HW 1. (Classical Geometries. ) Due Monday, Oct 1, 2012, i.e.: Next class.

1. A gradient flow. Let $\mathbb{T}$ be the flat torus with standard coordinates $\theta_{1}, \theta_{2} \bmod$ $2 \pi$. Let $V=-\cos \left(\theta_{1}\right) \cos \left(\theta_{2}\right)$. Locate the equilibria. Describe each type (source, saddle, sink). Sketch the flow lines.
2. Hamiltonian flows. For $M=T^{*} \mathbb{R}=\mathbb{R} \times \mathbb{R}$ let $H=(1 / 2) p^{2}+P(x)$ where $P$ is a polynomial. Sketch the phase portraits in case
a) $P$ is linear
b) $P$ is homogeneous quadratic.
c) $P$ is cubic. Do a few cases.
d) $P=(x-1)^{2}(x+1)^{2}$.
3. Again as in 2. Again $P$ is polynomial. Is the flow complete? Find a proof or a counterexample.
4. N-dimensional oscillator. This has for its Hamiltonian $H(q, p)=(1 / 2)\langle p, p\rangle^{2}+$ $\langle q, A q\rangle$ where $p, q \in \mathbb{R}^{n}$, where we use the standard inner product $\langle\cdot, \cdot\rangle$ to identify $\mathbb{R}^{n}$ with its dual, and where $A$ is a positive definite symmetric matrix. Prove that the closure of the typical orbit is a $k$-torus, for some $k \leq N$. Describe the maximal $k$ in terms of the eigenvalues of $A$.
5. Guckenheimer-Holmes. Exer. 5.1.2 and 5.1.3 of p. 234.

These exercises are on the Smale Horseshoe and are best solved using symbolic dynamics. Let $\Gamma \subset I^{2}$ be the subset of the square $S=I^{2}$ which never leaves the square in forward or backward time.
5.1.2. Show that all the periodic orbits are of saddle type. Locate the periodic orbits with period 4 or less and write out their symbol sequence. Show that $\Lambda$ contains a countable infinity of heteroclinic and homoclinic orbits. Show that $\Lambda$ contains an uncountable number of orbits which are not periodic.
5.1.3 Show that $\Lambda$ contains a dense orbit.
6. A gradient system in $\mathbb{R}^{n}$ is given by $\dot{x}=-\nabla V(x), x \in \mathbb{R}^{n}$ where $V$ is a smooth function. What is special about the linearization of a gradient system at an equilibrium, in comparison to a general linear system $\dot{x}=A x$ with $A$ a general n by n matrix.
7. Newton's equations on $\mathbb{R}^{n}$ are equations of the form $\ddot{x}=-\nabla V(x), x \in \mathbb{R}^{n}$ where $V$ is a smooth function, called the potential.
a) First orderize the system by introducing $v=\dot{x}$ so as to make it an ODE on $\mathbb{R}^{n} \times \mathbb{R}^{n}=T \mathbb{R}^{n}$.
b. What is special about the linearization of Newton's equations at an equilibrium in in comparison to a general linear system $\dot{x}=A x$ with $A$ a general $2 n b y 2 n$ matrix.
8. Take the Cantor set to be the product space $\mathbb{Z}_{2}^{\mathbb{N}_{+}},\left(\mathbb{N}_{+}\right.$is the set of all positive integers) endowed with the product topology. An element of the Cantor set is then an infinite sequence $\left(\sigma_{i}\right)_{i \in \mathbb{N}}$ of 1 's and 0 's; $\sigma_{i} \in\{0,1\}$. the sequence labelled by the positive integers. Consider the map $F$ whcih sends to

$$
;_{2}: C_{2} \rightarrow[0,1] ; F_{2}(\sigma)=\Sigma_{i \in \mathbb{N}_{+}} \sigma_{i} 2^{-i}
$$

a) Show that $F_{2}$ is continous and onto.
b) If we give $\mathbb{Z}_{2}$ the "coin-flip" measure (each element has probability $1 / 2$ ) then the Cantor set inherits a probability measure. (The product of probability spaces is a probability space, so that the Cantor set has a probability measure on it. ) Show that $F_{2}$ is an isomorphism in the sense of measure theory: it is onto, and the map is measure preserving: $\mu\left(F_{2}^{-1}(I)=|I|\right.$ for any interval $I$.
hint: consider dyadic intervals.
d) Show that $F_{2}$ is a measure preserving semi-conjugacy between the Bernoulli shift on the Cantor set and the doubling map $(\bmod 1)$ on the interval.
e) Repeat (a)-(c) for $F_{N}: \mathbb{Z}_{N}^{\mathbb{N}_{+}} \rightarrow I$.
f) Use the fact that there is a bijective map from two disjoint copies of $\mathbb{N}_{+}$to $\mathbb{N}_{+}$to define an onto map $C \rightarrow I \times I$. Repeat, to establish the existence of an onto map from the Cantor set ONTO the $n$-cube. Onto any compact $n$-manifold.
9. Show that the doubling map $S^{1} \rightarrow S^{1}$ is measure preserving.
10. Prove that rotation of the circle is NOT mixing.
11. Prove that the suspension of a map is NOT a mixing flow.
12. Construct a homeomorphism of the plane $\mathbb{R}^{2}=\mathbb{C}$ which maps the spiral $\underline{\exp (1+i) t), t \in \mathbb{R} \text { to the ray } y=0, x>0 .}$

