

Figure III.6. Jump of the ε -pseudo orbit from $W_{+}(0)$ onto 0 and then into $W_{-}(0)$.

periodic ε -pseudo orbit on Λ , namely,

$$q_{j+N}=q_j, \quad j\in\mathbb{Z},$$

where $N = 2j_0 + k + 1$.

In view of the shadowing lemma the pseudo orbit q is shadowed by the unique δ -shadowing orbit $p=(p_j)_{j\in\mathbb{Z}}$ given by $p_j=\varphi^j(p_0)$. By construction, $p_0\in V$ and $\mathcal{O}(p_0)\subset U(\Lambda)$. Since also the shifted sequence $\hat{p}=(\hat{p}_j)_{j\in\mathbb{Z}}$, defined by $\hat{p}_j=p_{j+N}$, is a δ -shadowing orbit of the pseudo orbit q, it follows from the uniqueness that $\hat{p}=p$, hence

$$p_{j+N}=p_j, \quad j\in\mathbb{Z}.$$

Therefore, the shadowing orbit p is a *periodic* orbit of φ having the minimal period N. The theorem follows if we set $N_0 = 2j_0 + 2$.

The next result goes back to H. Poincaré. It explains why the transversal homoclinic point forces the invariant manifolds $W_{+}(0)$ and $W_{-}(0)$ issuing from the hyperbolic fixed point to double back and pile up on themselves as illustrated in Figure III.7.

Theorem III.12 (H. Poincaré). We assume that v is a transversal homoclinic point associated with the hyperbolic fixed point 0 of the diffeomorphism φ . Let V be an open neighborhood of v and let $U = U(\Lambda)$ be an open neighborhood of $\Lambda = \overline{O(v)}$. Then there exist infinitely many homoclinic points associated with 0 in V, whose orbits run in U, and which are distinguished by two **rotation numbers** r^{\pm} .

Proof [Shadowing lemma]. We again construct a suitable ε -pseudo orbit on Λ using the same notation as in the previous proof and let $r^{\pm} \in \mathbb{N}_0$ be two integers. Set

Figure III.7. One of the infinitely many homoclinic points p_0 near ν .

We repeat this finite sequence on the right r^+ -times and on the left r^- -times, then we add on the left $\varphi^{-j_0}(\nu), \ldots, \varphi^{-1}(\nu)$ and on the right $\nu, \varphi(\nu), \ldots, \varphi^{j_0}(\nu)$. Finally, we add on the left respectively on the right the infinite sequences $\ldots, 0, 0, 0$ resp. $0, 0, 0, \ldots$, which belong to the orbit of the fixed point 0. Hence, after choosing the integer j_0 and the open neighborhood Q as in the proof of the previous theorem, we have constructed an ε -pseudo orbit q on the hyperbolic set Λ , for which it holds true that

$$q_j=0, \quad |j|\geq M,$$

for a suitable constant M.

This pseudo orbit is shadowed by the unique δ -shadowing orbit $p = (p_j)_{j \in \mathbb{Z}}$ which satisfies, by construction, $\mathcal{O}(p_0) \subset U$ and $p_0 \in V$ and, in addition,

$$|p_j| \leq \delta, \quad |j| \geq M.$$

Therefore, for |j| large, all the orbit points lie in the δ neighborhood Q_δ of the hyperbolic fixed point 0. Hence, they lie on the local manifolds $W^+_{loc}(Q_\delta)$ respectively $W^-_{loc}(Q_\delta)$, introduced in II.2. Due to Theorem II.7, $\varphi^j(p_0) \to 0$ as $|j| \to \infty$, if we choose δ sufficiently small. Therefore, p_0 is a homoclinic point V, and, by construction, $p_0 \neq \nu$. Shadowing orbits belonging to different rotation numbers are different from each other. The proof of the theorem is complete.

More generally, we can consider two hyperbolic fixed points $x^* \neq y^*$ of the diffeomorphism φ . If the invariant manifolds intersect transversally in the heteroclinic