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SPECTRAL INVARIANTS IN ERGODIC THEORY.

RICHARD MONTGOMERY

Koopmanism and Spectral Theory.
A map T : X → X induces a linear operator on the space of functions X → C

by pull-back: f 7→ T ∗f If T is invertible and preserves a measure µ on X, then
this pull-back operator T ∗, upon restriction to the space of L2 functions defines a
unitary operator U = UT on L2 = L2(X,µ). Unitary operators U have a spectrum
σ(U) ⊂ S1 ⊂ C. Koopman’s idea, sometimes called “Koopmanism” was to build a
dictionary between dynamical properties of T and spectral properties of U .

Definition 0.1. By the “spectrum” of an invertible measure preserving map T :
(X,µ) → (X,µ) we mean the spectrum of its associated unitary operator UT on
L2(X,µ).

Exercise. Prove that U = UT is indeed unitary.
Note: Ruelle calls U the “transfer operator”.
The spectrum of a bounded operator on a separable Hilbert space breaks up

into various pieces with multiplicities attached to each. These pieces are called the
“point spectrum”, “absolutely continuous spectrum” and residual spectrum, also
known as singular continuous. The elements of each piece also receive a multiplicity,
this being either a positive integer or ∞, for a countable infinity. We will recall
these different spectra momentarily.

Example 0.1. A. If T : S1 → S1 is rotation by an angle α = 2πp/q which is a
rational multiple p/q or 2π then its spectrum consists of the qth roots of unity, each
eigenvalue occurring with countable multiplicity.

B. If T : S1 → S1 is rotation by an irrational angle e2πiα, α irrational, then
the spectrum of T consists of the entire unit circle, with the countable dense set
exp2πikα consisting of point spectrum, each with multiplicity one.

C. If T : C → C is the shift operator of symbolic dynamics, where C = (Z2)Z then
its spectrum consists of the entire unit circle. 1 is the only eigenvalue and occurs
with multiplicity one. The rest of the unit circle occurs with infinity multiplicity.

For A and B, use the basis ek = ei2πkx, k ∈ Z for L2(S1). Note that if T is
rotation by 2πα then T ∗ek = e2πikαek.

For C,

Theorem 0.1. The spectrum of a Bernoulli shift is the entire unit circle, with
1 an eigenvalue of multiplicity one and all other elements lying in the continuous
spectrum and having multiplicity ∞.

In particular, all Bernoulli shifts are spectrally equivalent.
Entropy. There is an invariant of a measure preserving dynamical system called

‘entropy’ which can distinguish different Bernoulli shifts.
We recall some of the definitions.
and that the spectrum breaks up into pieces – continuous, discrete and then

the mysterious ‘singular continuous”. – eigenvalues and continuous spectrum, and,
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possibly discontinuous spectrum. We recall the definitions. Let A be a bounded
operator on a Hilbert space.

Eigenvalues. λ ∈ C is an eigenvalue of A if there is a nonzero vector v in the
Hilbert space such that if Av = λv. .

Spectrum. The spectrum of A, denoted σ(A) consists of the set of all complex
numbers λ for which A− λI is not invertible.

The spectrum is a closed subset of the complex plane sitting inside the disc of
radius ‖A‖ where the norm is the operator norm.

Continuous spectrum vs eigenvalues. When H is finite-dimensional, the only way
for A− λI to be non-invertible is for λ to be an eigenvalue. In infinite dimensions
there are other ways.

The model example of “another way” is given by a multipication operator by a
nonconstant continuous function.

Theorem 0.2. Let X be a Hausdorff space endowed with a Borel measure µ,
f : X → C be a bounded continuous nonconstant function and let A = Mf be
the bounded operator of multiplication by f acting on L2(X) = L2(X,µ). Then
σ(Mf ) = f(X). Moreover, any number λ ∈ f(X) for which the closed set f−1(λ)
has measure zero is not an eigenvalue.

σ(Mf ) ⊂ f(X). Suppose that λ /∈ f(X). Then Mf − λI = Mf−λ. But the
function f − λ misses zero, so the function g = 1/(f − λ) is everywhere defined on
X and satisfies g(f − λ) = 1. Thus Mf − λI)−1 = Mg, showing that C \ f(X) ⊂
C \ σ(Mf ) which is to say σ(Mf ) ⊂ f(X).

Next, suppose that λ ∈ f(X) while the set C = f−1(λ) has positive measure.
Write φ for the characteristic function of this set. Then

∫
φ2dµ = µ(C) 6= 0, so that

φ 6= 0 (a.e.) while Mφ = 0. This proves that λ is an eigenvector with eigenvector
φ.

Finally, suppose that λ ∈ f(X) and that f−1(λ) has measure zero. I will show
that λ ∈ σ(M) but that λ is not an eigenvalue of M . Observe that λ ∈ f(X) if
and only if 0 is in the range of the continuous function g = f − λ, and that the
set f−1(λ) = g−1(λ). Thus it suffices to show that if g is a continuous function
on X for which g−1(0) has measure zero, then 0 ∈ σ(Mg) but that 0 has no
eigenfunction. The method is to construct a sequence of functions ψn of unit
length, ie ‖ψn‖ = 1, such that Mgψn → 0. This would be impossible if Mg

had a bounded inverse, for if L were this inverse and if its operator norm were
‖L‖ = C then we would have on the one hand LMgψn = ψn but on the other hand
‖ψn‖ = ‖LMψn‖ ≤ C‖Mψn| → 0, which is impossible. . Consider the nested
sequence of open sets Un = g−1(−1/n, 1/n). For each n, apply Urysohn’s lemma
to the complementary closed sets Ūn+1 and X \ Un. We find there exist “bump
functions” φn : X → R which are 1 on Un+1 and 0 off of Un. Normalize the φn by

dividing them by
√∫

ψ2
ndµ. Then these functions ψn are unit vectors: ‖ψn‖ = 1,

having support on Un. In particular |gψn| ≤ (1/n)ψn from which it follows that
Mψn‖ ≤ (1/n)→ 0.

To see that the M = Mg of the previous paragraph has no eigenvector for the
eigenvalue 0, suppose it did. Thus, there is a φ ∈ L2 wih Mgφ = 0φ or, gφ = 0.
But g(x)φ(x) = 0 for g(x) 6= 0 if and only if φ(x) = 0. Thus φ = 0 a.e. off of the
set g−1(0). But g−1(0) has measure zero so that φ must be zero on a set of full
measure, and consequently is zero as an element of L2.
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QED
Remark. The functions ψn constructed above are “trying” to converge to the

delta function supported on the closed measure zero set C = f−1(λ). We say that
Mf has λ = f(x) as a “continuous eigenvalue” with corresponding “generalized
eigenvector” δC , the distribution D on X for which 〈D, g〉 =

∫
C
g(y)duC(y). The

measure dµC is unclear, and could be made sense of with more structure. Perhaps.

Bi-infinite shift. A separable Hilbert space has a countable basis ek, k ∈ Z. The
bi-infinite shift is the bounded linear map induced by Uek = ek+1. It is unitary.

Theorem 0.3. The spectrum of the shift map is the entire circle and is all abso-
lutely continuous, each point occuring with multiplicity one.

Proof. Think of ek = exp(i2πkθ) ∈ L2(S1). The operator of multiplication Mz

by the embedding function z = exp(2πiθ), z : S1 → C, sends ek to ek+1. But the
function z has image the unit circle and is nowhere constant. QED

If µ is a probability measure then the constant function 1 ∈ L2(X,µ) is an
eigenvector of UT . Consequently, 1⊥ := {f ∈ L2 :

∫
f = 0} is a closed invariant

subspace of the Hilbert space. We will write this space as L2
0.

Theorem 0.4. Let µ be a probability measure on X. Then T is ergodic if and only
if the dimension of the space of U = UT -invariant functions is 1, if and only if the
multiplicity of the eigenvalue 1 is equal to one.

Following Arnold-Avez, we say a map T : (X,µ) → (X,µ) is a “K-system” if
L2(X,µ)0 = 1⊥ admits an orthonormal basis ea,i, doubly indexed by the integers
: a, i ∈ Z such that UT ea,i = ea,i+1. Fixing a and letting i vary and taking the
closure, we get a separable Hilbert space Ha ⊂ L2. On each Ha the operator U
is a bi-infinite shift, so its spectrum is as given above: it consists of the entire
circle as absolutely continuous part. Thus L2, U is the countable direct sum of shift
operators

⊕
aHa, shift and U has the entire circle as absolutely continous spectrum,

each element occuring with countable multiplicity.
Example. The Bernouli shift B(1/2, 1/2) is a K-system. Recall that the elements

of B(1/2, 1/2) are bi-infinite sequences of 0’s and 1’s. For n ∈ Z write fn(σ) =
−(−1)σn . In other words fn = −1 if σn = 0 and fn = 1 if σn = 1. Then
Ufn = fn+1. Now for any finite subset S ⊂ Z we set fS = Πi∈Sfi. One checks
without difficulty that the fS form an orthonormal basis for L2

0 and that Uf = fS′

where S′ is obtained by adding 1 to each element of S, or , for simplicity S′ = S+1.
More generally UkfS = fS′ where S′ = S + k and k is any integer. It follows that
our countable basis fS can be relabelled fa,j with Ufa,j = fa,j+1 and we have
expressed the shift as a K-system.

Lemma 0.1. T is ergodic if and only if 1 ∈ σ(UT ) is an eigenvalue with multiplicity
1.
T is mixing if and only if for all f, g ⊥ 1 we have that limn〈g, Tnf〉 = 〈g, f〉 ???
T is mixing if and only if the only eigenvalue of U is 1 ∈ S1.

Let us suppose, for simplicity, that µ is a probability measure: µ(X) = 1.
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Reed and Simon, section 8.4

Mathematics Department, University of California, Santa Cruz, Santa Cruz CA

95064
E-mail address: rmont@ucsc.edu


