
HW 1. (Classical Geometries. ) Due Monday, Oct 1, 2012, i.e.: Next class.

1. A gradient flow. Let T be the flat torus with standard coordinates θ1, θ2 mod
2π. Let V = − cos(θ1)cos(θ2). Locate the equilibria. Describe each type (source,
saddle, sink). Sketch the flow lines .

2. Hamiltonian flows. For M = T ∗R = R× R let H = (1/2)p2 + P (x) where P
is a polynomial. Sketch the phase portraits in case

a) P is linear
b) P is homogeneous quadratic.
c) P is cubic. Do a few cases.
d) P = (x− 1)2(x+ 1)2.

3. Again as in 2. Again P is polynomial. Is the flow complete? Find a proof or
a counterexample.

4. N-dimensional oscillator. This has for its Hamiltonian H(q, p) = (1/2)〈p, p〉2+
〈q, Aq〉 where p, q ∈ Rn, where we use the standard inner product 〈·, ·〉 to identify
Rn with its dual, and where A is a positive definite symmetric matrix. Prove that
the closure of the typical orbit is a k-torus, for some k ≤ N . Describe the maximal
k in terms of the eigenvalues of A.

5. Guckenheimer-Holmes. Exer. 5.1.2 and 5.1.3 of p. 234.
These exercises are on the Smale Horseshoe and are best solved using symbolic

dynamics. Let Γ ⊂ I2 be the subset of the square S = I2 which never leaves the
square in forward or backward time.

5.1.2. Show that all the periodic orbits are of saddle type. Locate the periodic
orbits with period 4 or less and write out their symbol sequence. Show that Λ
contains a countable infinity of heteroclinic and homoclinic orbits. Show that Λ
contains an uncountable number of orbits which are not periodic.

5.1.3 Show that Λ contains a dense orbit.

6. A gradient system in Rn is given by ẋ = −∇V (x), x ∈ Rn where V is a
smooth function. What is special about the linearization of a gradient system at
an equilibrium, in comparison to a general linear system ẋ = Ax with A a general
n by n matrix.

7. Newton’s equations on Rn are equations of the form ẍ = −∇V (x), x ∈ Rn

where V is a smooth function, called the potential.
a) First orderize the system by introducing v = ẋ so as to make it an ODE on

Rn × Rn = TRn.
b. What is special about the linearization of Newton’s equations at an equilib-

rium in in comparison to a general linear system ẋ = Ax with A a general 2nby2n
matrix.

8. Take the Cantor set to be the product space ZN+

2 , ( N+ is the set of all positive
integers) endowed with the product topology. An element of the Cantor set is then
an infinite sequence (σi)i∈N of 1’s and 0’s; σi ∈ {0, 1}. the sequence labelled by the
positive integers. Consider the map F whcih sends to

;2 : C2 → [0, 1];F2(σ) = Σi∈N+
σi2
−i

a) Show that F2 is continous and onto.
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b) If we give Z2 the “coin-flip” measure (each element has probability 1/2) then
the Cantor set inherits a probability measure. (The product of probability spaces
is a probability space, so that the Cantor set has a probability measure on it. )
Show that F2 is an isomorphism in the sense of measure theory: it is onto, and the
map is measure preserving: µ(F−12 (I) = |I| for any interval I.

hint: consider dyadic intervals.
d)Show that F2 is a measure preserving semi-conjugacy between the Bernoulli

shift on the Cantor set and the doubling map (mod 1) on the interval.

e) Repeat (a)-(c) for FN : ZN+

N → I.

f) Use the fact that there is a bijective map from two disjoint copies of N+ to
N+ to define an onto map C → I × I. Repeat, to establish the existence of an onto
map from the Cantor set ONTO the n-cube. Onto any compact n-manifold.

9. Show that the doubling map S1 → S1 is measure preserving.

10. Prove that rotation of the circle is NOT mixing.

11. Prove that the suspension of a map is NOT a mixing flow.

12. Construct a homeomorphism of the plane R2 = C which maps the spiral
exp(1 + i)t), t ∈ R to the ray y = 0, x > 0.


