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1. INTRODUCTIOK 

Consider the classical three-body problem, i.e. the motion of three point 
masses under the laws of classical mechanics. We shall say an orbit is parabolic 
if two of the particles remain bounded for all positive time while the third 
approaches infinity with zero velocity. One can conjecture that the set of all 
parabolic orbits forms a smooth submanifold of the phase space. 

In this paper we prove this conjecture for three special cases of the three- 
body problem. The first is the well-known “restricted three-body problem” 
[2], where one of the masses is zero and the other two move in circular 
orbits. The second is a problem discussed by Sitnikov [5], where two equal 
masses move in a plane and the third moves on a line perpendicular to the 
plane through the center of mass of the first two. The third is the collinear 
three-body problem, where the particles are confined to a line. In each case 
the problem has only two degrees of freedom. For these examples we prove 
that the parabolic orbits form an analytically immersed submanifold of the 
energy surface. 

Our method is to introduce at infinity a periodic orbit. This orbit has as 
its asymptotic set the set of parabolic orbits. We study the PoincarC map of 
this periodic orbit. This map is a diffeomorphism of the plane to itself 
leaving the origin fixed. The points asymptotic to the origin correspond to 
parabolic orbits. 

For a diffeomorphism f: R* + R* leaving the origin fixed, define the 
local asymptotic set of f as: 

@(f, U) = {x 6 Li: f”(x) E U V k > 0, f’(x) + 0 as k - l x}. 

Here C’ is an open set containing the origin. Let Df(x) denote the derivative 
(Jacobian) of f at x. If Df(0) has no eigenvalues of modulus one, then the 
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standard stable manifold theorem tells us that cllc is a submanifold of CT. For 
small zi, a+ is an embedded submanifold, with the embedding as smooth 
as f. 

However, for the Poincare map of the periodic orbit introduced at infinity, 
M(0) is the identity. In this paper we give sufficient conditions for a+ to be 
a submanifold in this degenerate case. This part of the work is closely related 
to a paper of Slotnik [6], although the proofs are fundamentally different. 
Also, Slotnik considers only symplectic f, while we do not make this 
restriction. 

The first half of this paper concerns a stable manifold theorem for 
degenerate fixed points. The second half contains the applications of this 
theorem to parabolic orbits in the special cases of the three-body problem. 
The relation between parabolic orbits, homoclinic points, and wildly 
oscillating orbits has been previously discussed [1,4]. In this paper we arc 
content to prove that the parabolic orbits form a smooth submanifold of 
the energy surface. 

2. A STABLE MANFOLD THEOREM FOR DEGENERATE FIXED POINTS 

For degenerate f the asymptotic set Ql+(f, U) is generally not a manifold, 
as one can easily see in the following example: 

f(x, Y) = (x - 33 + Y2, y + ZUY). 

Here 0l+(f, R*) is the union of three rays. Although each ray is a submanifold, 
027 is not. We must therefore fix our attention on one branch of the asymptotic 
set at a time. 

Consider the following sector centered on the positive x-axis: 

B(/3,6) ---= {(x, y) E R2 : 0 < x < 6, I y 1 < /lx}. 

We can define the asymptotic set restricted to such a sector: 

A+(f, B) = {x E B : f’;(x) E B Vk > 0, fk(x) + 0 as k -+ co}. 

The following theorem gives sufficient conditions for A+ to be a real 
analytic arc. To analyse all branches of the asymptotic set, one must rotate 
the coordinates (x, y) until the branch of interest is near the positive x-axis. 
The negatively asymptotic set is analysed by considering f-1. 

THEOREM 1. Let f: R2 + R2 be real analytic and have the form 

f=id+p+r, 

where id is the identity, p := ( pl , p2) is a homogeneous polynomial of degree 
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n -: 2, and T consists of terms of degree at least II -- I. Suppose further that 
for x >. 0, 

p,(.r, 0) ..: 0 

p,(x, 0) 7 0 

2- (s, 0) ,> 0. 

Then there exist positive constants ,B and 6 such that A -(f, B@, 6)) is the graph 
of a d~~ertmtia6le junction q.~: [O, 61 ---f RI. Furthermore, j I (u,61 is real analytic. 

Slotnik [6] gives an example for which CJI is not analytic at the origin. 
He further proves for symplectic f that v is Cz at the origin. The author 
conjectures that this is also true for arbitrary f, but the proof does not seem 
to fit naturally with our methods. Furthermore, smoothness at the origin is 
of little interest in our examples. 

The proof of Theorem 1 proceeds in two parts. In the next section we 
shall prove the following: 

PROPOSITION 2. Let f satisfy the hypotheses oj Theorem 1. Then there is a 
positive constant ,8” such that, for any /3 E (0, &,I, we can find a 6 > 0 such that 
A-(f, B(j3, 6)) is the graph of a Lipschitzjunctiun CJJ: [0, 61 -+ RI. 

In Section 4 we use the above result and some techniques from the theory 
of holomorphic functions to prove Theorem 1. Sections 5 and 6 contain 
the estimates needed in the proof of the theorem. The remaining sections 
are concerned with the applications to celestial mechanics. 

3. THE GEOMEXRIC ARUJMENT 

In this section we give a geometric proof of Proposition 2. This is the part 
of the proof of Theorem 1 differing most drastically from the methods used 
by Slotnik. 

Let OL, fi, and 8 be positive. Define the following subsets of R?: 

B x B(fi, 6) z {(x, y) E R* : 0 :r; .r ;- 6, y :-:. 8.1.) 

bf -= {(x, y) E B : y = /Ix) 

6- = {(x, y) E B : y .-z -/3x; 
B+ r {(x, y) E R2 : 0 < x :< 6, y ;S px} 

B-={(x,y)~R~:O<x<8,y:;-@; 

s(a)==.{(x,y)~R~:~yl >~Cy..rl} 
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Let 7rT2 : R2 + R1 be projection onto the y-axis, i.e., ~~(x, y) = y. We shall 
need the following proposition, the proof of which is given in Section 5. 

PROPOSITION 3. Let f = (fi ,f..) satisfy the hypotheses of Theorem I. 
Then there exist positive constants a. and /?, with the following properties. For 
any ,3 E (0, /3,] there exists a 6 such that 

0 <f&i, y) < A-, w, r> E w> a>, x /- 0 (3.1) 
f(b.--) c B-l- (3.2) 

M(x): S(a) ---* S(x), vx E B(B, 6) (3.3) 

I ~2of-w d I n24 I, ‘dx 62 f(W, w, 6 E S(4. (3.4) 

LVe now proceed with the proof of Proposition 2. Let r be a Cl arc, and 
let x E lY Let TJ be the tangent space of r at x. Define the set of vertical 
arcs in .4 C R2: 

cI(a, A) := {r C A : r is a Cl arc, TJC S(N) Vx E rj 
By condition (3.3), f maps vertical arcs in U to vertical arcs in R2, i.e. 

f: V((Y, B) + Q,, R2). (3.5) 

Furthermore, f does not contract vertical arcs in the following sense: 

PROPOSITION 4. Let rg V(a, B), with x1 , x2 E r. Then 

I Irz(f(xl) - f(x2)), 2 I x2(xl - x2)i' 

Proof. Since f maps vertical arcs to vertical arcs, 

f(x,) - f(Xp) E S(a). 

Let Y: [O, I] --+ f(B) be defined by 

Y(t) : tf(x,) + (1 - t) f(x,). 
Then 

1 X2(XI - x,)1 = I(7r, 0 f-1 0 Y)(l) - (7r2 0 f-1 0 Y)(O)1 

-is,‘c ?r2 0 f -1 0 Y)’ (t) dt 
< I II 7r2 0 r>f-l(Y(t)) Y(t)1 dt 

0 

G o1 I d”(t)l dt (by (3-4)) I 

= I ~2(f(XJ - f(x2))L 

which completes the proof of Proposition 4. 
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We now wish to consider the set V’ of those vertical arcs extending all 
the way across B: 

l” = {ZE V(a, B): one endpoint of Z is in b I, the other in h-1. 

The following proposition concludes that a vertical arc extending across 
B intersects the asymptotic set A+ exactly once. It then follows immediately 
that A+ is the graph of a Lipschitz function v: [0,6] -+ R*. The Lipschitz 
constant must be less than 0~. 

PROPOSITION 5. Choose /IO E (0, /I11 such that QI > & . Let r~ I/‘. Then, 
for j3 E (0, &,I, there exists a 6 > 0 such that rn A-‘(f, B(p, 6)) contains 
exactly one point. 

Proof. We first note that the condition OL > fi insures that if TE V((Y, R2) 
and if x1 , x2 E Z n B, then the subarc of r between x1 and x2 is a subset of B. 
Thus if FE V’, properties (3.2) and (3.5) imply that f(r) n B E V’. Letting 
r r, , define 

r, = f(r,-,) n B E v’, for k>l. 

Lc* 
I, = f-yr,), k ;z 0. 

Then {Zk} is a nested sequence of non-empty compact arcs, so nZk # ,E. 
how suppose that x1 and x2 E n Zk . Then fk(x,) and fk(x2) E B for 

k 3 0. By condition (3.1), f’(x,) and fk(x2) 4 0 as k -+ co. Therefore 
rro(f”(x,) - f’(x,)) + 0. But Proposition 4 implies that 1 r2(fk(x1) - fk(x2)I >, 
! rra(x, - x2)/. Therefore xi = x2 and n I, contains only one point. Since 
r n A- = n Zk , the proof of Proposition 5 is complete. 

We have now completed the proof of Proposition 2, given the proof of 
Proposition 3 appearing in Section 5. In fact, we have proved more. One can 
see in the proof of Proposition 3 that OL can be chosen arbitrarily small at the 
expense of choosing /! and 8 small. Thus the Lipschitz constant of v goes to 
zero at the origin and Q is differentiable there, with p’(O) = 0. One can also 
see in the proof of Proposition 3 that we do not use the analyticity of f. We 
only need that r is Cl, and 

r(x) = 4 x II”), h(x) = 4;; x llJ*--l). 

Thus we have proved the following: 

PROPOSITION 6. Let f: R2 -+ R2 be Cl, f = id + p + r. Suppose p 
satisfies the hypotheses of Theorem 1, and let r satisfy the above conditions. 
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Then there exist 8,s > 0 such that A+(f, B(/3,6)) is the graph of a Lipschitz 
function q~: [0, 61 + RI. Furthermore, v’(O) exists and equals zero. 

The author conjectures that 9, is actually Cl. Indeed, one expects that p 
is C’ if f is Cr. 

4. THE ANALYTIC ARGUMENT 

Using the results of the previous section, we can now prove Theorem 1. 
Since the mapping f = (fi , f2) is real analytic, we can extend fl and f2 to 
holomorphic functions of two complex variables in a neighborhood of the 
origin in Cs. We need the following proposition, which will be proved in 
Section 6. 

PROPOSITION 7. Let f satisfy the hypotheses of Theorem 1. Then there 
exist /3,6 > 0 and an open set Q CC such that (0,s) C Q and 

fi(%Y> EQ for x E Q, IYI <Plx!, (4.1) 

I f&, Y) - Y I -==l I Y I for xEQ, Iyl--BIxI, x#O, (4.2) 
Plfl(%Y)i < If&,Y)l for XE-Q, IY I ;PIx!, xf:o. (4.3) 

Furthermore, A-(f, B(/3, 6)) is the graph of a function I: [0, S] --f RI. 

We now proceed with the proof of Theorem 1. Let 3 = {h : h is holo- 
morphic in Q, I h(x); < /3 1 x ‘, and h(x) is real for real x}. We shall define 
amaps:X’+Z’. FixhE.%‘. Let 

Let 
Wt Y) = fi(x, Y) - h(f,(x, Y)). 

A0 --- {(X, y) : SE Sz, 1 y I < fi i X ,}, 

A --:{(x,y):xEQ, :yI </3!xI}. 

By (4.1) H is holomorphic on A”. Fix x = x0. By Rouche’s Theorem and 
(4.2) $.(x, y) and y have the same number of zeros in 

D(.r,) = {y : I y I < B I &J I). 

BY (4.3), I h(fdxo ,u>)l d P Ifdxo ,u)l < Ifdxo , r)l for Y E Wxo,). So, 
again by RouchC’s Theorem, H(xo , y) and fi(xo , y) have the same number of 
zeros in D&s). Thus, for each fixed x0 E Sz, H(xo , y) has a unique simple zero 
in D(x,). Define 9h(x,) to be that zero. By the Implicit Function Theorem, 
9h is holomorphic in J?. Since Sh(x) E D(x), 1 Sh(x)\ < /3 1 x 1. For fixed 
real x0 , H(xo , y) is real for real y. Since H(x, , y) has only one zero in D(x,), 
that zero must be real. Hence .qh(x) is real for real x, and 9’: X --+ 3’. 
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Xote that we have constructed .F so that f(graph(.Fh)) C: graph(h). 
Therefore, for n :I:: m, we have 

f”‘(graph(S%)) C graph(.?F’l- ‘*h) C I I. (4.4) 

Sow fix h, E .W. Let h, = Ph, , n I, 2 !... . l’hc sequence [/I,~) is 
uniformly bounded, hence a normal family on J2. ‘l’herefore there exists 
a subsequence of {h,J converging to h E X. R:e shall show that graph(h) 
remains in A under iterations of f. 

Suppose there is a positive integer m and an x E Q such that fnz(x, h(x)) $ A. 
By (4.1) we have nIfm(x, h(x)) E Q, for all x E Q, k ;’ 0. Therefore we must 
have / rr2fm(x, h(x))! >- j3 rlfm(.x, h(x))l. Here rr,(x’, u) --- s and n,(x, y) - y. 
Since f” is continuous, there is an c > 0 such that 

: y - /2(.x)1 < E 7 fn’(x, y) fj A. 

Pick n 3 m so that / h,(x) - h(s)1 < e. Then f”l(x, h,,(x)) 4 A, contradicting 
(4.4). Therefore fni(x, h(x)) E A, for all x E Q, m 2 0. 

Sow consider real x. \Ve have shown that 

gwW ‘m) C id-(fa W 6)) i w@(v). 

Therefore h /fo,q -. q. Thus v is real analytic and the proof of Theorem 1 
is complete. 

5. ESTIMATES 

In this section we prove Proposition 3. We need the following lemma, 
the proof of which is an elementary exercise. 

LEMMA 8. Let p: R2 - R1 be a homogeneous polynomial of degree n with 
p(s, 0) > 0 for x > 0. Then th ere exist positive constants /3 and K such that 
P(X,Y) 2 Kx” for x :> 0, i y .<; /3x. 

We begin by establishing the following estimates for the mapping f. Let 
D, :- alax and D, 1 2/8y. 

PROPOSITION 9. Let f = (fi , fi) satisfy the hypotheses of Theorem 1. 
Then there exist positive constants a, & , and 6, such that for (x, y) E B(/$ , 6,) 
and x j: 0, 

x>f,>O (5.1) 

Dzfi - D,f, > I aDA - “-‘DA I 

Dzfz + Dlfi > I aDzfi + a-‘D,fi I 
P-2) 

det(Df) - Dlfi > a-l I Dlfi I 

det(Df) t- Dlfi > a-l I Dlfi I. (5.3) 



Furthermore, for any /3 E (0, /II], th ere exists a positize S < 6, such that 

xy-If2 > fi , for x E (0, 61, y i/3x. (5.4) 

Proof. Let 

p,(x, y) = a()xx” + QIXR .‘y - ..’ 

p,(x, y) = h&J + b#-. ‘y + ... . 

The hypotheses of Theorem 1 imply that a, < 0, 6,) .L 0, and b, > 0. 
Choose cz so that 

0 < x < (6, - na& a, j. 

Each of the following homogeneous polynomials is positive along the 
positive x-axis. Lemma 8 implies the existence of positive constants PI and Kr 
such that, for x 2 0 and y ; < &r, 

-pl 2 Kr~” 

D,p, - D,p, + aD, pl - a-‘D,p, 3 Klxn 1 

D,p, - D,p, - aDzpI + amlDIpB > Klxn-’ 

D2p2 - a-‘D, p, 3 K,x~-’ 

D2p2 + a-‘D,p2 > Klxn-’ 

xy-‘pz - p, 3 KIX”. (5.5) 

By hypothesis we have r(x) = o(ll x 1”) and Dr(x) = o( / x Iln-1). Thus we can 
choose 8, > 0 so that, for x E (0, S,] and ) y ) < &x, 

I y1 i < k;xn 

I D,rz - D,r, + d&r, - a-‘D,r, 1 < Klxn-l 

1 D,r, - D,Y, - aD,r, + or-‘D,Y, / < K,xn--1 

I D2y2 - cc’Dlr2 I < iKlx”-l 

I D2r2 + a-‘D,Y, ’ < &Klxn-l. 

NOW let qi = pi + ri , for i = 1 or 2. Combining the above corresponding 
inequalities we have, for (x, y) E B(& , 6,) and x f 0, 

--Q1> 0 

Dzqz - 4s + ‘yDzq1 - a-‘D,q, > 0 

Qqz - 4q, - aD2ql + a-‘L&q, > 0 

D 2q2 - a-‘D,q, > iK,xn-’ 

D,q, + a-‘Dlq2 > &K,.vn-’ 

(5.6) 

(5.7) 

(5.8) 
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Let q = (ql, qJ. hte that q(x) = O(ll x I,“), Dq(x) =: O(ll x Il?r-l), and 
dWW4 = 41 x I,‘-‘). We can therefore choose constants Ks and 6,) 
with Z&J-’ < I, such that, for (x, y) E B(& , 6,) and x # 0, 

: q1 ; < Kp” (5.9) 
1 aD2q1 + wlDlq, ! + : D,q, + D,q, : < 2K.g~ 1 (5.10) 

2D,q, T L&q2 ! + a-l I D,q, < K.# -I (5.1 I) 

1 det(Dq)l < Kax”--l (5.12) 

I det(Dq)’ < .;K,.v-’ (5.13) 

Now let 6, = min(6, , S,) and recall that fr(x,y) - .r + ql(x,y) and 
f&y) = Y + qdx,y). For (x, Y> ~4% , %I, (5.6) implies f&v) < x, 
while (5.9) implies jl > x - 1 q1 1 > x(1 - K.gTz-l) > 0. Thus we have 
established (5.1). Inequalities (5.2) follow from (5.7) and (5.10), since 

Defi - Dlfl = D,q, - D,q, > I ciD,q, -- c’Dlq2 I 

= 1 c&f1 -- cx--‘Dlfi 1 

Dzfz T 4fl 3 2 - I D,q, i- D,q, I > I (J),ql + a-‘Dlqz I 
= ’ aD,f, T a-‘Dlfi 1. 

For inequalities (5.3) we note that 

det(Df) = 1 + D,q, + D,q, + det(Dq). 

Therefore 

det(Df) - Dlfl > D,q, - ! det(Dq)i > a-l I Dlf2 :, 

by (5.8) and (5.13). Furthermore, by (5.11) and (5.12), 

det(M) + Dlfi > 2 - 12Dlql + D,q, I - I det(Dq)I :, a-l i D1fz I. 

Now let /? E (0, &I. Choose S so that 

1 xy-‘y2 - y1 I < Klx” 

for x E (0, S] and y = +,9x. Then by (5.5) and the above inequality we have 

v-x -fx > .ty1p2 - p1 - i Xy-‘Y2 - rl ! > 0 

This establishes (5.4), and the proof of Proposition 9 is complete. 
We can now proceed with the proof of Proposition 3. Properties (3.1) and 

(3.2) follow immediately from (5.1) and (5.4). Inequalities (5.2) imply 

Dzfz - Dlfl > dj~ - ‘x-‘Dlf, 
D& -1 Dlfl > -aD ji - a-‘D,f, . 
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Multiplying by (Y and rearranging terms we get 

for x E B@, 6). N owleta+=(1,~)~Z2aandS’(cu)=S(cx)~{(x,y):y&0}. 
The above inequality implies that Df(x) a+ E S+(a). Let a- = (- 1, CX). 
A similar argument shows that m(x) a- E S’(a). It follows that Df(x)t E S+(a) 
for 5 E S+(a). Therefore m(x): S(a) + S(a) for all x E B(p, S), and we have 
established (3.3). 

Now consider inequalities (5.3). These imply 

I Dlfl - a-‘4f, I < WDf), (5.14) 

for x E B(/?, 8). N ow suppose x E f(B@, 6)). Then m-l(x) = (Df(f-l(x)))-1, 
so 

( n@F(x) a+ ( = 1 det(Df)l-’ ( -D j2 + aD jl ( < a, 

by (5.14). Similarly we can show I n&f-‘(x) a- I < a. Thus 1 ~aDf-l(x)6 I < 
I wt I, for 41 x E f(W, a)), I E S(a), and the proof of Proposition 3 is 
complete. 

6. ESTIMATES IN THE COMPLEX PLANE 

Jn this section we finish the estimates by proving Proposition 7. Recall that 

p&r) = G$" + ap-'r + *** 

pz(x,r) = b0.P + w+Y + ... 

and that the hypotheses of Theorem 1 imply a,, < 0, b,, = 0, and 4 > 0. 
Let 

g&J4 = x + w” 

&(X9 39 = Y + w-Ly 

4x, y) = P&, ~9 - 49” 

%4x, 39 = P&7 39 - w-9 
Q(y,6) ={xEC:O < 1x1 <6, largxl <y) 

Q’ = complement (Q). 

PROPOSITION 10. There etit positive constants y, 6, , and KS so that, for 
8 E (0,s J and a! E qy, a), 

dist(g,(x), WY, 6)) 2 X3 I x In WI 

1 1 + blx"-1 1 - ( 1 + u$"-1 1 2 2K8 1 x y-1. (6.2) 
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Proof. It is an elementary exercise to show that one can take 
y -= rr/4(n - I), 8’j2K3 =- min(b, , -a,,), and -a,&-’ < I. The details 
are omitted. 

We now proceed with the proof of Proposition 7. Let y, 6,) and K, be 
given by Proposition 10. Choose /3’1 so that 

for JyJ <</3,1x!. By(6.1), 

dist(g, + s1 , Q’) > dist(g, , Q’) - ! s1 i 3 Ks 1 x In. 

BY (6.21, 

Ig,+~,I-lIyII~~‘-‘Ig,+~,I 

3 1 y 1 (I 1 + blxn-l 1 - I 1 t u&-l !) - 1 s, I - I y I i x i-l I s1 i 

>KJ~i~-~lyl. 

Restating the above two estimates we have, for 6 E (0, S,] and p E (0, &I, 

dist(x $ pdx, y), Q’(y, 6)) 3 K2 I JC In (6.3) 

I y + P2(& Y)I - ! Y I I * I-‘Ix+p,(x,y)I 3 K2’~l’+ly:, (6.4) 

ifxEQ(y,6) and Iy; <,Blx,. 
Now let & be given by Proposition 9 and fix /? < min(& , p2). We know 

from our estimates in Sections 3 and 5 that there exists a 6, so that 
A+(f, B(/?, 8,)) is the graph of a Lipschitz function v: [0, S,] -+ R’. Choose 
6 < min(6,, 6,) so that 

! Y&Y): < 34 I x In (6.5) 

P Y&,Y)I + I yz(x,~)I G 3&b I x In (6.6) 

lPz@,Y) + T&,Y)I ,< 38; x I> (6.7) 

for I x 1 < S and ) y ! < /3 1 x I. Then (6.3) and (6.5) imply dist(f,(x, y), Sz’) 2: 
34 I x In, which proves (4.1). Inequality (4.2) follows immediately from 
(6.7). Finally, (6.4) and (6.6) imply, for I y I = p I x /, 

which establishes (4.3) and completes the proof of Proposition 7. 
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7. PARABOLIC ORBITS IN THE RESTRICTED THREE-BODY PROBLEM 

We now turn to an application of Theorem 1 arising in celestial mechanics. 
The first example we wish to consider is the well-known restricted three 
body problem. [2] In this problem we consider the motion of three particles 
in a plane. Two of the particles, of mass v and p with p + v .- I, move in 
circular orbits of angular velocity 1 about their common center of mass. 
The third particle has zero mass and moves in the gravitational field of the 
first two bodies. Choose a rotating complex coordinate system so that mass v 
is fixed on the real axis at -p and mass p is fixed at fv. If a E C is the position 
of the third particle, the equation of motion is 

f=z-22ik-zlzii-3-g(z), (7.1) 

where g(z) = V(Z + p) ( z + p (-3 + ~(z - V) 1 z - v (-3 - z I z (-3 = o(( z I-‘). 
This equation admits the so-called Jacobi integral 

4 1 s 12 - 4 I z 12 - z I-1 - w(z) = h 

where V(Z) = Y I z + p 1-l $ p 1 a - v 1-l - I z (-1 = O(l z I-“). 
We shall say an orbit is parabolic if z -+ 00 and the radial component of 2 

goes to zero as t -+ CO. We wish to use Theorem 1 to show that the set of 
parabolic orbits is a smooth submanifold of the energy surface given by the 
Jacobi integral. Let 

8 = e-‘O[y + ~($AJ - 2.r2)]. 
(7.2) 

Equation (7.1) can then be written 

R = - $sy 

B = 1 - &%J 

j = - 42 + ~dL2 - Re{e’Og(k-*e-‘O)j 
&J = -h-2 Im{ei0g(2+-i0)}, 

and the Jacobi integral becomes 

Jt(y2 - x2) - w + &&2 - o(2r-2e-i0) = h. 

We note that these equations have a 2rr-periodic solution at (x, y, w) = 
(0, 0, --h). Near this periodic solution we can use (x, y, 0) as coordinates 
and solve the Jacobi integral for w: 

w = --h + 7+(x, y, e). 
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Here q(x, y, 0) is second order in x andy and 2a-periodic in 8. The diffcrcntial 
equations become 

i T_: - py 

3 = - P(x + g,(.r, y, 0)) 

fJ = 1 - g,(x, y, 0). 

Here g, and g, are 2n-periodic in 0, g, is third order in (x, y) and g, is fourth 
order. The Poincare map of the periodic orbit (x, y) = (0,O) has the form: 

f: 
x + x - Kxyy i- y&, Y)) 

y - y - Kxyx t yz(x, Yh 
(7.3) 

where K is a positive constant and rl and rs are real analytic and contain terms 
of at least second order. We shall also encounter this map in the other two 
examples; here K = $P and rl and y2 are actually third order. 

Note that the parabolic orbits are exactly those orbits such that (x, y) -+ 
(0,O) as t -+ co. Recall that for open UC Rs containing the origin, 

Gz+(f, U) = {x E U : fk(x) E li Vk > 0, fk(x) - 0 as K + co}. 

We shall consider only positive x to avoid ambiguity in transformation (7.2). 
The parabolic orbits are then exactly @+(f, U) n {x > O}. The following 
proposition concludes that this set is a real analytic arc and hence that the 
parabolic orbits form a real analytic submanifold of the integral surface. 

PROPOSITION 11. Let f have the form (7.3). Then there exists an open 
U C R2 containing the origin such that Gl+(f, V) n {x > 0) is a real analytic arc. 

Proof. If we write f in polar coordinates we have 

f: 
Y + Y - Kr4 COST O(2 sin 8 cos 0 + O(Y)) 

e + e + Kr3 cos3 O(sineO - cos2 0 + O(Y)). 

Candidates for stable and unstable manifolds can occur only when 6 is 
approximately constant, i.e., where ~093 B(sins 0 - co9 0) = 0, or 0 = &-Igr, 

ft5r. 
Consider first 6 = fi. If we make the transformation 

x=u-v 

y-u++, 
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The map f becomes 

f*: 
u+u--f+(u,w)+-* 

w + w - pJ11, w) + -*., 

where pl(u, z) =: -K(u - ) z, 3~ and pa(u, z) = K(u - v)%. For u > 0 we 
have pl(u, 0) = --Ku4 < 0, ps(u, 0) = 0, and @,/aet(u, 0) == Ku3 > 0, SO 
f* satisfies the hypotheses of Theorem 1. Hence we can find & ,6 > 0 
so that the set 

a’+ = {(Y, e) : Y < 6, 1 e - )7r : < &} 

has the following properties: 

A+ = {X E A?+ : fk(x) E A?+ V/z > 0) - (0) is an analytic arc. (7.4) 

If XEA+, then f&(x) + 0 as K + 00. (7.5) 

If Ii X Ii < 6 :I f(x).\ < 6, and x4 .S?+, then f(x) 4 a’+ (7.6) 

Properties (7.4) and (7.5) f o 11 ow immediately from Theorem 1, while property 
(7.6) follows from (3.1) and (3.2). 

LVe shall prove that A+ = CV n {X > O}. To do so we must show that 
there are no points outside .9’- which tend to the origin under positive 
iterates of f. Our plan is to divide U n {x > 0} into sectors and eliminate 
the other sectors one by one. 

Rotate the coordinates so the liney = --x becomes the u-axis. By applying 
Theorem 1 to f-r we can find a set 

A?-= (r,Qr o,Ie+;( <Al I 
with properties analogous to those of @+. Note that the analog of (7.6) can 
be stated: 

If Ii x II < 4 II f(x)lI < 6, and x EL@, then f(x) E 9-. (7.7) 

Now let 

GF+ = {(I, 8) : Y < 6, Is, < 8 < &Jr} 

If we choose /I3 > arr and 6 small enough, then Q+ will have the following 
properties: 
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If XEW and !’ f(x)1 --< 6, then f(x) E % .-. (7.8) 

If x+0 and f&(x) E c/; ‘. for all k 2 0, 

then f”(x) ft 0 as k -> 02. (7.9) 

Property (7.8) follows from the polar form for f, since 8 is increasing in %+. 
Property (7.9) follows if we choose 6 so small that 

I Y1(X, y)1 t ; I&, Y)l G (1 - cot MY. 

Since x < y cot /33 in ‘33, it follows that 

and hence 
fd.5 Y) - x < m, Y) -. Y. 

Let 22(x,, ,yO) = ((x, y) : y - yU >, x - x,,}. We have shown that if 
fk(q, , yo) E %‘+ for K > 0, th en fk(xo , yo) E %x0 , h). Since 0 4 9(x0 , yo) 
for (x0, y,,) E C+ - {0}, we have proved (7.9). 

Similarly we can define 

e= (Y,e):Y~6,-;<e~p‘j 
i I 

with analogous properties for f-l. Note that the analog of (7.8) becomes: 

If 11 x 11 ,< 6, ‘1 f(x)11 < 6, and x $%-, then f(x) $59. (7.10) 

Yaw let U = ((I, 0) : Y < S}. We shall show that 

A+ -_ od;-(f, U) n {x > 0). 

Let x E CZ+(f, U) n {X > 0}, i.e., II f”(x)11 < S for all k 3 0 and fk(x) --f 0 
as k -+ 03. Since Y is increasing in a-, (7.7) implies that fk(x) $ a- for all k. 
If f”(x) 6 VA for some k = k, , then f”(x) E W for all k > K, by property 
(7.8). But property (7.9) implies fk(x) ft 0. Therefore f”(x) 6 V+ for all k. 
Since 8 is increasing in V n {x > 0}, (7.10) implies there exists k, such 
that f”(x) $ V for all k 2 k, . Suppose there is a k, > k, such that fk(x) $ B+ 
for K = k, . Then by (7.6), f”(x) 4 g-+- for all k > k, . Therefore 

fk(X)~Li?+uLH-u~~u~- =3? for all k > k, . 

But 0 is strictly monotone on the complement of W, which is a contradiction. 
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Therefore P(x) E 2% for all K 3 K, . Property (7.6) implies fk(x) E B+ for all 
K > 0. Therefore x E A- by (7.4). 

Now suppose x E A + - (0). Property (7.5) implies that 

3 E @(f, U) n {x > 0). 
Therefore 

@(f, L;) n {X > 0} 7: A.., 

and is an analytic arc by (7.4). The proof of Proposition 11 is complete. 

8. THE COLLINEAR THREE BODY PROBLEM 

The next example is the three body problem in Rt, i.e., when all three 
particles move along a line. Let particle k have position zk E R1 and mass mk . 
The motion is described by the differential equations: 

f, =1 - c mdzk - zj) 
)#k 1 zk - zj I3 

We take the total energy to be negative: 

Kow assume zr < za < z3. We shall regularize double collisions by a 
Levi-Civita transformation, therefore such a collision results in a “bounce” 
and the ordering remains the same. We shall consider parabolic orbits such 
that zr + -co and i, -+ 0 as t --f 03. Since the total energy is negative, 
the distance z3 - za will remain bounded. 

We take the center of mass at the origin: mlzl + mgzz, + ngz, = 0. 
Let m = (m2 + mJ1f3, :I4 = (m, + m2 + m3)1/3, and make the following 
change of variables: 

2 = -M%-3z, 

5 = m2mi1(z3 + m,m-3z1). 

The equations become 

2 = -mm-3z-2[m,(l - m3u)-2 + m,(l + m2u)-2] 

[ = -<-" + m,m-1ill-2z-2[( 1 - m3u)-2 - (1 + m,~)-~], 

where II = m-2M-1[z-1. As zr -+ -co, a -+ fco and 5 = m-l(z, - z2) 
remains bounded. Therefore I( - 0. Expanding in powers of u, we get 

ii = --z-2(1 + &)) 

% = -e2(1 t g&J)), 
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where gi(u) = O(G) and g*(U) = O(S). The energy integral becomes: 

2fz2(3.3 - z-1) + 262(@ -- (-1) + z- ‘h-‘w(u) = - I) 

where 2a2 == h-lmlm3M-*, 2b2 = h-lm,m,m-1, and V(U) =:. O(n2). 
As in the previous example, we wish to bring z = rx) to the origin. \Ve 

must also regularize the singularity at 5 = 0 with a Levi-Civita trans- 
formation. Let 

2 --_ 73-2 

.izy 

5 = 2liy 
t z (+f-l* 

The energy relation can be written 

‘7* + % + dyy2 - x2) + WI@) = 1. 

The differential equations become 

x’ = 4yvy 

Y’ = --bYQyl + g&g) 

t’ = T) 

77’ = I( 1 + g&, Y, 6)). 

Note that u = (const) t2x2, We = O(g), gl(u) = O(u*), and g&x, y, 5) is 
second order in x and y and fourth order in I. Also we have made the time 
transformation dt = Gap dr, so that the prime denotes differentiation with 
respect to 7. 

As in the previous example (x, y) = 0 is a periodic orbit. Taking a Poincart 
section, we get a map of the form (7.3), where K = ~6~. Again the parabolic 
orbits are exactly those for which (x, y) + 0 as t + co. Applying Proposition 
11 we have that the parabolic orbits form a real analytic submanifold of the 
energy surface. 

9. SITNIKOV’S PROBLEM 

The final problem we wish to consider is one that has been discussed by 
Sitnikov [5] and Alekseev [I]. In this problem we have three non-zero masses 
moving in Rs, but we impose enough symmetry conditions so the problem 
is reduced to one of two degrees of freedom. 

Let particle K have position (wlc , z,J E Cl x R1 and mass mk . Assume 
that w, = 0, a2 = za , w2 = -ws , m, = ma, and the center of mass is 
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(0,O). The three particles will retain this symmetry, and their positions are 
determined by zr and ws . The equations of motion are: 

2l = -2mJzr - z2)[(2cl - z2)2 + I w2 j2]-3/2 

-22, :- -2m,w, i 2ws l-3 - m,wo2[(z1 - 2J2 + 1 we 12]-3/2. 

Let the total energy be negative: 

hrn,i12 + m,(f22 + 1 ti, I*) - 2m,m,[(z, - z2)2 + ) w2 12]-1:* - m22 I 2w, 1-l 

= --h < 0. 

Let m - (2m,)*/3, M = (m, -C 2m2)l13, and make the change of variables 

2 = iwm-32, 

5 = 2m-L, . 

The differential equations become 

i = --(I + y3)-3/*z 1 2 l-3 

where I( = +mM-1 I 5 I z-l. 
The parabolic orbits we wish to consider are those for which z, -+ co, 

5, --+ 0, and hence z -+ co, f --, 0, as t -+ co. Since the total energy is 
negative, I w2 1 will remain bounded. Therefore u -+ 0 and we can write the 
equations: 

f = -2 ( a I”(1 + g&4)) 

% = -5 I 5 1-v + g2(4) 

where gl(u) = O(u2), g2(u) = O(us). The energy integral can be written 

2a2(?@ - 1 2 I-‘) + 2b2(& 1 f: 12 - 1 5 I-‘) + 1 2 I-1 w(u) = - 1, 

where 2u2 = ~m3M-1h-1, 2b2 = ~rnV+, and W(U) = O(u2). Again we wish 
to bring z = 00 to x = 0, so we make the further transformation 

a = 6-q [ ( - b2 - ib W&f)1 
Note that angular momentum w = Im([<) is another integral for this problem. 
Note also that 

! 3 I = b2(1 + R+)). 
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The energy integral becomes 

a2 i 5 i2(y2 - x2) f b4 1 u ,2 4 b%02 - r,(.v, u) /+, 

where z’r(.r, u) is sixth order in s. The differential equations become 

.y’ = -- ib ; 4 ) .t?y 

y’ : : - fb ! 5 ) .t-y 1 t g,(a, u)) 

(I’ = i(u i- 64(X, Y, 4). 

where g, is fourth order in x and g, is second order in s and y. Again we have 
made a time transformation dr =-: b 1 [ 1 d T and the differentiation is with 
respect to T. 

Once more we have a periodic orbit at (x, y) = 0 and its Poincare map has 
the form (7.3), with K y= +rb3. The set of parabolic orbits is therefore a real 
analytic submanifold of the energy surface. 
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