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the vector field X is a function H : R? — R satis fying

the flow of X leaves the function H invariant, so that

ecall that an integral of
d z. Therefore, the orbits lie on the level lines

= Equivalently,
H(z) for all 7 an

E, = {(x.y) e R | Hx,y) = ¢},

of the two branches y = + ./2(c + cos x). Figure IIL.11 shows that the
al pendulum possesses the following orbit types.

Wer
dH(X)
H(¢'(2)) =

consisting

mathematic
V = —cosx

\.

H<1'H=1H >1

Figure II1.11. Level sets of the integral H. The separatrix is marked.
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Equilibrium points. The equilibrium points are, on one hand, the cons
the level set { H = —1}, these are the so-called elliptic equilibrium poin
(x,y) = (27n, 0) (on the left figure). On the other hand, the hyperbolic equ
points located in (x, y) = ((2n + 1), 0) are on the level set {H = 1.
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Oscillation. The oscillations around the lowest point are on the level sets {—1 <
H < 1}, in Figure III.12 described by the closed curves.

Rotations. The rotational solutions lie on the level sets {H > 1}. The angle is
either strictly increasing (left) or else strictly decreasing (right).

Heteroclinic orbits. The level set { H = 1} carries the homoclinic orbits (in S x R)
and the heteroclinic orbits (in R?) respectively, and the hyperbolic equilibrium
points. This level set is called a separatrix because it separates the oscillations
from the rotations.

Keeping the time T > 0 fixed, the flow in time T,

(pT: [RZ N [RZ,

5 a diffeomorphism possessing the hyperbolic fixed points P, = ((2n + 1)7,0)
f(_)r n € Z. This is easily verified using Lemma II.12. They are 27 -periodically
distributed (in the projection on S! x R they all correspond to the same point).
Their stable and unstable invariant manifolds coincide in the sense that Wy (Pr) =
W-(P nt1) for all n € Z. We now perturb the pendulum by means of a time

- e > L . . . 4
beriodic excitation and consider the equation

2w

X + sinx = psin wt, =

he ¢ . :
"e1gy function H is no longer an integral of the system and the orbit structure

drasuca“)’- The new vector field

z=X(t, pu,z)E€ R?
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periodts intiIm:“t’somat)‘/(t‘\'T,#,z) = X(t.p.2)

is now 1ime dependent and T dic
for all . ps % w solves the initial value problem
4tz )= A R.
LGN D z.
value problem. it follows from the 2x

ess of the Cauchy initial

field X in the variable X that

e uniquen
y of the vector

o' (z + 27J¢

Due to th

periodicit
Ly =@t 2mjen.

ueR and J € 7. where €1 = (1,0). Moreover, it follows frc
jeld in ime ! that s from the

for all 1.
T—periodicity of the vector fi

otz ) = o' (o7 (z.40)

¢ R? (recall that the relation ¢’ © s — ptHs i
o> = ¢ $ is only valig

for every [ € R and Z

for the flow of atime independent vector field). Kee ing the pare

. ping the parameter p fixed. the
p(e) =T (@) R~ R

is a diffeomorphism satisfying 1//j (z) = (pr(z w) for every z R2
. ’ E
t there exists a solution x(¢) of the equation. % 4 sl
Sinx =

p sinw! possessing infinite
all nondegenerate. The times are ordered according to tx <ty if k
! < 1,soth
) at

x(t) = 0 mod o, x(tk) #0, k€ Z

In other words, the
: , the pendulum passes the | '
vanishing veloci : X . owest point infinit .
g ity. We associate with this solution a two-side g«ly often with a non-
- sequence o (x
1) =

(0 (x(1)))kez, defined by

+1, x(%) >0,

or(x (1)) = sign(x(1x)) = {
—1, x(t) < 0.

In the unpertu
rbed case u =
quences, namely p = 0 there exist precisely three t f
ypes 0 such se-

o ey ) 1,
9 3 - LA ).

S un i

dulum
possesses .
aso
theorem sho lution for every .
WwS. prescribed random sequ
ence as the following
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Figure II1.12. Types in the unperturbed case.

Theorem IIL19. Let U C R2 be an open neighborhood of the separatrix (in the
case o = 0). If || > O is sufficiently small, then there exists for every two-
sided sequence (sk)kez of integers sk € {—1, 1} a solution x(t) of the perturbed
pendulum equation X +sin X = fu sin wt suchthat (x(),x(t)) € U whichpossesses
infinitely many nondegenerate zeros (mod 2) satisfying

or(x(t)) = sk, keZ.

In addition, for every finite sequence sy € {—1,1} where —N <k < M there
exists a solution x (t) possessing only finitely many nondegenerate zeros (mocf' 2m)
and solving the equations o (x(t)) = sx for —N <k <M. The same applies to
half finite sequences s, for —oo < k < M or for —N <k <00

In short, one can prescribe any sequence of directions with which the pendulum

should consecutively pass through the lowest point and there exists a solution doing
precisely that,

P rOOf [Transversal heteroclinic point, shadowing lemma]. Assuming p 7 0, we
“onsider the diffeomorphism yr of R2, defined by the time T flow map

Uz, p) = vu(z) =@ (2. 1),

hetime 7 = 5y, /o > 0. In the case u = 0, the map V' has the hyperbolic fixed

Pt P -~ p 1 = (—m, 0). We shall show that also the diffeomorphism ¥, has a

" i ) differentiably
0 lqu? h)’perbolzcﬁXed point P(u) near P = P(0), which depends :R — R? by

: . . P2
ot i smaly enough. For this, we define the mapping F: R X

F(z,p) = <pT(Z,,U«) —Zz.




ing D1F (P, 0) 18 z;n isomorphism, since the
n eigenvalue equal to 1. [ Cv yperh .
T (p,0) docs 0 a'w.ea : - i anej i
geri egcists, by the imphmtzfuncltlf)n tt;?olr)em, 4-umgue Contin%l};?;;{hoo 02 zlatﬁx
gunction 4 7 p(w) € K550 ving F(P(1). ) = 0 and P(0) .fferenti:bl()
: . e
words, P(p) = ¥, (P () 1 oty

ing wu.hThle eigenvalues of the derivag;
. I\
hence the 11.16ar map d v/, (P (p)) p0ss edy,( Py,
Jue whose absolute v:fllue is > 1 and an eigenvaly e85es fo Sy
Consequently, P(p)isa hyperbolic fixed point of N Wh‘()Se absoly
P(u) + 2nm are hyperbolic fixed points and ﬁui l)fuis St
M)+ g o

oint of the mapp

depend continuously o1 J7a

{4 an eigenva
value is < 1-

Also the points

Py (u) +2nm = Pp—-1(1)-
From the proof of Theorem IL.8 (construction of h) we know
at the lOC(]l

invariant manifolds issuing from the hyperbolic fixed point P(y), de
» denoted by
+
Wiae (P (1)),

entiably on  (by the implicit function theorem). For small
. CI,

depend differ
can, therefore, be represented locally as graphs over the invariant manifolds of

unper.turl.)ed system (the branches of the separatrix). If # - y(¢) is a heterochi
solution in the unperturbed case (L = 0 having the x-coordinate at timet = Oeqﬁé
to (y(0)); = 0, then y(t) lies on the separatrix. In formulas,

d

YO = X©0,y(@), teR

an%y(z) > P =P a5t > —00 and y(t) > P +2re1 = Pyast =%
enoting by n(y(t)) the unit normal vector of the homoclinic orbit 7 %

pomt.y(z ) as fiepiCted in Figure I11.14, we can represent the relevant piec® o
invariant manifolds as follows:
) +u(r ) - n(y@r)) | —oo <1 <M} € w_(P-1()

and
D ) | M 27 oo} € WP
1 .

u+(ra(§ufﬁcle_n tly large constant M > 0 and where in the case = .

Ij;f) =u"(r,0) = 0 vanish.
or a parameter value r € R,

- 0 +(r ph):

(r,u) =u (r,/,l,) and ‘5’;” (ral'l')?é aru
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W+ (Po (/«L))

- P—1()

Legend: a: y(—=M) b: y(0) ¢ y(M) d: y(r)

Figure 111.13. The perturbed invariant manifolds possessing a transversal intersection.

then we have found the transversal intersection point
vi=p(r) +u”(r, @) - n(y(r)) € W_(P-1(w)) N Wa(Po(p))-
In order to study the first-order term in p of the function (¥~ — u™) we introduce

the so-called Melnikov function

d(r) = %(u— Yo ().

Ifd(rp) = 0 and (%d (ro) # 0, then there exists a transversal intersection point
near y(ry), for small u # 0. This follows from

W™ —u)(r,p) = p(dr) + O(w))
m. The first approximation d(r) can be
Melnikov formula.

in View of the implicit function theore
explicitly calculated by means of the following

Theorem IT1.20 (Melnikov). Let

5= f(z) +pgt,z) € R?,

2 € B2 be a smooth vector field satisfying div /' = 0 where g is a T-periodic
= g(t,z). We assume that for

of the vector field f,

vector field for some T > 0, so that g(t + T,z) ;
1= 0 there exists a homoclinic (resp. heteroclinic) orbit y

hence satisfying dity(t) = f(y(@)) for allt € Rand
y(t) > P, 17
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v/

Figure I11.14. A neighborhood U of the separatrix.

Jor two hyperbolic fixed points P and Q of f. Then, setting f = ( fir o) and
g = (&1, 82) the following formula holds true:

1 o0
d(r) = m/_m(ﬁgz — 281)(5, y(r + 5)) ds.

For a proof we refer to C. Robinson in [91, S. 304]. In order to apply the formula
to our pendulum, we consider the upper branch of the unperturbed separatrix,

{-—IISXSJT,

Yy =+42(1+cosx) = 2cos(%)

where y = x. The solution of the equation x = 2 cos(3) is given by

x(t) = 2arcsin(tanh(¢)), ¢ € R,
and differentiating we obtain

2
cosh(z)’

X(t) =y@) =

Hence y (1) = (x(2), ¥(t)) is the heteroclinic orbit. Inserting the curve y into
the Melnikov formula results in

dir) — 1 27 sin(wr)
1 X(¥(r))] cosh(&Z)
The funf:tion d(r) has the nondegenerate zerog r=Zjforall j € Z. Therefore,
there exists a transversal heteroclinjc point v. In the same way, there exists near the
lower branch of the separatrix a

) transversal heteroclinic point n. The closure of the
heteroclinic orbits is the hyperbolic set

A= U v+ 2mke) Utpeuy Ui+ 27ker).
J.keZ

In order to finish the proof of Theorem

‘ III.19 we choose a neighborhood U of
the separatrix and we choose the parameters

€,8 asinthe shadowing lemma. For the
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jven sequence s = (Sk)kez We C0ﬂ§tmct the following e-pseudo orbit q, described
py Figure 11.15. If so = 1 we §tan in the heteroclinic point gy = v and if so = —1
we start in the jheter_OCth point go = n. Then we follow the heteroclinic orbit
) (v), TEsp- yr/ () into the (¢/2)-neighborhood of the next hyperbolic fixed point

There one has again two possibilities. If s; = 1 we jump onto the heteroclinic orbit

of the upper branch to the right while if s; = —1 we jump onto the h ini
orbit of the lower branch to the left, and so on. P © heteroclinic

Figure IIL.15. The g-pseudo orbit associated with the sequence (sx) =(. . -, 50, 51,52, - -- )=
(...,,1,=1,...).

The associated 8-shadowing orbit p = (pj)jez guaranteed by the shadowing
lemma,

pi = ¥i(po) = ¢’  (po. 1), JEZL

lies on the desired solution t —> @' (po, ) of the perturbed vector field X (¢, 1, 2)
starting at the point ¢°(po, ) = po at the time 7 = 0 and remaining in the open
neighborhood U of the separatrix. Of course, this solution loses a lot of time near
the hyperbolic equilibrium points, away from these neighborhoods it Iooves quite
fast. We point out that all the solutions found this way startina small neighborhood
of the homoclinic points v resp. 1!

The passages near the transversal heteroclinic points v 1esp-7 conospond to the
Passages of the pendulum through the point x = 0 mod 27, which is the lowest
Position of the pendulum. In order to obtain a solution defined by a finite sequznoe
(Sk), one constructs an g-pseudo orbit ¢ as before which, however, at the1 ends 1;
®qual to the orbits of hyperbolic fixed points. Then, the corresponding solution Ios
the pendulum equation makes finitely many swings back and forth ond then rema:h
Almost immobile near the highest position of the pendulum! This completes EJe
Proof of Theorem I1L.19.

iodi d pen-
For a detailed study of the chaotic behavior of the periodically perturbed pe

dulum we refer to U. Kirchgraber and D- Stoffer in [59)-




