ldots e_{n}$, ordered pointing out so that $e_{i}=(0, i)$ points from 0 to i. Label the edges going around the big cycle as $f_{1}, f_{2}, \ldots, f_{n}$ with $f_{i}=(i, i+1)$ going from i to $i+1$. See figures above.
2. The star graph $K_{1,4}$ depicted above is a spanning tree for the wheel graph W_{4} to its right.. Like any spanning tree, the star graph induces a basis for both the cycle space and the cut space of the wheel graph.

A i) Write out the corresponding basis for the cycle space.
Use the following convention. The symbol e_{i} will also mean the function that is 1 on edge e_{i} and 0 on all other edges. So $-e_{i}$ is the function that is -1 on e_{i} and 0 on all other edges. Similarly for f_{i}. Example: $e_{1}+f_{1}-e_{2}$ is the cycle vector corresponding to the triangle with vertices 012.

A ii) Write out the corresponding basis for the cut space.
B) Now draw another different spanning graph for W_{4}. List the edges that you used.

B i) Write out the corresponding basis for the cycle space defined by this choice of spanning graph.

B ii) Write out the corresponding basis for the cut space.

C i) Write out the change of basis matrix taking you from the cycle basis of A i) to that of Bi)
D) i) How many cycles are there in W_{4} ?
ii) Compare the number from (D) (i) to the total number of elements in the cycle space when our underlying field is the field with 2 elements.
3) A) Proceed to the general wheel graph W_{n}, and its spanning tree, the star graph $K_{1, n}$. Use the labeling system as above for vertices and edges.

Do the general analogue of problem 2A (i): write down the basis for the cycle space of W_{n} which is induced by the spanning tree $K_{1, n} \subset W_{n}$.
4) i) How many spanning trees are there in W_{4} ?
ii) Verify that the number you found 'by hand" in part (i) agrees with the number given by the tree number formula (any cofactor of the Laplacian of W_{4}).
5) i) Describe the automorphism group of the star graph $K_{1,4}$. How many elements are in it? Is it Abelian?
ii) Describe the automorphism group of the wheel graph W_{4}. How many elements are in in it? Is it Abelian?
6) Repeat problem (5) for the general the star graph $K_{1, n}$ and wheel graph W_{n}.
7). Challenge problem. Repeat problem 4 for W_{n} : how many spanning trees are there in W_{n} ?

